/** **************************************************************************************** * @addtogroup CSCPCTASK * @{ **************************************************************************************** */ /* * INCLUDE FILES **************************************************************************************** */ #include "rwip_config.h" #if (BLE_CSC_COLLECTOR) #include "cscp_common.h" #include "cscpc_task.h" #include "cscpc.h" #include "gap.h" #include "gattc_task.h" #include "ke_timer.h" #include "ke_mem.h" #include "co_utils.h" /* * STRUCTURES **************************************************************************************** */ /// State machine used to retrieve Cycling Speed and Cadence service characteristics information const struct prf_char_def cscpc_cscs_char[CSCP_CSCS_CHAR_MAX] = { /// CSC Measurement [CSCP_CSCS_CSC_MEAS_CHAR] = {ATT_CHAR_CSC_MEAS, ATT_MANDATORY, ATT_CHAR_PROP_NTF}, /// CSC Feature [CSCP_CSCS_CSC_FEAT_CHAR] = {ATT_CHAR_CSC_FEAT, ATT_MANDATORY, ATT_CHAR_PROP_RD}, /// Sensor Location [CSCP_CSCS_SENSOR_LOC_CHAR] = {ATT_CHAR_SENSOR_LOC, ATT_OPTIONAL, ATT_CHAR_PROP_RD}, /// SC Control Point [CSCP_CSCS_SC_CTNL_PT_CHAR] = {ATT_CHAR_SC_CNTL_PT, ATT_OPTIONAL, ATT_CHAR_PROP_WR | ATT_CHAR_PROP_IND}, }; /// State machine used to retrieve Cycling Speed and Cadence service characteristic descriptor information const struct prf_char_desc_def cscpc_cscs_char_desc[CSCPC_DESC_MAX] = { /// CSC Measurement Char. - Client Characteristic Configuration [CSCPC_DESC_CSC_MEAS_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_MANDATORY, CSCP_CSCS_CSC_MEAS_CHAR}, /// SC Control Point Char. - Client Characteristic Configuration [CSCPC_DESC_SC_CTNL_PT_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_OPTIONAL, CSCP_CSCS_SC_CTNL_PT_CHAR}, }; /* * LOCAL FUNCTIONS DEFINITIONS **************************************************************************************** */ /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_SDP_SVC_IND_HANDLER message. * The handler stores the found service details for service discovery. * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_sdp_svc_ind_handler(ke_msg_id_t const msgid, struct gattc_sdp_svc_ind const *ind, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t state = ke_state_get(dest_id); if(state == CSCPC_DISCOVERING) { uint8_t conidx = KE_IDX_GET(dest_id); struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); ASSERT_INFO(cscpc_env != NULL, dest_id, src_id); ASSERT_INFO(cscpc_env->env[conidx] != NULL, dest_id, src_id); if(cscpc_env->env[conidx]->nb_svc == 0) { // Retrieve CSCS characteristics and descriptors prf_extract_svc_info(ind, CSCP_CSCS_CHAR_MAX, &cscpc_cscs_char[0], &cscpc_env->env[conidx]->cscs.chars[0], CSCPC_DESC_MAX, &cscpc_cscs_char_desc[0], &cscpc_env->env[conidx]->cscs.descs[0]); //Even if we get multiple responses we only store 1 range cscpc_env->env[conidx]->cscs.svc.shdl = ind->start_hdl; cscpc_env->env[conidx]->cscs.svc.ehdl = ind->end_hdl; } cscpc_env->env[conidx]->nb_svc++; } return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref CSCPC_ENABLE_REQ message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscpc_enable_req_handler(ke_msg_id_t const msgid, struct cscpc_enable_req *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Status uint8_t status = GAP_ERR_NO_ERROR; // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); uint8_t state = ke_state_get(dest_id); // Cycling Speed and Cadence Profile Collector Role Task Environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); ASSERT_INFO(cscpc_env != NULL, dest_id, src_id); if ((state == CSCPC_IDLE) && (cscpc_env->env[conidx] == NULL)) { // allocate environment variable for task instance cscpc_env->env[conidx] = (struct cscpc_cnx_env*) ke_malloc(sizeof(struct cscpc_cnx_env),KE_MEM_ATT_DB); memset(cscpc_env->env[conidx], 0, sizeof(struct cscpc_cnx_env)); // Start discovering if (param->con_type == PRF_CON_DISCOVERY) { prf_disc_svc_send(&(cscpc_env->prf_env), conidx, ATT_SVC_CYCLING_SPEED_CADENCE); // Go to DISCOVERING state ke_state_set(dest_id, CSCPC_DISCOVERING); } // Bond information are provided else { cscpc_env->env[conidx]->cscs = param->cscs; //send APP confirmation that can start normal connection to TH cscpc_enable_rsp_send(cscpc_env, conidx, GAP_ERR_NO_ERROR); } } else if (state != CSCPC_FREE) { // The message will be forwarded towards the good task instance status = PRF_ERR_REQ_DISALLOWED; } if(status != GAP_ERR_NO_ERROR) { // The request is disallowed (profile already enabled for this connection, or not enough memory, ...) cscpc_enable_rsp_send(cscpc_env, conidx, status); } return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref CSCPC_READ_CMD message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscpc_read_cmd_handler(ke_msg_id_t const msgid, struct cscpc_read_cmd *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t state = ke_state_get(dest_id); uint8_t status = PRF_ERR_REQ_DISALLOWED; // Message status uint8_t msg_status = KE_MSG_CONSUMED; // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); if (state == CSCPC_IDLE) { ASSERT_INFO(cscpc_env != NULL, dest_id, src_id); // environment variable not ready if(cscpc_env->env[conidx] == NULL) { status = PRF_APP_ERROR; } else { // Attribute Handle uint16_t handle = ATT_INVALID_SEARCH_HANDLE; switch (param->read_code) { // Read CSC Feature case (CSCPC_RD_CSC_FEAT): { handle = cscpc_env->env[conidx]->cscs.chars[CSCP_CSCS_CSC_FEAT_CHAR].val_hdl; } break; // Read Sensor Location case (CSCPC_RD_SENSOR_LOC): { handle = cscpc_env->env[conidx]->cscs.chars[CSCP_CSCS_SENSOR_LOC_CHAR].val_hdl; } break; // Read CSC Measurement Characteristic Client Char. Cfg. Descriptor Value case (CSCPC_RD_WR_CSC_MEAS_CFG): { handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_CSC_MEAS_CL_CFG].desc_hdl; } break; // Read Unread Alert Characteristic Client Char. Cfg. Descriptor Value case (CSCPC_RD_WR_SC_CTNL_PT_CFG): { handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_SC_CTNL_PT_CL_CFG].desc_hdl; } break; default: { status = PRF_ERR_INVALID_PARAM; } break; } // Check if handle is viable if (handle != ATT_INVALID_SEARCH_HANDLE) { // Force the operation value param->operation = CSCPC_READ_OP_CODE; // Store the command structure cscpc_env->env[conidx]->operation = param; msg_status = KE_MSG_NO_FREE; // Send the read request prf_read_char_send(&(cscpc_env->prf_env), conidx, cscpc_env->env[conidx]->cscs.svc.shdl, cscpc_env->env[conidx]->cscs.svc.ehdl, handle); // Go to the Busy state ke_state_set(dest_id, CSCPC_BUSY); status = ATT_ERR_NO_ERROR; } else { status = PRF_ERR_INEXISTENT_HDL; } } } else if (state == CSCPC_FREE) { status = GAP_ERR_DISCONNECTED; } else { // Another procedure is pending, keep the command for later msg_status = KE_MSG_SAVED; status = GAP_ERR_NO_ERROR; } if (status != GAP_ERR_NO_ERROR) { // Send the complete event message to the task id stored in the environment cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_READ_OP_CODE, status); } return (int)msg_status; } /** **************************************************************************************** * @brief Handles reception of the @ref CSCPC_CFG_NTFIND_CMD message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscpc_cfg_ntfind_cmd_handler(ke_msg_id_t const msgid, struct cscpc_cfg_ntfind_cmd *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); uint8_t state = ke_state_get(dest_id); // Message status uint8_t msg_status = KE_MSG_CONSUMED; if (cscpc_env != NULL) { // Status uint8_t status = PRF_ERR_REQ_DISALLOWED; // Handle uint16_t handle = ATT_INVALID_SEARCH_HANDLE; // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); do { if (state != CSCPC_IDLE) { // Another procedure is pending, keep the command for later msg_status = KE_MSG_SAVED; // Status is GAP_ERR_NO_ERROR, no message will be sent to the application break; } // state = CSCPC_CONNECTED ASSERT_ERR(cscpc_env->env[conidx] != NULL); switch(param->desc_code) { // Write CSC Measurement Characteristic Client Char. Cfg. Descriptor Value case (CSCPC_RD_WR_CSC_MEAS_CFG): { if (param->ntfind_cfg <= PRF_CLI_START_NTF) { handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_CSC_MEAS_CL_CFG].desc_hdl; // The descriptor is mandatory ASSERT_ERR(handle != ATT_INVALID_SEARCH_HANDLE); status = GAP_ERR_NO_ERROR; } else { status = PRF_ERR_INVALID_PARAM; } } break; // Write SC Control Point Characteristic Client Char. Cfg. Descriptor Value case (CSCPC_RD_WR_SC_CTNL_PT_CFG): { if ((param->ntfind_cfg == PRF_CLI_STOP_NTFIND) || (param->ntfind_cfg == PRF_CLI_START_IND)) { handle = cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_SC_CTNL_PT_CL_CFG].desc_hdl; status = GAP_ERR_NO_ERROR; if (handle == ATT_INVALID_SEARCH_HANDLE) { // The descriptor has not been found. status = PRF_ERR_INEXISTENT_HDL; } } else { status = PRF_ERR_INVALID_PARAM; } } break; default: { status = PRF_ERR_INVALID_PARAM; } break; } } while (0); if ((status == GAP_ERR_NO_ERROR) && (handle != ATT_INVALID_SEARCH_HANDLE)) { // Set the operation code param->operation = CSCPC_CFG_NTF_IND_OP_CODE; // Store the command structure cscpc_env->env[conidx]->operation = param; msg_status = KE_MSG_NO_FREE; // Go to the Busy state ke_state_set(dest_id, CSCPC_BUSY); // Send GATT Write Request prf_gatt_write_ntf_ind(&cscpc_env->prf_env, conidx, handle, param->ntfind_cfg); } } else { cscpc_send_no_conn_cmp_evt(dest_id, src_id, CSCPC_CFG_NTF_IND_OP_CODE); } return (int)msg_status; } /** **************************************************************************************** * @brief Handles reception of the @ref CSCPC_CFG_NTFIND_CMD message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscpc_ctnl_pt_cfg_req_handler(ke_msg_id_t const msgid, struct cscpc_ctnl_pt_cfg_req *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Message status uint8_t msg_status = KE_MSG_CONSUMED; // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); if (cscpc_env != NULL) { // Status uint8_t status = GAP_ERR_NO_ERROR; do { // State is Connected or Busy ASSERT_ERR(ke_state_get(dest_id) > CSCPC_FREE); // Check the provided connection handle if (cscpc_env->env[conidx] == NULL) { status = PRF_ERR_INVALID_PARAM; break; } if (ke_state_get(dest_id) != CSCPC_IDLE) { // Another procedure is pending, keep the command for later msg_status = KE_MSG_NO_FREE; // Status is GAP_ERR_NO_ERROR, no message will be sent to the application break; } // Check if the characteristic has been found if (cscpc_env->env[conidx]->cscs.descs[CSCPC_DESC_SC_CTNL_PT_CL_CFG].desc_hdl != ATT_INVALID_SEARCH_HANDLE) { // Packed request uint8_t req[CSCP_SC_CNTL_PT_REQ_MAX_LEN]; // Request Length uint8_t req_len = CSCP_SC_CNTL_PT_REQ_MIN_LEN; // Set the operation code req[0] = param->sc_ctnl_pt.op_code; // Fulfill the message according to the operation code switch (param->sc_ctnl_pt.op_code) { case (CSCP_CTNL_PT_OP_SET_CUMUL_VAL): { // Set the cumulative value co_write32p(&req[req_len], param->sc_ctnl_pt.value.cumul_val); // Update length req_len += 4; } break; case (CSCP_CTNL_PT_OP_UPD_LOC): { // Set the sensor location req[req_len] = param->sc_ctnl_pt.value.sensor_loc; // Update length req_len++; } break; case (CSCP_CTNL_PT_OP_RESERVED): case (CSCP_CTNL_PT_OP_START_CALIB): case (CSCP_CTNL_PT_OP_REQ_SUPP_LOC): { // Nothing more to do } break; default: { status = PRF_ERR_INVALID_PARAM; } break; } if (status == GAP_ERR_NO_ERROR) { // Set the operation code param->operation = CSCPC_CTNL_PT_CFG_WR_OP_CODE; // Store the command structure cscpc_env->env[conidx]->operation = param; // Store the command information msg_status = KE_MSG_NO_FREE; // Go to the Busy state ke_state_set(dest_id, CSCPC_BUSY); // Send the write request prf_gatt_write(&(cscpc_env->prf_env), conidx, cscpc_env->env[conidx]->cscs.chars[CSCP_CSCS_SC_CTNL_PT_CHAR].val_hdl, (uint8_t *)&req[0], req_len, GATTC_WRITE); } } else { status = PRF_ERR_INEXISTENT_HDL; } } while (0); if (status != GAP_ERR_NO_ERROR) { // Send a complete event status to the application cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_CTNL_PT_CFG_WR_OP_CODE, status); } } else { // No connection cscpc_send_no_conn_cmp_evt(dest_id, src_id, CSCPC_CTNL_PT_CFG_WR_OP_CODE); } return (int)msg_status; } /** **************************************************************************************** * @brief Handles reception of the @ref CSCPC_TIMEOUT_TIMER_IND message. This message is * received when the peer device doesn't send a SC Control Point indication within 30s * after reception of the write response. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscpc_timeout_timer_ind_handler(ke_msg_id_t const msgid, void const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); if (cscpc_env != NULL) { ASSERT_ERR(cscpc_env->env[conidx]->operation != NULL); ASSERT_ERR(((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation == CSCPC_CTNL_PT_CFG_IND_OP_CODE); // Send the complete event message cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_CTNL_PT_CFG_WR_OP_CODE, PRF_ERR_PROC_TIMEOUT); } // else drop the message return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_CMP_EVT message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_cmp_evt_handler(ke_msg_id_t const msgid, struct gattc_cmp_evt const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); // Status uint8_t status; if (cscpc_env != NULL) { uint8_t conidx = KE_IDX_GET(dest_id); uint8_t state = ke_state_get(dest_id); if (state == CSCPC_DISCOVERING) { status = param->status; if ((status == ATT_ERR_ATTRIBUTE_NOT_FOUND) || (status == ATT_ERR_NO_ERROR)) { // Discovery // check characteristic validity if(cscpc_env->env[conidx]->nb_svc == 1) { status = prf_check_svc_char_validity(CSCP_CSCS_CHAR_MAX, cscpc_env->env[conidx]->cscs.chars, cscpc_cscs_char); } // too much services else if (cscpc_env->env[conidx]->nb_svc > 1) { status = PRF_ERR_MULTIPLE_SVC; } // no services found else { status = PRF_ERR_STOP_DISC_CHAR_MISSING; } // check descriptor validity if (status == GAP_ERR_NO_ERROR) { status = prf_check_svc_char_desc_validity(CSCPC_DESC_MAX, cscpc_env->env[conidx]->cscs.descs, cscpc_cscs_char_desc, cscpc_env->env[conidx]->cscs.chars); } } cscpc_enable_rsp_send(cscpc_env, conidx, status); } else if (state == CSCPC_BUSY) { switch (param->operation) { case GATTC_READ: { // Send the complete event status cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_READ_OP_CODE, param->status); } break; case GATTC_WRITE: case GATTC_WRITE_NO_RESPONSE: { uint8_t operation = ((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation; if (operation == CSCPC_CFG_NTF_IND_OP_CODE) { // Send the complete event status cscpc_send_cmp_evt(cscpc_env, conidx, operation, param->status); } else if (operation == CSCPC_CTNL_PT_CFG_WR_OP_CODE) { if (param->status == GAP_ERR_NO_ERROR) { // Start Timeout Procedure ke_timer_set(CSCPC_TIMEOUT_TIMER_IND, dest_id, ATT_TRANS_RTX); // Wait for the response indication ((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation = CSCPC_CTNL_PT_CFG_IND_OP_CODE; } else { // Send the complete event status cscpc_send_cmp_evt(cscpc_env, conidx, operation, param->status); } } } break; case GATTC_REGISTER: case GATTC_UNREGISTER: { // Do nothing } break; default: { ASSERT_ERR(0); } break; } } } // else ignore the message return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_READ_IND message. * Generic event received after every simple read command sent to peer server. * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_read_ind_handler(ke_msg_id_t const msgid, struct gattc_read_ind const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); if (ke_state_get(dest_id) == CSCPC_BUSY) { uint8_t conidx = KE_IDX_GET(dest_id); ASSERT_INFO(cscpc_env != NULL, dest_id, src_id); ASSERT_INFO(cscpc_env->env[conidx] != NULL, dest_id, src_id); // Send the read value to the HL struct cscpc_value_ind *ind = KE_MSG_ALLOC(CSCPC_VALUE_IND, prf_dst_task_get(&(cscpc_env->prf_env), conidx), dest_id, cscpc_value_ind); switch (((struct cscpc_read_cmd *)cscpc_env->env[conidx]->operation)->read_code) { // Read CSC Feature Characteristic value case (CSCPC_RD_CSC_FEAT): { ind->value.sensor_feat = co_read16p(param->value); // Mask the reserved bits // ind->value.sensor_feat &= CSCP_FEAT_ALL_SUPP; } break; // Read Sensor Location Characteristic value case (CSCPC_RD_SENSOR_LOC): { ind->value.sensor_loc = param->value[0]; } break; // Read Client Characteristic Configuration Descriptor value case (CSCPC_RD_WR_CSC_MEAS_CFG): case (CSCPC_RD_WR_SC_CTNL_PT_CFG): { co_write16p(&ind->value.ntf_cfg, param->value[0]); } break; default: { ASSERT_ERR(0); } break; } ind->att_code = ((struct cscpc_read_cmd *)cscpc_env->env[conidx]->operation)->read_code; // Send the message to the application ke_msg_send(ind); } // else drop the message return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_EVENT_IND message. * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_event_ind_handler(ke_msg_id_t const msgid, struct gattc_event_ind const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t conidx = KE_IDX_GET(dest_id); // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); if (cscpc_env != NULL) { switch (param->type) { case (GATTC_NOTIFY): { // Offset uint8_t offset = CSCP_CSC_MEAS_MIN_LEN; // CSC Measurement value has been received struct cscpc_value_ind *ind = KE_MSG_ALLOC(CSCPC_VALUE_IND, prf_dst_task_get(&(cscpc_env->prf_env), conidx), prf_src_task_get(&(cscpc_env->prf_env), conidx), cscpc_value_ind); // Attribute code ind->att_code = CSCPC_NTF_CSC_MEAS; /*---------------------------------------------------- * Unpack Measurement -------------------------------- *----------------------------------------------------*/ // Flags ind->value.csc_meas.flags = param->value[0]; // Cumulative Wheel Revolutions // Last Wheel Event Time if (param->value[0] & CSCP_MEAS_WHEEL_REV_DATA_PRESENT) { // Cumulative Wheel Revolutions ind->value.csc_meas.cumul_wheel_rev = co_read32p(¶m->value[offset]); offset += 4; // Last Wheel Event Time ind->value.csc_meas.last_wheel_evt_time = co_read16p(¶m->value[offset]); offset += 2; } // Cumulative Crank Revolutions // Last Crank Event Time if (param->value[0] & CSCP_MEAS_CRANK_REV_DATA_PRESENT) { // Cumulative Crank Revolutions ind->value.csc_meas.cumul_crank_rev = co_read16p(¶m->value[offset]); offset += 2; // Last Crank Event Time ind->value.csc_meas.last_crank_evt_time = co_read16p(¶m->value[offset]); } ke_msg_send(ind); } break; case (GATTC_INDICATE): { // confirm that indication has been correctly received struct gattc_event_cfm * cfm = KE_MSG_ALLOC(GATTC_EVENT_CFM, src_id, dest_id, gattc_event_cfm); cfm->handle = param->handle; ke_msg_send(cfm); // Check if we were waiting for the indication if (cscpc_env->env[conidx]->operation != NULL) { if (((struct cscpc_cmd *)cscpc_env->env[conidx]->operation)->operation == CSCPC_CTNL_PT_CFG_IND_OP_CODE) { // Stop the procedure timeout timer ke_timer_clear(CSCPC_TIMEOUT_TIMER_IND, dest_id); // CSC Measurement value has been received struct cscpc_ctnl_pt_rsp *ind = KE_MSG_ALLOC(CSCPC_CTNL_PT_RSP, prf_dst_task_get(&(cscpc_env->prf_env), conidx), prf_src_task_get(&(cscpc_env->prf_env), conidx), cscpc_ctnl_pt_rsp); // Requested operation code ind->ctnl_pt_rsp.req_op_code = param->value[1]; // Response value ind->ctnl_pt_rsp.resp_value = param->value[2]; // Get the list of supported sensor locations if needed if ((ind->ctnl_pt_rsp.req_op_code == CSCP_CTNL_PT_OP_REQ_SUPP_LOC) && (ind->ctnl_pt_rsp.resp_value == CSCP_CTNL_PT_RESP_SUCCESS) && (param->length > 3)) { // Get the number of supported locations that have been received uint8_t nb_supp_loc = (param->length - 3); // Counter uint8_t counter; // Location uint8_t loc; for (counter = 0; counter < nb_supp_loc; counter++) { loc = param->value[counter + 3]; // Check if valid if (loc < CSCP_LOC_MAX) { ind->ctnl_pt_rsp.supp_loc |= (1 << loc); } } } // Send the message ke_msg_send(ind); // Send the complete event message cscpc_send_cmp_evt(cscpc_env, conidx, CSCPC_CTNL_PT_CFG_WR_OP_CODE, GAP_ERR_NO_ERROR); } // else drop the message } // else drop the message } break; default: { ASSERT_ERR(0); } break; } } return (KE_MSG_CONSUMED); } /* * GLOBAL VARIABLE DEFINITIONS **************************************************************************************** */ /// Specifies the default message handlers KE_MSG_HANDLER_TAB(cscpc) { {GATTC_SDP_SVC_IND, (ke_msg_func_t)gattc_sdp_svc_ind_handler}, {CSCPC_ENABLE_REQ, (ke_msg_func_t)cscpc_enable_req_handler}, {CSCPC_READ_CMD, (ke_msg_func_t)cscpc_read_cmd_handler}, {GATTC_READ_IND, (ke_msg_func_t)gattc_read_ind_handler}, {CSCPC_CFG_NTFIND_CMD, (ke_msg_func_t)cscpc_cfg_ntfind_cmd_handler}, {CSCPC_CTNL_PT_CFG_REQ, (ke_msg_func_t)cscpc_ctnl_pt_cfg_req_handler}, {CSCPC_TIMEOUT_TIMER_IND, (ke_msg_func_t)cscpc_timeout_timer_ind_handler}, {GATTC_EVENT_IND, (ke_msg_func_t)gattc_event_ind_handler}, {GATTC_EVENT_REQ_IND, (ke_msg_func_t)gattc_event_ind_handler}, {GATTC_CMP_EVT, (ke_msg_func_t)gattc_cmp_evt_handler}, }; void cscpc_task_init(struct ke_task_desc *task_desc) { // Get the address of the environment struct cscpc_env_tag *cscpc_env = PRF_ENV_GET(CSCPC, cscpc); task_desc->msg_handler_tab = cscpc_msg_handler_tab; task_desc->msg_cnt = ARRAY_LEN(cscpc_msg_handler_tab); task_desc->state = cscpc_env->state; task_desc->idx_max = CSCPC_IDX_MAX; } #endif //(BLE_CSC_COLLECTOR) /// @} CSCPCTASK