pinebuds/services/ble_app/app_main/app.c

1298 lines
38 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
/**
****************************************************************************************
* @addtogroup APP
* @{
****************************************************************************************
*/
/*
* INCLUDE FILES
****************************************************************************************
*/
#include "rwip_config.h" // SW configuration
#if (BLE_APP_PRESENT)
#include <string.h>
#include "app.h" // Application Definition
#include "app_task.h" // Application task Definition
#include "gap.h" // GAP Definition
#include "gapc_task.h" // GAP Controller Task API
#include "gapm.h"
#include "gapm_task.h" // GAP Manager Task API
#include "tgt_hardware.h"
#include "gattc_task.h"
#include "co_bt.h" // Common BT Definition
#include "co_math.h" // Common Maths Definition
#include "l2cc.h"
#include "l2cc_pdu.h"
#include "nvrecord_ble.h"
#include "prf.h"
#include "nvrecord_env.h"
#ifndef _BLE_NVDS_
#include "tgt_hardware.h"
#endif
#ifdef __AI_VOICE__
#include "app_ai_ble.h" // AI Voice Application Definitions
#endif //(__AI_VOICE__)
#if (BLE_APP_SEC)
#include "app_sec.h" // Application security Definition
#endif // (BLE_APP_SEC)
#if (BLE_APP_DATAPATH_SERVER)
#include "app_datapath_server.h" // Data Path Server Application Definitions
#endif //(BLE_APP_DATAPATH_SERVER)
#if (BLE_APP_DIS)
#include "app_dis.h" // Device Information Service Application Definitions
#endif //(BLE_APP_DIS)
#if (BLE_APP_BATT)
#include "app_batt.h" // Battery Application Definitions
#endif //(BLE_APP_DIS)
#if (BLE_APP_HID)
#include "app_hid.h" // HID Application Definitions
#endif //(BLE_APP_HID)
#if (BLE_APP_VOICEPATH)
#include "app_voicepath_ble.h" // Voice Path Application Definitions
#endif //(BLE_APP_VOICEPATH)
#if (BLE_APP_OTA)
#include "app_ota.h" // OTA Application Definitions
#endif //(BLE_APP_OTA)
#if (BLE_APP_TOTA)
#include "app_tota_ble.h" // OTA Application Definitions
#endif //(BLE_APP_TOTA)
#if (BLE_APP_ANCC)
#include "app_ancc.h" // ANCC Application Definitions
#endif //(BLE_APP_ANCC)
#if (BLE_APP_AMS)
#include "app_amsc.h" // AMS Module Definition
#endif // (BLE_APP_AMS)
#if (BLE_APP_GFPS)
#include "app_gfps.h" // Google Fast Pair Service Definitions
#endif
#if (DISPLAY_SUPPORT)
#include "app_display.h" // Application Display Definition
#endif //(DISPLAY_SUPPORT)
#ifdef BLE_APP_AM0
#include "am0_app.h" // Audio Mode 0 Application
#endif // defined(BLE_APP_AM0)
#if (NVDS_SUPPORT)
#include "nvds.h" // NVDS Definitions
#endif //(NVDS_SUPPORT)
#include "app_ble_mode_switch.h"
#include "app_bt.h"
#include "apps.h"
#include "besbt.h"
#include "ble_app_dbg.h"
#include "cmsis_os.h"
#include "crc16.h"
#include "ke_timer.h"
#include "nvrecord.h"
#ifdef BISTO_ENABLED
#include "gsound_service.h"
#endif
#if defined(__INTERCONNECTION__)
#include "app_battery.h"
#include "app_bt.h"
#endif
#if (BLE_APP_TILE)
#include "tile_service.h"
#include "tile_target_ble.h"
#endif
#if defined(IBRT)
#include "app_tws_ibrt.h"
#endif
#ifdef __GATT_OVER_BR_EDR__
#include "btgatt_api.h"
#endif
/*
* DEFINES
****************************************************************************************
*/
/// Default Device Name if no value can be found in NVDS
#define APP_DFLT_DEVICE_NAME ("BES_BLE")
#define APP_DFLT_DEVICE_NAME_LEN (sizeof(APP_DFLT_DEVICE_NAME))
#if (BLE_APP_HID)
// HID Mouse
#define DEVICE_NAME "Hid Mouse"
#else
#define DEVICE_NAME "RW DEVICE"
#endif
#define DEVICE_NAME_SIZE sizeof(DEVICE_NAME)
/**
* UUID List part of ADV Data
* --------------------------------------------------------------------------------------
* x03 - Length
* x03 - Complete list of 16-bit UUIDs available
* x09\x18 - Health Thermometer Service UUID
* or
* x12\x18 - HID Service UUID
* --------------------------------------------------------------------------------------
*/
#if (BLE_APP_HT)
#define APP_HT_ADV_DATA_UUID "\x03\x03\x09\x18"
#define APP_HT_ADV_DATA_UUID_LEN (4)
#endif //(BLE_APP_HT)
#if (BLE_APP_HID)
#define APP_HID_ADV_DATA_UUID "\x03\x03\x12\x18"
#define APP_HID_ADV_DATA_UUID_LEN (4)
#endif //(BLE_APP_HID)
#if (BLE_APP_DATAPATH_SERVER)
/*
* x11 - Length
* x07 - Complete list of 16-bit UUIDs available
* .... the 128 bit UUIDs
*/
#define APP_DATAPATH_SERVER_ADV_DATA_UUID \
"\x11\x07\x9e\x34\x9B\x5F\x80\x00\x00\x80\x00\x10\x00\x00\x00\x01\x00\x01"
#define APP_DATAPATH_SERVER_ADV_DATA_UUID_LEN (18)
#endif //(BLE_APP_HT)
/**
* Appearance part of ADV Data
* --------------------------------------------------------------------------------------
* x03 - Length
* x19 - Appearance
* x03\x00 - Generic Thermometer
* or
* xC2\x04 - HID Mouse
* --------------------------------------------------------------------------------------
*/
#if (BLE_APP_HT)
#define APP_HT_ADV_DATA_APPEARANCE "\x03\x19\x00\x03"
#endif //(BLE_APP_HT)
#if (BLE_APP_HID)
#define APP_HID_ADV_DATA_APPEARANCE "\x03\x19\xC2\x03"
#endif //(BLE_APP_HID)
#define APP_ADV_DATA_APPEARANCE_LEN (4)
/**
* Advertising Parameters
*/
#if (BLE_APP_HID)
/// Default Advertising duration - 30s (in multiple of 10ms)
#define APP_DFLT_ADV_DURATION (3000)
#endif //(BLE_APP_HID)
/// Advertising channel map - 37, 38, 39
#define APP_ADV_CHMAP (0x07)
/*
* TYPE DEFINITIONS
****************************************************************************************
*/
typedef void (*appm_add_svc_func_t)(void);
/*
* ENUMERATIONS
****************************************************************************************
*/
/// List of service to add in the database
enum appm_svc_list {
#if (BLE_APP_HT)
APPM_SVC_HTS,
#endif //(BLE_APP_HT)
#if (BLE_APP_DIS)
APPM_SVC_DIS,
#endif //(BLE_APP_DIS)
#if (BLE_APP_BATT)
APPM_SVC_BATT,
#endif //(BLE_APP_BATT)
#if (BLE_APP_HID)
APPM_SVC_HIDS,
#endif //(BLE_APP_HID)
#ifdef BLE_APP_AM0
APPM_SVC_AM0_HAS,
#endif // defined(BLE_APP_AM0)
#if (BLE_APP_HR)
APPM_SVC_HRP,
#endif
#if (BLE_APP_DATAPATH_SERVER)
APPM_SVC_DATAPATH_SERVER,
#endif //(BLE_APP_DATAPATH_SERVER)
#if (BLE_APP_VOICEPATH)
APPM_SVC_VOICEPATH,
#ifdef BISTO_ENABLED
APPM_SVC_BMS,
#endif
#endif //(BLE_APP_VOICEPATH)
#if (ANCS_PROXY_ENABLE)
APPM_SVC_ANCSP,
APPM_SVC_AMSP,
#endif
#if (BLE_APP_ANCC)
APPM_SVC_ANCC,
#endif //(BLE_APP_ANCC)
#if (BLE_APP_AMS)
APPM_SVC_AMSC,
#endif //(BLE_APP_AMS)
#if (BLE_APP_OTA)
APPM_SVC_OTA,
#endif //(BLE_APP_OTA)
#if (BLE_APP_GFPS)
APPM_SVC_GFPS,
#endif //(BLE_APP_GFPS)
#if (BLE_AI_VOICE)
APPM_AI_SMARTVOICE,
#endif //(BLE_AI_VOICE)
#if (BLE_APP_TOTA)
APPM_SVC_TOTA,
#endif //(BLE_APP_TOTA)
#if (BLE_APP_TILE)
APPM_SVC_TILE,
#endif //(BLE_APP_TILE)
APPM_SVC_LIST_STOP,
};
/*
* LOCAL VARIABLES DEFINITIONS
****************************************************************************************
*/
// gattc_msg_handler_tab
// #define KE_MSG_HANDLER_TAB(task) __STATIC const struct ke_msg_handler
// task##_msg_handler_tab[] =
/// Application Task Descriptor
// static const struct ke_task_desc TASK_DESC_APP = {&appm_default_handler,
// appm_state, APPM_STATE_MAX,
// APP_IDX_MAX};
extern const struct ke_task_desc TASK_DESC_APP;
/// List of functions used to create the database
static const appm_add_svc_func_t appm_add_svc_func_list[APPM_SVC_LIST_STOP] = {
#if (BLE_APP_HT)
(appm_add_svc_func_t)app_ht_add_hts,
#endif //(BLE_APP_HT)
#if (BLE_APP_DIS)
(appm_add_svc_func_t)app_dis_add_dis,
#endif //(BLE_APP_DIS)
#if (BLE_APP_BATT)
(appm_add_svc_func_t)app_batt_add_bas,
#endif //(BLE_APP_BATT)
#if (BLE_APP_HID)
(appm_add_svc_func_t)app_hid_add_hids,
#endif //(BLE_APP_HID)
#ifdef BLE_APP_AM0
(appm_add_svc_func_t)am0_app_add_has,
#endif // defined(BLE_APP_AM0)
#if (BLE_APP_HR)
(appm_add_svc_func_t)app_hrps_add_profile,
#endif
#if (BLE_APP_DATAPATH_SERVER)
(appm_add_svc_func_t)app_datapath_add_datapathps,
#endif //(BLE_APP_DATAPATH_SERVER)
#if (BLE_APP_VOICEPATH)
(appm_add_svc_func_t)app_ble_voicepath_add_svc,
#ifdef BISTO_ENABLED
(appm_add_svc_func_t)app_ble_bms_add_svc,
#endif
#endif //(BLE_APP_VOICEPATH)
#if (ANCS_PROXY_ENABLE)
(appm_add_svc_func_t)app_ble_ancsp_add_svc,
(appm_add_svc_func_t)app_ble_amsp_add_svc,
#endif
#if (BLE_APP_ANCC)
(appm_add_svc_func_t)app_ancc_add_ancc,
#endif
#if (BLE_APP_AMS)
(appm_add_svc_func_t)app_amsc_add_amsc,
#endif
#if (BLE_APP_OTA)
(appm_add_svc_func_t)app_ota_add_ota,
#endif //(BLE_APP_OTA)
#if (BLE_APP_GFPS)
(appm_add_svc_func_t)app_gfps_add_gfps,
#endif
#if (BLE_APP_AI_VOICE)
(appm_add_svc_func_t)app_ai_add_ai,
#endif //(BLE_APP_AI_VOICE)
#if (BLE_APP_TOTA)
(appm_add_svc_func_t)app_tota_add_tota,
#endif //(BLE_APP_TOTA)
#if (BLE_APP_TILE)
(appm_add_svc_func_t)app_ble_tile_add_svc,
#endif
};
/*
* GLOBAL VARIABLE DEFINITIONS
****************************************************************************************
*/
/// Application Environment Structure
struct app_env_tag app_env;
static APP_BLE_NEGOTIATED_CONN_PARAM_T
negotiatedBleConnParam[BLE_CONNECTION_MAX];
/*
* FUNCTION DEFINITIONS
****************************************************************************************
*/
void appm_refresh_ble_irk(void) {
nv_record_blerec_get_local_irk(app_env.loc_irk);
LOG_I("local irk:");
DUMP8("0x%02x ", app_env.loc_irk, 16);
gapm_update_irk(app_env.loc_irk);
}
uint8_t *appm_get_current_ble_irk(void) { return app_env.loc_irk; }
void appm_init() {
BLE_APP_FUNC_ENTER();
// Reset the application manager environment
memset(&app_env, 0, sizeof(app_env));
// Create APP task
ke_task_create(TASK_APP, &TASK_DESC_APP);
// Initialize Task state
ke_state_set(TASK_APP, APPM_INIT);
// Load the device name from NVDS
// Get the Device Name to add in the Advertising Data (Default one or NVDS
// one)
#ifdef _BLE_NVDS_
const char *ble_name_in_nv = nvrec_dev_get_ble_name();
#else
const char *ble_name_in_nv = BLE_DEFAULT_NAME;
#endif
uint32_t nameLen = strlen(ble_name_in_nv) + 1;
if (nameLen > APP_DEVICE_NAME_MAX_LEN) {
nameLen = APP_DEVICE_NAME_MAX_LEN;
}
// Get default Device Name (No name if not enough space)
memcpy(app_env.dev_name, ble_name_in_nv, nameLen);
app_env.dev_name[nameLen - 1] = '\0';
app_env.dev_name_len = nameLen;
LOG_I("device ble name:%s", app_env.dev_name);
#ifdef _BLE_NVDS_
nv_record_blerec_init();
nv_record_blerec_get_local_irk(app_env.loc_irk);
#else
uint8_t counter;
// avoid ble irk collision low probability
uint32_t generatedSeed = hal_sys_timer_get();
for (uint8_t index = 0; index < sizeof(bt_addr); index++) {
generatedSeed ^=
(((uint32_t)(bt_addr[index])) << (hal_sys_timer_get() & 0xF));
}
srand(generatedSeed);
// generate a new IRK
for (counter = 0; counter < KEY_LEN; counter++) {
app_env.loc_irk[counter] = (uint8_t)co_rand_word();
}
#endif
/*------------------------------------------------------
* INITIALIZE ALL MODULES
*------------------------------------------------------*/
// load device information:
#if (DISPLAY_SUPPORT)
app_display_init();
#endif //(DISPLAY_SUPPORT)
#if (BLE_APP_SEC)
// Security Module
app_sec_init();
#endif // (BLE_APP_SEC)
#if (BLE_APP_HT)
// Health Thermometer Module
app_ht_init();
#endif //(BLE_APP_HT)
#if (BLE_APP_DIS)
// Device Information Module
app_dis_init();
#endif //(BLE_APP_DIS)
#if (BLE_APP_HID)
// HID Module
app_hid_init();
#endif //(BLE_APP_HID)
#if (BLE_APP_BATT)
// Battery Module
app_batt_init();
#endif //(BLE_APP_BATT)
#ifdef BLE_APP_AM0
// Audio Mode 0 Module
am0_app_init();
#endif // defined(BLE_APP_AM0)
#if (BLE_APP_VOICEPATH)
// Voice Path Module
app_ble_voicepath_init();
#endif //(BLE_APP_VOICEPATH)
#if (BLE_APP_TILE)
app_ble_tile_init();
#endif
#if (BLE_APP_DATAPATH_SERVER)
// Data Path Server Module
app_datapath_server_init();
#endif //(BLE_APP_DATAPATH_SERVER)
#if (BLE_APP_AI_VOICE)
// AI Voice Module
app_ai_init();
#endif //(BLE_APP_AI_VOICE)
#if (BLE_APP_OTA)
// OTA Module
app_ota_init();
#endif //(BLE_APP_OTA)
#if (BLE_APP_TOTA)
// TOTA Module
app_tota_ble_init();
#endif //(BLE_APP_TOTA)
#if (BLE_APP_GFPS)
//
app_gfps_init();
#endif
#if (BLE_APP_TILE)
app_tile_init();
#endif
BLE_APP_FUNC_LEAVE();
}
bool appm_add_svc(void) {
// Indicate if more services need to be added in the database
bool more_svc = false;
// Check if another should be added in the database
if (app_env.next_svc != APPM_SVC_LIST_STOP) {
ASSERT_INFO(appm_add_svc_func_list[app_env.next_svc] != NULL,
app_env.next_svc, 1);
BLE_APP_DBG("appm_add_svc adds service");
// Call the function used to add the required service
appm_add_svc_func_list[app_env.next_svc]();
// Select following service to add
app_env.next_svc++;
more_svc = true;
} else {
BLE_APP_DBG("appm_add_svc doesn't execute, next svc is %d",
app_env.next_svc);
}
return more_svc;
}
uint16_t appm_get_conhdl_from_conidx(uint8_t conidx) {
return app_env.context[conidx].conhdl;
}
void appm_disconnect(uint8_t conidx) {
if (BLE_DISCONNECTED != app_env.context[conidx].connectStatus) {
struct gapc_disconnect_cmd *cmd =
KE_MSG_ALLOC(GAPC_DISCONNECT_CMD, KE_BUILD_ID(TASK_GAPC, conidx),
TASK_APP, gapc_disconnect_cmd);
cmd->operation = GAPC_DISCONNECT;
cmd->reason = CO_ERROR_REMOTE_USER_TERM_CON;
// Send the message
ke_msg_send(cmd);
}
}
// TODO: freddie modify this part
#if (BLE_APP_GFPS)
#define UPDATE_BLE_ADV_DATA_RIGHT_BEFORE_STARTING_ADV_ENABLED 1
#else
#define UPDATE_BLE_ADV_DATA_RIGHT_BEFORE_STARTING_ADV_ENABLED 0
#endif
void gapm_update_ble_adv_data_right_before_started(uint8_t *pAdvData,
uint8_t *advDataLen,
uint8_t *pScanRspData,
uint8_t *scanRspDataLen,
void *adv_cmd) {
// for the user case that the BLE adv data or scan rsp data need to be
// generated from the run-time BLE address. Just enable macro
// UPDATE_BLE_ADV_DATA_RIGHT_BEFORE_STARTING_ADV_ENABLED, and call
// appm_get_current_ble_addr to get the run-time used BLE address For fastpair
// GFPS_ACCOUNTKEY_SALT_TYPE==USE_BLE_ADDR_AS_SALT case, this macro must be
// enabled
// #if UPDATE_BLE_ADV_DATA_RIGHT_BEFORE_STARTING_ADV_ENABLED
// appm_fill_ble_adv_scan_rsp_data(pAdvData, advDataLen, pScanRspData,
// scanRspDataLen, adv_cmd);
// #endif
// TODO: freddie implement this API
}
/**
****************************************************************************************
* Advertising Functions
****************************************************************************************
*/
void appm_start_advertising(void *param) {
BLE_APP_FUNC_ENTER();
LOG_I("%s state: %d", __func__, ke_state_get(TASK_APP));
// Prepare the GAPM_START_ADVERTISE_CMD message
struct gapm_start_advertise_cmd *cmd = KE_MSG_ALLOC(
GAPM_START_ADVERTISE_CMD, TASK_GAPM, TASK_APP, gapm_start_advertise_cmd);
BLE_ADV_PARAM_T *advParam = (BLE_ADV_PARAM_T *)param;
#ifdef BLE_USE_RPA
cmd->op.addr_src = GAPM_GEN_RSLV_ADDR;
cmd->op.randomAddrRenewIntervalInSecond = (uint16_t)(60 * 15);
#else
cmd->op.addr_src = GAPM_STATIC_ADDR;
// To use non-resolvable address
// cmd->op.addr_src = GAPM_GEN_NON_RSLV_ADDR;
// cmd->op.randomAddrRenewIntervalInSecond = (uint16_t)(60*15);
#endif
cmd->channel_map = APP_ADV_CHMAP;
cmd->intv_min = advParam->advInterval * 8 / 5;
cmd->intv_max = advParam->advInterval * 8 / 5;
cmd->op.code = advParam->advType;
cmd->info.host.mode = GAP_GEN_DISCOVERABLE;
cmd->isIncludedFlags = advParam->withFlag;
cmd->info.host.flags = GAP_LE_GEN_DISCOVERABLE_FLG | GAP_BR_EDR_NOT_SUPPORTED;
cmd->info.host.adv_data_len = advParam->advDataLen;
memcpy(cmd->info.host.adv_data, advParam->advData,
cmd->info.host.adv_data_len);
cmd->info.host.scan_rsp_data_len = advParam->scanRspDataLen;
memcpy(cmd->info.host.scan_rsp_data, advParam->scanRspData,
cmd->info.host.scan_rsp_data_len);
if (advParam->withFlag) {
ASSERT(cmd->info.host.adv_data_len <= BLE_ADV_DATA_WITH_FLAG_LEN,
"adv data exceed");
} else {
ASSERT(cmd->info.host.adv_data_len <= BLE_ADV_DATA_WITHOUT_FLAG_LEN,
"adv data exceed");
}
ASSERT(cmd->info.host.scan_rsp_data_len <= SCAN_RSP_DATA_LEN,
"scan rsp data exceed");
LOG_I("[ADDR_TYPE]:%d", cmd->op.addr_src);
if (GAPM_GEN_RSLV_ADDR == cmd->op.addr_src) {
LOG_I("[IRK]:");
DUMP8("0x%02x ", appm_get_current_ble_irk(), KEY_LEN);
} else if (GAPM_STATIC_ADDR == cmd->op.addr_src) {
LOG_I("[ADDR]:");
DUMP8("0x%02x ", bt_get_ble_local_address(), 6);
}
LOG_I("[ADV_TYPE]:%d", cmd->op.code);
LOG_I("[ADV_INTERVAL]:%d", cmd->intv_min);
// Send the message
ke_msg_send(cmd);
// Set the state of the task to APPM_ADVERTISING
ke_state_set(TASK_APP, APPM_ADVERTISING);
BLE_APP_FUNC_LEAVE();
}
void appm_stop_advertising(void) {
#if (BLE_APP_HID)
// Stop the advertising timer if needed
if (ke_timer_active(APP_ADV_TIMEOUT_TIMER, TASK_APP)) {
ke_timer_clear(APP_ADV_TIMEOUT_TIMER, TASK_APP);
}
#endif //(BLE_APP_HID)
// Go in ready state
ke_state_set(TASK_APP, APPM_READY);
// Prepare the GAPM_CANCEL_CMD message
struct gapm_cancel_cmd *cmd =
KE_MSG_ALLOC(GAPM_CANCEL_CMD, TASK_GAPM, TASK_APP, gapm_cancel_cmd);
cmd->operation = GAPM_CANCEL;
// Send the message
ke_msg_send(cmd);
#if (DISPLAY_SUPPORT)
// Update advertising state screen
app_display_set_adv(false);
#endif //(DISPLAY_SUPPORT)
}
void appm_start_scanning(uint16_t intervalInMs, uint16_t windowInMs,
uint32_t filtPolicy) {
struct gapm_start_scan_cmd *cmd = KE_MSG_ALLOC(GAPM_START_SCAN_CMD, TASK_GAPM,
TASK_APP, gapm_start_scan_cmd);
cmd->op.code = GAPM_SCAN_PASSIVE;
cmd->op.addr_src = GAPM_STATIC_ADDR;
cmd->interval = intervalInMs * 1000 / 625;
cmd->window = windowInMs * 1000 / 625;
cmd->mode = GAP_OBSERVER_MODE; // GAP_GEN_DISCOVERY;
cmd->filt_policy = filtPolicy;
cmd->filter_duplic = SCAN_FILT_DUPLIC_DIS;
ke_state_set(TASK_APP, APPM_SCANNING);
ke_msg_send(cmd);
}
void appm_stop_scanning(void) {
// if (ke_state_get(TASK_APP) == APPM_SCANNING)
{
// Go in ready state
ke_state_set(TASK_APP, APPM_READY);
// Prepare the GAPM_CANCEL_CMD message
struct gapm_cancel_cmd *cmd =
KE_MSG_ALLOC(GAPM_CANCEL_CMD, TASK_GAPM, TASK_APP, gapm_cancel_cmd);
cmd->operation = GAPM_CANCEL;
// Send the message
ke_msg_send(cmd);
}
}
void appm_add_dev_into_whitelist(struct gap_bdaddr *ptBdAddr) {
struct gapm_white_list_mgt_cmd *cmd =
KE_MSG_ALLOC_DYN(GAPM_WHITE_LIST_MGT_CMD, TASK_GAPM, TASK_APP,
gapm_white_list_mgt_cmd, sizeof(struct gap_bdaddr));
cmd->operation = GAPM_ADD_DEV_IN_WLIST;
cmd->nb = 1;
memcpy(cmd->devices, ptBdAddr, sizeof(struct gap_bdaddr));
ke_msg_send(cmd);
}
struct gap_bdaddr BLE_BdAddr; //{{0x14, 0x71, 0xda, 0x7d, 0x1a, 0x00}, 0};
void pts_ble_addr_init(void) {
uint8_t addr[6] = {0x14, 0x71, 0xda, 0x7d, 0x1a, 0x00};
memcpy(BLE_BdAddr.addr.addr, addr, 6);
BLE_BdAddr.addr_type = 0;
}
void appm_start_connecting(struct gap_bdaddr *ptBdAddr) {
struct gapm_start_connection_cmd *cmd =
KE_MSG_ALLOC_DYN(GAPM_START_CONNECTION_CMD, TASK_GAPM, TASK_APP,
gapm_start_connection_cmd, sizeof(struct gap_bdaddr));
cmd->ce_len_max = 4;
cmd->ce_len_min = 0;
cmd->con_intv_max = 6; // in the unit of 1.25ms
cmd->con_intv_min = 6; // in the unit of 1.25ms
cmd->con_latency = 0;
cmd->superv_to = 1000; // in the unit of 10ms
cmd->op.code = GAPM_CONNECTION_DIRECT;
cmd->op.addr_src = GAPM_STATIC_ADDR;
cmd->nb_peers = 1;
cmd->scan_interval = ((60) * 1000 / 625);
cmd->scan_window = ((30) * 1000 / 625);
memcpy(cmd->peers, ptBdAddr, sizeof(struct gap_bdaddr));
ke_state_set(TASK_APP, APPM_CONNECTING);
ke_msg_send(cmd);
}
void appm_stop_connecting(void) {
// Go in ready state
ke_state_set(TASK_APP, APPM_READY);
// Prepare the GAPM_CANCEL_CMD message
struct gapm_cancel_cmd *cmd =
KE_MSG_ALLOC(GAPM_CANCEL_CMD, TASK_GAPM, TASK_APP, gapm_cancel_cmd);
cmd->operation = GAPM_CANCEL;
// Send the message
ke_msg_send(cmd);
}
void appm_update_param(uint8_t conidx, struct gapc_conn_param *conn_param) {
// Prepare the GAPC_PARAM_UPDATE_CMD message
struct gapc_param_update_cmd *cmd =
KE_MSG_ALLOC(GAPC_PARAM_UPDATE_CMD, KE_BUILD_ID(TASK_GAPC, conidx),
TASK_APP, gapc_param_update_cmd);
cmd->operation = GAPC_UPDATE_PARAMS;
cmd->intv_min = conn_param->intv_min;
cmd->intv_max = conn_param->intv_max;
cmd->latency = conn_param->latency;
cmd->time_out = conn_param->time_out;
// not used by a slave device
cmd->ce_len_min = 0xFFFF;
cmd->ce_len_max = 0xFFFF;
// Send the message
ke_msg_send(cmd);
}
void l2cap_update_param(uint8_t conidx, uint32_t min_interval_in_ms,
uint32_t max_interval_in_ms,
uint32_t supervision_timeout_in_ms,
uint8_t slaveLantency) {
struct l2cc_update_param_req *req =
L2CC_SIG_PDU_ALLOC(conidx, L2C_CODE_CONN_PARAM_UPD_REQ,
KE_BUILD_ID(TASK_GAPC, conidx), l2cc_update_param_req);
// generate packet identifier
uint8_t pkt_id = co_rand_word() & 0xFF;
if (pkt_id == 0) {
pkt_id = 1;
}
/* fill up the parameters */
req->intv_max = (uint16_t)(max_interval_in_ms / 1.25);
req->intv_min = (uint16_t)(min_interval_in_ms / 1.25);
req->latency = slaveLantency;
req->timeout = supervision_timeout_in_ms / 10;
req->pkt_id = pkt_id;
LOG_I("%s val: 0x%x 0x%x 0x%x 0x%x 0x%x", __func__, req->intv_max,
req->intv_min, req->latency, req->timeout, req->pkt_id);
l2cc_pdu_send(req);
}
uint8_t appm_get_dev_name(uint8_t *name) {
// copy name to provided pointer
memcpy(name, app_env.dev_name, app_env.dev_name_len);
// return name length
return app_env.dev_name_len;
}
void appm_exchange_mtu(uint8_t conidx) {
struct gattc_exc_mtu_cmd *cmd =
KE_MSG_ALLOC(GATTC_EXC_MTU_CMD, KE_BUILD_ID(TASK_GATTC, conidx), TASK_APP,
gattc_exc_mtu_cmd);
cmd->operation = GATTC_MTU_EXCH;
cmd->seq_num = 0;
ke_msg_send(cmd);
}
void appm_check_and_resolve_ble_address(uint8_t conidx) {
APP_BLE_CONN_CONTEXT_T *pContext = &(app_env.context[conidx]);
#ifdef __GATT_OVER_BR_EDR__
if (conidx == btif_btgatt_get_connection_index()) {
pContext->isGotSolvedBdAddr = true;
pContext->isBdAddrResolvingInProgress = false;
btif_btgatt_get_device_address(pContext->solvedBdAddr);
}
#endif
// solved already, return
if (pContext->isGotSolvedBdAddr) {
LOG_I("Already get solved bd addr.");
return;
}
// not solved yet and the solving is in progress, return and wait
else if (app_is_resolving_ble_bd_addr()) {
LOG_I("Random bd addr solving on going.");
return;
}
if (BLE_RANDOM_ADDR == pContext->peerAddrType) {
memset(pContext->solvedBdAddr, 0, BD_ADDR_LEN);
bool isSuccessful =
appm_resolve_random_ble_addr_from_nv(conidx, pContext->bdAddr);
LOG_I("%s isSuccessful %d", __func__, isSuccessful);
if (isSuccessful) {
pContext->isBdAddrResolvingInProgress = true;
} else {
pContext->isGotSolvedBdAddr = true;
pContext->isBdAddrResolvingInProgress = false;
}
} else {
pContext->isGotSolvedBdAddr = true;
pContext->isBdAddrResolvingInProgress = false;
memcpy(pContext->solvedBdAddr, pContext->bdAddr, BD_ADDR_LEN);
}
}
bool appm_resolve_random_ble_addr_from_nv(uint8_t conidx, uint8_t *randomAddr) {
#ifdef _BLE_NVDS_
struct gapm_resolv_addr_cmd *cmd = KE_MSG_ALLOC_DYN(
GAPM_RESOLV_ADDR_CMD, KE_BUILD_ID(TASK_GAPM, conidx), TASK_APP,
gapm_resolv_addr_cmd, BLE_RECORD_NUM * GAP_KEY_LEN);
uint8_t irkeyNum = nv_record_ble_fill_irk((uint8_t *)(cmd->irk));
if (0 == irkeyNum) {
LOG_I("No history irk, cannot solve bd addr.");
KE_MSG_FREE(cmd);
return false;
}
LOG_I("Start random bd addr solving.");
cmd->operation = GAPM_RESOLV_ADDR;
cmd->nb_key = irkeyNum;
memcpy(cmd->addr.addr, randomAddr, GAP_BD_ADDR_LEN);
ke_msg_send(cmd);
return true;
#else
return false;
#endif
}
void appm_resolve_random_ble_addr_with_sepcific_irk(uint8_t conidx,
uint8_t *randomAddr,
uint8_t *pIrk) {
struct gapm_resolv_addr_cmd *cmd =
KE_MSG_ALLOC_DYN(GAPM_RESOLV_ADDR_CMD, KE_BUILD_ID(TASK_GAPM, conidx),
TASK_APP, gapm_resolv_addr_cmd, GAP_KEY_LEN);
cmd->operation = GAPM_RESOLV_ADDR;
cmd->nb_key = 1;
memcpy(cmd->addr.addr, randomAddr, GAP_BD_ADDR_LEN);
memcpy(cmd->irk, pIrk, GAP_KEY_LEN);
ke_msg_send(cmd);
}
void appm_random_ble_addr_solved(bool isSolvedSuccessfully,
uint8_t *irkUsedForSolving) {
APP_BLE_CONN_CONTEXT_T *pContext;
uint32_t conidx;
for (conidx = 0; conidx < BLE_CONNECTION_MAX; conidx++) {
pContext = &(app_env.context[conidx]);
if (pContext->isBdAddrResolvingInProgress) {
break;
}
}
if (conidx < BLE_CONNECTION_MAX) {
pContext->isBdAddrResolvingInProgress = false;
pContext->isGotSolvedBdAddr = true;
LOG_I("%s conidx %d isSolvedSuccessfully %d", __func__, conidx,
isSolvedSuccessfully);
if (isSolvedSuccessfully) {
#ifdef _BLE_NVDS_
bool isSuccessful = nv_record_blerec_get_bd_addr_from_irk(
app_env.context[conidx].solvedBdAddr, irkUsedForSolving);
if (isSuccessful) {
LOG_I("[CONNECT]Connected random address's original addr is:");
DUMP8("%02x ", app_env.context[conidx].solvedBdAddr, GAP_BD_ADDR_LEN);
} else
#endif
{
LOG_I("[CONNECT]Resolving of the connected BLE random addr failed.");
}
} else {
LOG_I("[CONNECT]random resolving failed.");
}
}
#if defined(CFG_VOICEPATH)
ke_task_msg_retrieve(prf_get_task_from_id(TASK_ID_VOICEPATH));
#endif
ke_task_msg_retrieve(TASK_GAPC);
ke_task_msg_retrieve(TASK_APP);
app_ble_start_connectable_adv(BLE_ADVERTISING_INTERVAL);
}
uint8_t app_ble_connection_count(void) { return app_env.conn_cnt; }
bool app_is_arrive_at_max_ble_connections(void) {
LOG_I("connection count %d", app_env.conn_cnt);
#if defined(GFPS_ENABLED) && (BLE_APP_GFPS_VER == FAST_PAIR_REV_2_0)
return (app_env.conn_cnt >= BLE_CONNECTION_MAX);
#else
return (app_env.conn_cnt >= 1);
#endif
}
bool app_is_resolving_ble_bd_addr(void) {
for (uint32_t index = 0; index < BLE_CONNECTION_MAX; index++) {
if (app_env.context[index].isBdAddrResolvingInProgress) {
return true;
}
}
return false;
}
void app_trigger_ble_service_discovery(uint8_t conidx, uint16_t shl,
uint16_t ehl) {
struct gattc_send_svc_changed_cmd *cmd =
KE_MSG_ALLOC(GATTC_SEND_SVC_CHANGED_CMD, KE_BUILD_ID(TASK_GATTC, conidx),
TASK_APP, gattc_send_svc_changed_cmd);
cmd->operation = GATTC_SVC_CHANGED;
cmd->svc_shdl = shl;
cmd->svc_ehdl = ehl;
ke_msg_send(cmd);
}
void appm_update_adv_data(uint8_t *pAdvData, uint32_t advDataLen,
uint8_t *pScanRspData, uint32_t scanRspDataLen) {
LOG_I("%s", __func__);
ASSERT(advDataLen <= BLE_DATA_LEN, "adv data exceed");
ASSERT(scanRspDataLen <= SCAN_RSP_DATA_LEN, "scan rsp data exceed");
struct gapm_update_advertise_data_cmd *cmd =
KE_MSG_ALLOC(GAPM_UPDATE_ADVERTISE_DATA_CMD, TASK_GAPM, TASK_APP,
gapm_update_advertise_data_cmd);
cmd->operation = GAPM_UPDATE_ADVERTISE_DATA;
memcpy(cmd->adv_data, pAdvData, advDataLen);
cmd->adv_data_len = advDataLen;
memcpy(cmd->scan_rsp_data, pScanRspData, scanRspDataLen);
cmd->scan_rsp_data_len = scanRspDataLen;
ke_msg_send(cmd);
}
__attribute__((weak)) void
app_ble_connected_evt_handler(uint8_t conidx, const uint8_t *pPeerBdAddress) {}
__attribute__((weak)) void app_ble_disconnected_evt_handler(uint8_t conidx) {}
__attribute__((weak)) void app_advertising_stopped(void) {}
__attribute__((weak)) void app_advertising_started(void) {}
__attribute__((weak)) void app_connecting_started(void) {}
__attribute__((weak)) void app_scanning_stopped(void) {}
__attribute__((weak)) void app_connecting_stopped(void) {}
__attribute__((weak)) void app_scanning_started(void) {}
__attribute__((weak)) void app_ble_system_ready(void) {}
__attribute__((weak)) void
app_adv_reported_scanned(struct gapm_adv_report_ind *ptInd) {}
uint8_t *appm_get_current_ble_addr(void) {
#ifdef BLE_USE_RPA
return (uint8_t *)gapm_get_bdaddr();
#else
return ble_addr;
#endif
}
#define IS_WORKAROUND_SAME_BT_BLE_ADDR_FOR_RPA_CASEx
uint8_t *appm_get_local_identity_ble_addr(void) {
#if defined(BLE_USE_RPA) && defined(IS_WORKAROUND_SAME_BT_BLE_ADDR_FOR_RPA_CASE)
return (uint8_t *)gapm_get_bdaddr();
#else
return ble_addr;
#endif
}
// bit mask of the existing conn param modes
static uint32_t existingBleConnParamModes[BLE_CONNECTION_MAX] = {0};
static BLE_CONN_PARAM_CONFIG_T ble_conn_param_config[] = {
// default value: for the case of BLE just connected and the BT idle state
{BLE_CONN_PARAM_MODE_DEFAULT, BLE_CONN_PARAM_PRIORITY_NORMAL, 24},
{BLE_CONN_PARAM_MODE_AI_STREAM_ON, BLE_CONN_PARAM_PRIORITY_ABOVE_NORMAL1,
24},
//{BLE_CONN_PARAM_MODE_A2DP_ON, BLE_CONN_PARAM_PRIORITY_ABOVE_NORMAL0, 36},
{BLE_CONN_PARAM_MODE_HFP_ON, BLE_CONN_PARAM_PRIORITY_ABOVE_NORMAL2, 36},
{BLE_CONN_PARAM_MODE_OTA, BLE_CONN_PARAM_PRIORITY_HIGH, 12},
{BLE_CONN_PARAM_MODE_OTA_SLOWER, BLE_CONN_PARAM_PRIORITY_HIGH, 20},
{BLE_CONN_PARAM_MODE_SNOOP_EXCHANGE, BLE_CONN_PARAM_PRIORITY_HIGH, 8},
// TODO: add mode cases if needed
};
void app_ble_reset_conn_param_mode(uint8_t conidx) {
uint32_t lock = int_lock_global();
existingBleConnParamModes[conidx] = 0;
int_unlock_global(lock);
}
void app_ble_update_conn_param_mode(BLE_CONN_PARAM_MODE_E mode, bool isEnable) {
for (uint8_t index = 0; index < BLE_CONNECTION_MAX; index++) {
if (BLE_CONNECTED == app_env.context[index].connectStatus) {
app_ble_update_conn_param_mode_of_specific_connection(index, mode,
isEnable);
}
}
}
bool app_ble_is_parameter_mode_enabled(uint8_t conidx,
BLE_CONN_PARAM_MODE_E mode) {
bool isEnabled = false;
uint32_t lock = int_lock_global();
isEnabled = existingBleConnParamModes[conidx] & (1 << mode);
int_unlock_global(lock);
return isEnabled;
}
void app_ble_parameter_mode_clear(uint8_t conidx, BLE_CONN_PARAM_MODE_E mode) {
uint32_t lock = int_lock_global();
existingBleConnParamModes[conidx] &= (~(1 << mode));
int_unlock_global(lock);
}
void app_ble_update_conn_param_mode_of_specific_connection(
uint8_t conidx, BLE_CONN_PARAM_MODE_E mode, bool isEnable) {
ASSERT(mode < BLE_CONN_PARAM_MODE_NUM, "Wrong ble conn param mode %d!", mode);
uint32_t lock = int_lock_global();
// locate the conn param mode
BLE_CONN_PARAM_CONFIG_T *pConfig = NULL;
uint8_t index;
for (index = 0;
index < sizeof(ble_conn_param_config) / sizeof(BLE_CONN_PARAM_CONFIG_T);
index++) {
if (mode == ble_conn_param_config[index].ble_conn_param_mode) {
pConfig = &ble_conn_param_config[index];
break;
}
}
if (NULL == pConfig) {
int_unlock_global(lock);
LOG_W("conn param mode %d not defined!", mode);
return;
}
if (isEnable) {
if (0 == existingBleConnParamModes[conidx]) {
// no other params existing, just configure this one
existingBleConnParamModes[conidx] = 1 << mode;
} else {
// already existing, directly return
if (existingBleConnParamModes[conidx] & (1 << mode)) {
int_unlock_global(lock);
return;
} else {
// update the bit-mask
existingBleConnParamModes[conidx] |= (1 << mode);
// not existing yet, need to go throuth the existing params to see
// whether we need to update the param
for (index = 0; index < sizeof(ble_conn_param_config) /
sizeof(BLE_CONN_PARAM_CONFIG_T);
index++) {
if (((uint32_t)1
<< (uint8_t)ble_conn_param_config[index].ble_conn_param_mode) &
existingBleConnParamModes[conidx]) {
if (ble_conn_param_config[index].priority > pConfig->priority) {
// one of the exiting param has higher priority than this one,
// so do nothing but update the bit-mask
int_unlock_global(lock);
return;
}
}
}
// no higher priority conn param existing, so we need to apply this one
}
}
} else {
if (0 == existingBleConnParamModes[conidx]) {
// no other params existing, just return
int_unlock_global(lock);
return;
} else {
// doesn't exist, directly return
if (!(existingBleConnParamModes[conidx] & (1 << mode))) {
int_unlock_global(lock);
return;
} else {
// update the bit-mask
existingBleConnParamModes[conidx] &= (~(1 << mode));
if (0 == existingBleConnParamModes[conidx]) {
int_unlock_global(lock);
return;
}
pConfig = NULL;
// existing, need to apply for the highest priority conn param
for (index = 0; index < sizeof(ble_conn_param_config) /
sizeof(BLE_CONN_PARAM_CONFIG_T);
index++) {
if (((uint32_t)1
<< (uint8_t)ble_conn_param_config[index].ble_conn_param_mode) &
existingBleConnParamModes[conidx]) {
if (NULL != pConfig) {
if (ble_conn_param_config[index].priority > pConfig->priority) {
pConfig = &ble_conn_param_config[index];
}
} else {
pConfig = &ble_conn_param_config[index];
}
}
}
}
}
}
int_unlock_global(lock);
// if we can arrive here, it means we have got one config to apply
ASSERT(NULL != pConfig, "It's strange that config pointer is still NULL.");
APP_BLE_CONN_CONTEXT_T *pContext = &(app_env.context[conidx]);
if (pContext->connInterval != pConfig->conn_param_interval) {
l2cap_update_param(conidx, pConfig->conn_param_interval * 10 / 8,
pConfig->conn_param_interval * 10 / 8,
BLE_CONN_PARAM_SUPERVISE_TIMEOUT_MS,
BLE_CONN_PARAM_SLAVE_LATENCY_CNT);
LOG_I("try to update conn interval to %d", pConfig->conn_param_interval);
}
LOG_I("conn param mode of conidx %d switched to:0x%x", conidx,
existingBleConnParamModes[conidx]);
}
void app_ble_save_negotiated_conn_param(
uint8_t conidx, APP_BLE_NEGOTIATED_CONN_PARAM_T *pConnParam) {
if (conidx < BLE_CONNECTION_MAX) {
negotiatedBleConnParam[conidx] = *pConnParam;
}
}
bool app_ble_get_connection_interval(
uint8_t conidx, APP_BLE_NEGOTIATED_CONN_PARAM_T *pConnParam) {
if ((conidx < BLE_CONNECTION_MAX) &&
(BLE_CONNECTED == app_env.context[conidx].connectStatus)) {
*pConnParam = negotiatedBleConnParam[conidx];
return true;
} else {
return false;
}
}
#if GFPS_ENABLED
uint8_t delay_update_conidx = BLE_INVALID_CONNECTION_INDEX;
#define FP_DELAY_UPDATE_BLE_CONN_PARAM_TIMER_VALUE (10000)
osTimerId fp_update_ble_param_timer = NULL;
static void fp_update_ble_connect_param_timer_handler(void const *param);
osTimerDef(FP_UPDATE_BLE_CONNECT_PARAM_TIMER,
(void (*)(void const *))fp_update_ble_connect_param_timer_handler);
extern uint8_t is_sco_mode(void);
static void fp_update_ble_connect_param_timer_handler(void const *param) {
LOG_I("fp_update_ble_connect_param_timer_handler");
for (uint8_t index = 0; index < BLE_CONNECTION_MAX; index++) {
if ((BLE_CONNECTED == app_env.context[index].connectStatus) &&
(index == delay_update_conidx)) {
LOG_I("update connection interval of conidx %d", delay_update_conidx);
if (is_sco_mode()) {
app_ble_update_conn_param_mode_of_specific_connection(
delay_update_conidx, BLE_CONN_PARAM_MODE_HFP_ON, true);
} else {
app_ble_update_conn_param_mode_of_specific_connection(
delay_update_conidx, BLE_CONN_PARAM_MODE_DEFAULT, true);
}
break;
}
}
delay_update_conidx = BLE_INVALID_CONNECTION_INDEX;
}
void fp_update_ble_connect_param_start(uint8_t ble_conidx) {
if (fp_update_ble_param_timer == NULL) {
fp_update_ble_param_timer = osTimerCreate(
osTimer(FP_UPDATE_BLE_CONNECT_PARAM_TIMER), osTimerOnce, NULL);
return;
}
delay_update_conidx = ble_conidx;
if (fp_update_ble_param_timer)
osTimerStart(fp_update_ble_param_timer,
FP_DELAY_UPDATE_BLE_CONN_PARAM_TIMER_VALUE);
}
void fp_update_ble_connect_param_stop(uint8_t ble_conidx) {
if (delay_update_conidx == ble_conidx) {
if (fp_update_ble_param_timer)
osTimerStop(fp_update_ble_param_timer);
delay_update_conidx = BLE_INVALID_CONNECTION_INDEX;
}
}
#endif
#endif //(BLE_APP_PRESENT)
/// @} APP