pinebuds/services/ble_profiles/cscp/cscpc/src/cscpc_task.c

946 lines
35 KiB
C

/**
****************************************************************************************
* @addtogroup CSCPCTASK
* @{
****************************************************************************************
*/
/*
* INCLUDE FILES
****************************************************************************************
*/
#include "rwip_config.h"
#if (BLE_CSC_COLLECTOR)
#include "cscp_common.h"
#include "cscpc_task.h"
#include "cscpc.h"
#include "gap.h"
#include "gattc_task.h"
#include "ke_timer.h"
#include "ke_mem.h"
#include "co_utils.h"
/*
* STRUCTURES
****************************************************************************************
*/
/// State machine used to retrieve Cycling Speed and Cadence service characteristics information
const struct prf_char_def cscpc_cscs_char[CSCP_CSCS_CHAR_MAX] =
{
/// CSC Measurement
[CSCP_CSCS_CSC_MEAS_CHAR] = {ATT_CHAR_CSC_MEAS,
ATT_MANDATORY,
ATT_CHAR_PROP_NTF},
/// CSC Feature
[CSCP_CSCS_CSC_FEAT_CHAR] = {ATT_CHAR_CSC_FEAT,
ATT_MANDATORY,
ATT_CHAR_PROP_RD},
/// Sensor Location
[CSCP_CSCS_SENSOR_LOC_CHAR] = {ATT_CHAR_SENSOR_LOC,
ATT_OPTIONAL,
ATT_CHAR_PROP_RD},
/// SC Control Point
[CSCP_CSCS_SC_CTNL_PT_CHAR] = {ATT_CHAR_SC_CNTL_PT,
ATT_OPTIONAL,
ATT_CHAR_PROP_WR | ATT_CHAR_PROP_IND},
};
/// State machine used to retrieve Cycling Speed and Cadence service characteristic descriptor information
const struct prf_char_desc_def cscpc_cscs_char_desc[CSCPC_DESC_MAX] =
{
/// CSC Measurement Char. - Client Characteristic Configuration
[CSCPC_DESC_CSC_MEAS_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG,
ATT_MANDATORY,
CSCP_CSCS_CSC_MEAS_CHAR},
/// SC Control Point Char. - Client Characteristic Configuration
[CSCPC_DESC_SC_CTNL_PT_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG,
ATT_OPTIONAL,
CSCP_CSCS_SC_CTNL_PT_CHAR},
};
/*
* LOCAL FUNCTIONS DEFINITIONS
****************************************************************************************
*/
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_SDP_SVC_IND_HANDLER message.
* The handler stores the found service details for service discovery.
* @param[in] msgid Id of the message received (probably unused).
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance (probably unused).
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_sdp_svc_ind_handler(ke_msg_id_t const msgid,
struct gattc_sdp_svc_ind const *ind,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
uint8_t state = ke_state_get(dest_id);
if(state == CSCPC_DISCOVERING)
{
uint8_t conidx = KE_IDX_GET(dest_id);
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
ASSERT_INFO(cscpc_env != NULL, dest_id, src_id);
ASSERT_INFO(cscpc_env->env[conidx] != NULL, dest_id, src_id);
if(cscpc_env->env[conidx]->nb_svc == 0)
{
// Retrieve CSCS characteristics and descriptors
prf_extract_svc_info(ind, CSCP_CSCS_CHAR_MAX, &cscpc_cscs_char[0], &cscpc_env->env[conidx]->cscs.chars[0],
CSCPC_DESC_MAX, &cscpc_cscs_char_desc[0], &cscpc_env->env[conidx]->cscs.descs[0]);
//Even if we get multiple responses we only store 1 range
cscpc_env->env[conidx]->cscs.svc.shdl = ind->start_hdl;
cscpc_env->env[conidx]->cscs.svc.ehdl = ind->end_hdl;
}
cscpc_env->env[conidx]->nb_svc++;
}
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CSCPC_ENABLE_REQ message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cscpc_enable_req_handler(ke_msg_id_t const msgid,
struct cscpc_enable_req *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
// Status
uint8_t status = GAP_ERR_NO_ERROR;
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
uint8_t state = ke_state_get(dest_id);
// Cycling Speed and Cadence Profile Collector Role Task Environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
ASSERT_INFO(cscpc_env != NULL, dest_id, src_id);
if ((state == CSCPC_IDLE) && (cscpc_env->env[conidx] == NULL))
{
// allocate environment variable for task instance
cscpc_env->env[conidx] = (struct cscpc_cnx_env*) ke_malloc(sizeof(struct cscpc_cnx_env),KE_MEM_ATT_DB);
memset(cscpc_env->env[conidx], 0, sizeof(struct cscpc_cnx_env));
// Start discovering
if (param->con_type == PRF_CON_DISCOVERY)
{
prf_disc_svc_send(&(cscpc_env->prf_env), conidx, ATT_SVC_CYCLING_SPEED_CADENCE);
// Go to DISCOVERING state
ke_state_set(dest_id, CSCPC_DISCOVERING);
}
// Bond information are provided
else
{
cscpc_env->env[conidx]->cscs = param->cscs;
//send APP confirmation that can start normal connection to TH
cscpc_enable_rsp_send(cscpc_env, conidx, GAP_ERR_NO_ERROR);
}
}
else if (state != CSCPC_FREE)
{
// The message will be forwarded towards the good task instance
status = PRF_ERR_REQ_DISALLOWED;
}
if(status != GAP_ERR_NO_ERROR)
{
// The request is disallowed (profile already enabled for this connection, or not enough memory, ...)
cscpc_enable_rsp_send(cscpc_env, conidx, status);
}
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CSCPC_READ_CMD message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cscpc_read_cmd_handler(ke_msg_id_t const msgid,
struct cscpc_read_cmd *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
uint8_t state = ke_state_get(dest_id);
uint8_t status = PRF_ERR_REQ_DISALLOWED;
// Message status
uint8_t msg_status = KE_MSG_CONSUMED;
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
if (state == CSCPC_IDLE)
{
ASSERT_INFO(cscpc_env != NULL, dest_id, src_id);
// environment variable not ready
if(cscpc_env->env[conidx] == NULL)
{
status = PRF_APP_ERROR;
}
else
{
// Attribute Handle
uint16_t handle = ATT_INVALID_SEARCH_HANDLE;
switch (param->read_code)
{
// Read CSC Feature
case (CSCPC_RD_CSC_FEAT):
{
handle = cscpc_env->env[conidx]->cscs.chars[CSCP_CSCS_CSC_FEAT_CHAR].val_hdl;
} break;
// Read Sensor Location
case (CSCPC_RD_SENSOR_LOC):
{
handle = cscpc_env->env[conidx]->cscs.chars[CSCP_CSCS_SENSOR_LOC_CHAR].val_hdl;
} break;
// Read CSC Measurement Characteristic Client Char. Cfg. Descriptor Value
case (CSCPC_RD_WR_CSC_MEAS_CFG):
{
handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_CSC_MEAS_CL_CFG].desc_hdl;
} break;
// Read Unread Alert Characteristic Client Char. Cfg. Descriptor Value
case (CSCPC_RD_WR_SC_CTNL_PT_CFG):
{
handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_SC_CTNL_PT_CL_CFG].desc_hdl;
} break;
default:
{
status = PRF_ERR_INVALID_PARAM;
} break;
}
// Check if handle is viable
if (handle != ATT_INVALID_SEARCH_HANDLE)
{
// Force the operation value
param->operation = CSCPC_READ_OP_CODE;
// Store the command structure
cscpc_env->env[conidx]->operation = param;
msg_status = KE_MSG_NO_FREE;
// Send the read request
prf_read_char_send(&(cscpc_env->prf_env), conidx,
cscpc_env->env[conidx]->cscs.svc.shdl,
cscpc_env->env[conidx]->cscs.svc.ehdl,
handle);
// Go to the Busy state
ke_state_set(dest_id, CSCPC_BUSY);
status = ATT_ERR_NO_ERROR;
}
else
{
status = PRF_ERR_INEXISTENT_HDL;
}
}
}
else if (state == CSCPC_FREE)
{
status = GAP_ERR_DISCONNECTED;
}
else
{
// Another procedure is pending, keep the command for later
msg_status = KE_MSG_SAVED;
status = GAP_ERR_NO_ERROR;
}
if (status != GAP_ERR_NO_ERROR)
{
// Send the complete event message to the task id stored in the environment
cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_READ_OP_CODE, status);
}
return (int)msg_status;
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CSCPC_CFG_NTFIND_CMD message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cscpc_cfg_ntfind_cmd_handler(ke_msg_id_t const msgid,
struct cscpc_cfg_ntfind_cmd *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
uint8_t state = ke_state_get(dest_id);
// Message status
uint8_t msg_status = KE_MSG_CONSUMED;
if (cscpc_env != NULL)
{
// Status
uint8_t status = PRF_ERR_REQ_DISALLOWED;
// Handle
uint16_t handle = ATT_INVALID_SEARCH_HANDLE;
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
do
{
if (state != CSCPC_IDLE)
{
// Another procedure is pending, keep the command for later
msg_status = KE_MSG_SAVED;
// Status is GAP_ERR_NO_ERROR, no message will be sent to the application
break;
}
// state = CSCPC_CONNECTED
ASSERT_ERR(cscpc_env->env[conidx] != NULL);
switch(param->desc_code)
{
// Write CSC Measurement Characteristic Client Char. Cfg. Descriptor Value
case (CSCPC_RD_WR_CSC_MEAS_CFG):
{
if (param->ntfind_cfg <= PRF_CLI_START_NTF)
{
handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_CSC_MEAS_CL_CFG].desc_hdl;
// The descriptor is mandatory
ASSERT_ERR(handle != ATT_INVALID_SEARCH_HANDLE);
status = GAP_ERR_NO_ERROR;
}
else
{
status = PRF_ERR_INVALID_PARAM;
}
} break;
// Write SC Control Point Characteristic Client Char. Cfg. Descriptor Value
case (CSCPC_RD_WR_SC_CTNL_PT_CFG):
{
if ((param->ntfind_cfg == PRF_CLI_STOP_NTFIND) ||
(param->ntfind_cfg == PRF_CLI_START_IND))
{
handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_SC_CTNL_PT_CL_CFG].desc_hdl;
status = GAP_ERR_NO_ERROR;
if (handle == ATT_INVALID_SEARCH_HANDLE)
{
// The descriptor has not been found.
status = PRF_ERR_INEXISTENT_HDL;
}
}
else
{
status = PRF_ERR_INVALID_PARAM;
}
} break;
default:
{
status = PRF_ERR_INVALID_PARAM;
} break;
}
} while (0);
if ((status == GAP_ERR_NO_ERROR) && (handle != ATT_INVALID_SEARCH_HANDLE))
{
// Set the operation code
param->operation = CSCPC_CFG_NTF_IND_OP_CODE;
// Store the command structure
cscpc_env->env[conidx]->operation = param;
msg_status = KE_MSG_NO_FREE;
// Go to the Busy state
ke_state_set(dest_id, CSCPC_BUSY);
// Send GATT Write Request
prf_gatt_write_ntf_ind(&cscpc_env->prf_env, conidx, handle, param->ntfind_cfg);
}
}
else
{
cscpc_send_no_conn_cmp_evt(dest_id, src_id, CSCPC_CFG_NTF_IND_OP_CODE);
}
return (int)msg_status;
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CSCPC_CFG_NTFIND_CMD message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cscpc_ctnl_pt_cfg_req_handler(ke_msg_id_t const msgid,
struct cscpc_ctnl_pt_cfg_req *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
// Message status
uint8_t msg_status = KE_MSG_CONSUMED;
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
if (cscpc_env != NULL)
{
// Status
uint8_t status = GAP_ERR_NO_ERROR;
do
{
// State is Connected or Busy
ASSERT_ERR(ke_state_get(dest_id) > CSCPC_FREE);
// Check the provided connection handle
if (cscpc_env->env[conidx] == NULL)
{
status = PRF_ERR_INVALID_PARAM;
break;
}
if (ke_state_get(dest_id) != CSCPC_IDLE)
{
// Another procedure is pending, keep the command for later
msg_status = KE_MSG_NO_FREE;
// Status is GAP_ERR_NO_ERROR, no message will be sent to the application
break;
}
// Check if the characteristic has been found
if (cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_SC_CTNL_PT_CL_CFG].desc_hdl != ATT_INVALID_SEARCH_HANDLE)
{
// Packed request
uint8_t req[CSCP_SC_CNTL_PT_REQ_MAX_LEN];
// Request Length
uint8_t req_len = CSCP_SC_CNTL_PT_REQ_MIN_LEN;
// Set the operation code
req[0] = param->sc_ctnl_pt.op_code;
// Fulfill the message according to the operation code
switch (param->sc_ctnl_pt.op_code)
{
case (CSCP_CTNL_PT_OP_SET_CUMUL_VAL):
{
// Set the cumulative value
co_write32p(&req[req_len], param->sc_ctnl_pt.value.cumul_val);
// Update length
req_len += 4;
} break;
case (CSCP_CTNL_PT_OP_UPD_LOC):
{
// Set the sensor location
req[req_len] = param->sc_ctnl_pt.value.sensor_loc;
// Update length
req_len++;
} break;
case (CSCP_CTNL_PT_OP_RESERVED):
case (CSCP_CTNL_PT_OP_START_CALIB):
case (CSCP_CTNL_PT_OP_REQ_SUPP_LOC):
{
// Nothing more to do
} break;
default:
{
status = PRF_ERR_INVALID_PARAM;
} break;
}
if (status == GAP_ERR_NO_ERROR)
{
// Set the operation code
param->operation = CSCPC_CTNL_PT_CFG_WR_OP_CODE;
// Store the command structure
cscpc_env->env[conidx]->operation = param;
// Store the command information
msg_status = KE_MSG_NO_FREE;
// Go to the Busy state
ke_state_set(dest_id, CSCPC_BUSY);
// Send the write request
prf_gatt_write(&(cscpc_env->prf_env), conidx, cscpc_env->env[conidx]->cscs.chars[CSCP_CSCS_SC_CTNL_PT_CHAR].val_hdl,
(uint8_t *)&req[0], req_len, GATTC_WRITE);
}
}
else
{
status = PRF_ERR_INEXISTENT_HDL;
}
} while (0);
if (status != GAP_ERR_NO_ERROR)
{
// Send a complete event status to the application
cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_CTNL_PT_CFG_WR_OP_CODE, status);
}
}
else
{
// No connection
cscpc_send_no_conn_cmp_evt(dest_id, src_id, CSCPC_CTNL_PT_CFG_WR_OP_CODE);
}
return (int)msg_status;
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CSCPC_TIMEOUT_TIMER_IND message. This message is
* received when the peer device doesn't send a SC Control Point indication within 30s
* after reception of the write response.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cscpc_timeout_timer_ind_handler(ke_msg_id_t const msgid,
void const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
if (cscpc_env != NULL)
{
ASSERT_ERR(cscpc_env->env[conidx]->operation != NULL);
ASSERT_ERR(((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation == CSCPC_CTNL_PT_CFG_IND_OP_CODE);
// Send the complete event message
cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_CTNL_PT_CFG_WR_OP_CODE, PRF_ERR_PROC_TIMEOUT);
}
// else drop the message
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_CMP_EVT message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_cmp_evt_handler(ke_msg_id_t const msgid,
struct gattc_cmp_evt const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
// Status
uint8_t status;
if (cscpc_env != NULL)
{
uint8_t conidx = KE_IDX_GET(dest_id);
uint8_t state = ke_state_get(dest_id);
if (state == CSCPC_DISCOVERING)
{
status = param->status;
if ((status == ATT_ERR_ATTRIBUTE_NOT_FOUND) ||
(status == ATT_ERR_NO_ERROR))
{
// Discovery
// check characteristic validity
if(cscpc_env->env[conidx]->nb_svc == 1)
{
status = prf_check_svc_char_validity(CSCP_CSCS_CHAR_MAX,
cscpc_env->env[conidx]->cscs.chars,
cscpc_cscs_char);
}
// too much services
else if (cscpc_env->env[conidx]->nb_svc > 1)
{
status = PRF_ERR_MULTIPLE_SVC;
}
// no services found
else
{
status = PRF_ERR_STOP_DISC_CHAR_MISSING;
}
// check descriptor validity
if (status == GAP_ERR_NO_ERROR)
{
status = prf_check_svc_char_desc_validity(CSCPC_DESC_MAX,
cscpc_env->env[conidx]->cscs.descs,
cscpc_cscs_char_desc,
cscpc_env->env[conidx]->cscs.chars);
}
}
cscpc_enable_rsp_send(cscpc_env, conidx, status);
}
else if (state == CSCPC_BUSY)
{
switch (param->operation)
{
case GATTC_READ:
{
// Send the complete event status
cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_READ_OP_CODE, param->status);
} break;
case GATTC_WRITE:
case GATTC_WRITE_NO_RESPONSE:
{
uint8_t operation = ((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation;
if (operation == CSCPC_CFG_NTF_IND_OP_CODE)
{
// Send the complete event status
cscpc_send_cmp_evt(cscpc_env, conidx, operation, param->status);
}
else if (operation == CSCPC_CTNL_PT_CFG_WR_OP_CODE)
{
if (param->status == GAP_ERR_NO_ERROR)
{
// Start Timeout Procedure
ke_timer_set(CSCPC_TIMEOUT_TIMER_IND, dest_id, ATT_TRANS_RTX);
// Wait for the response indication
((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation = CSCPC_CTNL_PT_CFG_IND_OP_CODE;
}
else
{
// Send the complete event status
cscpc_send_cmp_evt(cscpc_env, conidx, operation, param->status);
}
}
} break;
case GATTC_REGISTER:
case GATTC_UNREGISTER:
{
// Do nothing
} break;
default:
{
ASSERT_ERR(0);
} break;
}
}
}
// else ignore the message
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_READ_IND message.
* Generic event received after every simple read command sent to peer server.
* @param[in] msgid Id of the message received (probably unused).
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance (probably unused).
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_read_ind_handler(ke_msg_id_t const msgid,
struct gattc_read_ind const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
if (ke_state_get(dest_id) == CSCPC_BUSY)
{
uint8_t conidx = KE_IDX_GET(dest_id);
ASSERT_INFO(cscpc_env != NULL, dest_id, src_id);
ASSERT_INFO(cscpc_env->env[conidx] != NULL, dest_id, src_id);
// Send the read value to the HL
struct cscpc_value_ind *ind = KE_MSG_ALLOC(CSCPC_VALUE_IND,
prf_dst_task_get(&(cscpc_env->prf_env), conidx),
dest_id,
cscpc_value_ind);
switch (((struct cscpc_read_cmd *)cscpc_env->env[conidx]->operation)->read_code)
{
// Read CSC Feature Characteristic value
case (CSCPC_RD_CSC_FEAT):
{
ind->value.sensor_feat = co_read16p(param->value);
// Mask the reserved bits
// ind->value.sensor_feat &= CSCP_FEAT_ALL_SUPP;
} break;
// Read Sensor Location Characteristic value
case (CSCPC_RD_SENSOR_LOC):
{
ind->value.sensor_loc = param->value[0];
} break;
// Read Client Characteristic Configuration Descriptor value
case (CSCPC_RD_WR_CSC_MEAS_CFG):
case (CSCPC_RD_WR_SC_CTNL_PT_CFG):
{
co_write16p(&ind->value.ntf_cfg, param->value[0]);
} break;
default:
{
ASSERT_ERR(0);
} break;
}
ind->att_code = ((struct cscpc_read_cmd *)cscpc_env->env[conidx]->operation)->read_code;
// Send the message to the application
ke_msg_send(ind);
}
// else drop the message
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_EVENT_IND message.
* @param[in] msgid Id of the message received (probably unused).
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance (probably unused).
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_event_ind_handler(ke_msg_id_t const msgid,
struct gattc_event_ind const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id)
{
uint8_t conidx = KE_IDX_GET(dest_id);
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
if (cscpc_env != NULL)
{
switch (param->type)
{
case (GATTC_NOTIFY):
{
// Offset
uint8_t offset = CSCP_CSC_MEAS_MIN_LEN;
// CSC Measurement value has been received
struct cscpc_value_ind *ind = KE_MSG_ALLOC(CSCPC_VALUE_IND,
prf_dst_task_get(&(cscpc_env->prf_env), conidx),
prf_src_task_get(&(cscpc_env->prf_env), conidx),
cscpc_value_ind);
// Attribute code
ind->att_code = CSCPC_NTF_CSC_MEAS;
/*----------------------------------------------------
* Unpack Measurement --------------------------------
*----------------------------------------------------*/
// Flags
ind->value.csc_meas.flags = param->value[0];
// Cumulative Wheel Revolutions
// Last Wheel Event Time
if (param->value[0] & CSCP_MEAS_WHEEL_REV_DATA_PRESENT)
{
// Cumulative Wheel Revolutions
ind->value.csc_meas.cumul_wheel_rev = co_read32p(&param->value[offset]);
offset += 4;
// Last Wheel Event Time
ind->value.csc_meas.last_wheel_evt_time = co_read16p(&param->value[offset]);
offset += 2;
}
// Cumulative Crank Revolutions
// Last Crank Event Time
if (param->value[0] & CSCP_MEAS_CRANK_REV_DATA_PRESENT)
{
// Cumulative Crank Revolutions
ind->value.csc_meas.cumul_crank_rev = co_read16p(&param->value[offset]);
offset += 2;
// Last Crank Event Time
ind->value.csc_meas.last_crank_evt_time = co_read16p(&param->value[offset]);
}
ke_msg_send(ind);
} break;
case (GATTC_INDICATE):
{
// confirm that indication has been correctly received
struct gattc_event_cfm * cfm = KE_MSG_ALLOC(GATTC_EVENT_CFM, src_id, dest_id, gattc_event_cfm);
cfm->handle = param->handle;
ke_msg_send(cfm);
// Check if we were waiting for the indication
if (cscpc_env->env[conidx]->operation != NULL)
{
if (((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation == CSCPC_CTNL_PT_CFG_IND_OP_CODE)
{
// Stop the procedure timeout timer
ke_timer_clear(CSCPC_TIMEOUT_TIMER_IND, dest_id);
// CSC Measurement value has been received
struct cscpc_ctnl_pt_rsp *ind = KE_MSG_ALLOC(CSCPC_CTNL_PT_RSP,
prf_dst_task_get(&(cscpc_env->prf_env), conidx),
prf_src_task_get(&(cscpc_env->prf_env), conidx),
cscpc_ctnl_pt_rsp);
// Requested operation code
ind->ctnl_pt_rsp.req_op_code = param->value[1];
// Response value
ind->ctnl_pt_rsp.resp_value = param->value[2];
// Get the list of supported sensor locations if needed
if ((ind->ctnl_pt_rsp.req_op_code == CSCP_CTNL_PT_OP_REQ_SUPP_LOC) &&
(ind->ctnl_pt_rsp.resp_value == CSCP_CTNL_PT_RESP_SUCCESS) &&
(param->length > 3))
{
// Get the number of supported locations that have been received
uint8_t nb_supp_loc = (param->length - 3);
// Counter
uint8_t counter;
// Location
uint8_t loc;
for (counter = 0; counter < nb_supp_loc; counter++)
{
loc = param->value[counter + 3];
// Check if valid
if (loc < CSCP_LOC_MAX)
{
ind->ctnl_pt_rsp.supp_loc |= (1 << loc);
}
}
}
// Send the message
ke_msg_send(ind);
// Send the complete event message
cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_CTNL_PT_CFG_WR_OP_CODE, GAP_ERR_NO_ERROR);
}
// else drop the message
}
// else drop the message
} break;
default:
{
ASSERT_ERR(0);
} break;
}
}
return (KE_MSG_CONSUMED);
}
/*
* GLOBAL VARIABLE DEFINITIONS
****************************************************************************************
*/
/// Specifies the default message handlers
KE_MSG_HANDLER_TAB(cscpc)
{
{GATTC_SDP_SVC_IND, (ke_msg_func_t)gattc_sdp_svc_ind_handler},
{CSCPC_ENABLE_REQ, (ke_msg_func_t)cscpc_enable_req_handler},
{CSCPC_READ_CMD, (ke_msg_func_t)cscpc_read_cmd_handler},
{GATTC_READ_IND, (ke_msg_func_t)gattc_read_ind_handler},
{CSCPC_CFG_NTFIND_CMD, (ke_msg_func_t)cscpc_cfg_ntfind_cmd_handler},
{CSCPC_CTNL_PT_CFG_REQ, (ke_msg_func_t)cscpc_ctnl_pt_cfg_req_handler},
{CSCPC_TIMEOUT_TIMER_IND, (ke_msg_func_t)cscpc_timeout_timer_ind_handler},
{GATTC_EVENT_IND, (ke_msg_func_t)gattc_event_ind_handler},
{GATTC_EVENT_REQ_IND, (ke_msg_func_t)gattc_event_ind_handler},
{GATTC_CMP_EVT, (ke_msg_func_t)gattc_cmp_evt_handler},
};
void cscpc_task_init(struct ke_task_desc *task_desc)
{
// Get the address of the environment
struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc);
task_desc->msg_handler_tab = cscpc_msg_handler_tab;
task_desc->msg_cnt = ARRAY_LEN(cscpc_msg_handler_tab);
task_desc->state = cscpc_env->state;
task_desc->idx_max = CSCPC_IDX_MAX;
}
#endif //(BLE_CSC_COLLECTOR)
/// @} CSCPCTASK