pinebuds/platform/hal/hal_timer.c

685 lines
16 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "plat_addr_map.h"
#include "hal_timer.h"
#define IGNORE_HAL_TIMER_RAW_API_CHECK
#include "hal_timer_raw.h"
#include "reg_timer.h"
#include "hal_location.h"
#include "hal_cmu.h"
#include "cmsis_nvic.h"
//#define ELAPSED_TIMER_ENABLED
#if defined(CHIP_BEST3001) || defined(CHIP_BEST3003) || defined(CHIP_BEST3005) || defined(CHIP_BEST1400) || defined(CHIP_BEST1402)
#define CLOCK_SYNC_WORKAROUND
#endif
#ifdef LOW_SYS_FREQ
#if defined(CHIP_BEST1305) || defined(CHIP_BEST1501) || \
defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
#define FAST_TIMER_WORKAROUND
#endif
#endif
#if defined(__FPU_USED) && (__FPU_USED == 1)
//#define TIMER_USE_FPU
#endif
#define SLOW_TIMER_VAL_DELTA 1
#define SLOW_TIMER_VAL_DELTA_SLEEP 10
#define FAST_TIMER_VAL_DELTA 20
#ifdef CALIB_SLOW_TIMER
#define MAX_CALIB_SYSTICK_HZ (CONFIG_SYSTICK_HZ_NOMINAL * 2)
#define MIN_CALIB_TICKS (10 * (CONFIG_SYSTICK_HZ_NOMINAL / 1000))
#define MAX_CALIB_TICKS (30 * CONFIG_SYSTICK_HZ_NOMINAL)
static uint32_t BOOT_DATA_LOC sys_tick_hz = CONFIG_SYSTICK_HZ_NOMINAL;
static uint32_t BOOT_BSS_LOC slow_val;
static uint32_t BOOT_BSS_LOC fast_val;
#endif
static struct DUAL_TIMER_T * const BOOT_RODATA_SRAM_LOC dual_timer0 = (struct DUAL_TIMER_T *)TIMER0_BASE;
#ifdef TIMER1_BASE
static struct DUAL_TIMER_T * const BOOT_RODATA_SRAM_LOC dual_timer1 = (struct DUAL_TIMER_T *)TIMER1_BASE;
#endif
static HAL_TIMER_IRQ_HANDLER_T irq_handler = NULL;
//static uint32_t load_value = 0;
static uint32_t start_time;
static void POSSIBLY_UNUSED hal_timer00_irq_handler(void);
static void hal_timer01_irq_handler(void);
__STATIC_FORCEINLINE uint32_t get_timer_value(struct TIMER_T *timer, uint32_t delta)
{
#ifdef CLOCK_SYNC_WORKAROUND
uint32_t lock;
uint32_t v1, v2;
lock = int_lock();
do {
v1 = timer->Value;
v2 = timer->Value;
} while ((v1 < v2) || (v1 > v2 + delta));
int_unlock(lock);
return v2;
#else
return timer->Value;
#endif
}
__STATIC_FORCEINLINE void clear_timer_irq(struct TIMER_T *timer)
{
#ifdef CLOCK_SYNC_WORKAROUND
do {
timer->IntClr = 1;
} while (timer->RIS & TIMER_RIS_RIS);
#else
timer->IntClr = 1;
#endif
}
__STATIC_FORCEINLINE void set_timer_load(struct TIMER_T *timer, uint32_t load, uint32_t delta)
{
#ifdef CLOCK_SYNC_WORKAROUND
uint32_t lock;
uint32_t val;
lock = int_lock();
do {
timer->Load = load;
val = timer->Value;
} while ((load < val) || (load > val + delta));
int_unlock(lock);
#else
timer->Load = load;
#endif
}
__STATIC_FORCEINLINE void fast_timer_open(void)
{
#ifdef TIMER1_BASE
hal_cmu_timer1_select_fast();
dual_timer1->timer[0].Control = TIMER_CTRL_EN | TIMER_CTRL_PRESCALE_DIV_1 | TIMER_CTRL_SIZE_32_BIT;
#endif
}
void BOOT_TEXT_FLASH_LOC hal_sys_timer_open(void)
{
hal_cmu_timer0_select_slow();
dual_timer0->timer[0].Control = TIMER_CTRL_EN | TIMER_CTRL_PRESCALE_DIV_1 | TIMER_CTRL_SIZE_32_BIT;
fast_timer_open();;
}
#ifdef CORE_SLEEP_POWER_DOWN
void SRAM_TEXT_LOC hal_sys_timer_wakeup(void)
{
fast_timer_open();;
}
#endif
uint32_t BOOT_TEXT_SRAM_LOC hal_sys_timer_get(void)
{
return -get_timer_value(&dual_timer0->timer[0], SLOW_TIMER_VAL_DELTA);
}
#ifdef CLOCK_SYNC_WORKAROUND
uint32_t SRAM_TEXT_LOC hal_sys_timer_get_in_sleep(void)
{
return -get_timer_value(&dual_timer0->timer[0], SLOW_TIMER_VAL_DELTA_SLEEP);
}
#else
uint32_t hal_sys_timer_get_in_sleep(void) __attribute__((alias("hal_sys_timer_get")));
#endif
uint32_t BOOT_TEXT_FLASH_LOC flash_hal_sys_timer_get(void)
{
return -get_timer_value(&dual_timer0->timer[0], SLOW_TIMER_VAL_DELTA);
}
uint32_t BOOT_TEXT_SRAM_LOC hal_sys_ms_get(void)
{
return GET_CURRENT_MS();
}
uint32_t BOOT_TEXT_SRAM_LOC hal_fast_sys_timer_get(void)
{
#ifdef TIMER1_BASE
#ifdef FAST_TIMER_WORKAROUND
if (hal_cmu_fast_timer_offline()) {
#ifdef TIMER_USE_FPU
return (uint32_t)(hal_sys_timer_get() * ((float)CONFIG_FAST_SYSTICK_HZ / CONFIG_SYSTICK_HZ));
#else
return (uint32_t)(hal_sys_timer_get() * (uint64_t)CONFIG_FAST_SYSTICK_HZ / CONFIG_SYSTICK_HZ);
#endif
}
#endif // FAST_TIMER_WORKAROUND
return -get_timer_value(&dual_timer1->timer[0], FAST_TIMER_VAL_DELTA);
#else
return 0;
#endif
}
uint32_t hal_sys_timer_get_max(void)
{
return 0xFFFFFFFF;
}
void BOOT_TEXT_SRAM_LOC hal_sys_timer_delay(uint32_t ticks)
{
uint32_t start = hal_sys_timer_get();
while (hal_sys_timer_get() - start < ticks);
}
#ifdef CLOCK_SYNC_WORKAROUND
void SRAM_TEXT_LOC hal_sys_timer_delay_in_sleep(uint32_t ticks)
{
uint32_t start = hal_sys_timer_get_in_sleep();
while (hal_sys_timer_get_in_sleep() - start < ticks);
}
#else
void hal_sys_timer_delay_in_sleep(uint32_t ticks) __attribute__((alias("hal_sys_timer_delay")));
#endif
void BOOT_TEXT_FLASH_LOC flash_hal_sys_timer_delay(uint32_t ticks)
{
uint32_t start = flash_hal_sys_timer_get();
while (flash_hal_sys_timer_get() - start < ticks);
}
void BOOT_TEXT_SRAM_LOC hal_sys_timer_delay_us(uint32_t us)
{
#ifdef TIMER1_BASE
#ifdef FAST_TIMER_WORKAROUND
if (hal_cmu_fast_timer_offline()) {
uint32_t start = hal_sys_timer_get();
uint32_t ticks = US_TO_TICKS(us);
while (hal_sys_timer_get() - start < ticks);
}
#endif // FAST_TIMER_WORKAROUND
uint32_t start = hal_fast_sys_timer_get();
uint32_t ticks = US_TO_FAST_TICKS(us);
while (hal_fast_sys_timer_get() - start < ticks);
#else
enum HAL_CMU_FREQ_T freq = hal_cmu_sys_get_freq();
uint32_t loop;
uint32_t i;
// Assuming:
// 1) system clock uses audio PLL
// 2) audio PLL is configured as 48K series, 196.608M
// 3) crystal is 26M
if (freq == HAL_CMU_FREQ_208M) {
loop = 197;
} else if (freq == HAL_CMU_FREQ_104M) {
loop = 197 / 2;
} else if (freq == HAL_CMU_FREQ_78M) {
loop = 197 / 3;
} else if (freq == HAL_CMU_FREQ_52M) {
loop = 52;
} else {
loop = 26;
}
loop = loop * us / 5;
for (i = 0; i < loop; i++) {
asm volatile("nop");
}
#endif
}
void SRAM_TEXT_LOC hal_sys_timer_delay_ns(uint32_t ns)
{
#ifdef TIMER1_BASE
#ifdef FAST_TIMER_WORKAROUND
if (hal_cmu_fast_timer_offline()) {
uint32_t start = hal_sys_timer_get();
uint32_t ticks = US_TO_TICKS((ns + (1000 - 1)) / 1000);
while (hal_sys_timer_get() - start < ticks);
}
#endif // FAST_TIMER_WORKAROUND
uint32_t start = hal_fast_sys_timer_get();
uint32_t ticks = NS_TO_FAST_TICKS(ns);
while (hal_fast_sys_timer_get() - start < ticks);
#else
enum HAL_CMU_FREQ_T freq = hal_cmu_sys_get_freq();
uint32_t loop;
uint32_t i;
// Assuming:
// 1) system clock uses audio PLL
// 2) audio PLL is configured as 48K series, 196.608M
// 3) crystal is 26M
if (freq == HAL_CMU_FREQ_208M) {
loop = 197;
} else if (freq == HAL_CMU_FREQ_104M) {
loop = 197 / 2;
} else if (freq == HAL_CMU_FREQ_78M) {
loop = 197 / 3;
} else if (freq == HAL_CMU_FREQ_52M) {
loop = 52;
} else {
loop = 26;
}
loop = loop * ns / 5000;
for (i = 0; i < loop; i++) {
asm volatile("nop");
}
#endif
}
static uint32_t NOINLINE SRAM_TEXT_DEF(measure_cpu_freq_interval)(uint32_t cnt)
{
uint32_t start;
struct DUAL_TIMER_T *t;
uint32_t delta;
#ifdef TIMER1_BASE
t = dual_timer1;
delta = FAST_TIMER_VAL_DELTA;
#ifdef FAST_TIMER_WORKAROUND
if (hal_cmu_fast_timer_offline()) {
t = dual_timer0;
delta = SLOW_TIMER_VAL_DELTA;
}
#endif // FAST_TIMER_WORKAROUND
#else
t = dual_timer0;
delta = SLOW_TIMER_VAL_DELTA;
#endif
start = get_timer_value(&t->timer[0], delta);
asm volatile(
"_loop:;"
#ifdef __ARM_ARCH_ISA_ARM
"nop;"
"nop;"
#endif
"subs %0, #1;"
"cmp %0, #0;"
"bne _loop;"
: : "r"(cnt));
return start - get_timer_value(&t->timer[0], delta);
}
uint32_t hal_sys_timer_calc_cpu_freq(uint32_t interval_ms, int high_res)
{
uint32_t ref_freq;
uint32_t cnt;
uint32_t one_sec;
uint32_t lock;
uint32_t run_interval;
uint32_t base_interval;
uint32_t freq;
// Default measurement interval
if (interval_ms == 0) {
#ifdef TIMER1_BASE
interval_ms = 10;
#else
interval_ms = 100;
#endif
}
ref_freq = hal_cmu_get_crystal_freq();
// CPU loop cycle count
cnt = ref_freq / 4 * interval_ms / 1000;
// Timer ticks per second
#ifdef TIMER1_BASE
one_sec = CONFIG_FAST_SYSTICK_HZ;
#ifdef FAST_TIMER_WORKAROUND
if (hal_cmu_fast_timer_offline()) {
one_sec = CONFIG_SYSTICK_HZ;
}
#endif // FAST_TIMER_WORKAROUND
#else
if (high_res) {
one_sec = CONFIG_FAST_SYSTICK_HZ;
} else {
one_sec = CONFIG_SYSTICK_HZ;
}
#endif
// Timer ticks per measurement interval
base_interval = one_sec * interval_ms / 1000;
lock = int_lock();
#ifndef TIMER1_BASE
if (high_res) {
hal_cmu_timer0_select_fast();
}
#endif
run_interval = measure_cpu_freq_interval(cnt);
#ifndef TIMER1_BASE
if (high_res) {
hal_cmu_timer0_select_slow();
}
#endif
int_unlock(lock);
#ifdef TIMER_USE_FPU
freq = (uint32_t)((float)ref_freq / run_interval * base_interval);
#else
freq = (uint32_t)((uint64_t)ref_freq * base_interval / run_interval);
#endif
if (high_res == 0) {
freq = (freq + 500000) / 1000000 * 1000000;
}
return freq;
}
#ifdef CALIB_SLOW_TIMER
void hal_sys_timer_calib_start(void)
{
uint32_t lock;
uint32_t slow;
uint32_t fast;
lock = int_lock();
slow = hal_sys_timer_get();
while (hal_sys_timer_get() == slow);
fast = hal_fast_sys_timer_get();
int_unlock(lock);
slow_val = slow + 1;
fast_val = fast;
}
int hal_sys_timer_calib_end(void)
{
uint32_t lock;
uint32_t slow;
uint32_t fast;
uint32_t slow_diff;
lock = int_lock();
slow = hal_sys_timer_get();
while (hal_sys_timer_get() == slow);
fast = hal_fast_sys_timer_get();
int_unlock(lock);
slow += 1;
slow_diff = slow - slow_val;
// Avoid computation error
if (slow_diff < MIN_CALIB_TICKS) {
return 1;
}
// Avoid fast tick overflow
if (slow_diff > MAX_CALIB_TICKS) {
return 2;
}
#ifdef TIMER_USE_FPU
sys_tick_hz = (uint32_t)((float)CONFIG_FAST_SYSTICK_HZ / (fast - fast_val) * slow_diff);
#else
uint64_t mul;
mul = (uint64_t)CONFIG_FAST_SYSTICK_HZ * slow_diff;
if ((mul >> 32) == 0) {
sys_tick_hz = (uint32_t)mul / (fast - fast_val);
} else {
sys_tick_hz = mul / (fast - fast_val);
}
#endif
if (sys_tick_hz > MAX_CALIB_SYSTICK_HZ) {
sys_tick_hz = MAX_CALIB_SYSTICK_HZ;
}
return 0;
}
void hal_sys_timer_calib(void)
{
hal_sys_timer_calib_start();
hal_sys_timer_delay(MIN_CALIB_TICKS);
hal_sys_timer_calib_end();
}
uint32_t BOOT_TEXT_SRAM_LOC hal_sys_timer_systick_hz(void)
{
return sys_tick_hz;
}
uint32_t BOOT_TEXT_SRAM_LOC hal_sys_timer_ms_to_ticks(uint32_t ms)
{
if (ms <= (~0UL / MAX_CALIB_SYSTICK_HZ)) {
return (ms * sys_tick_hz / 1000);
} else {
#ifdef TIMER_USE_FPU
return (uint32_t)((float)ms / 1000 * sys_tick_hz);
#else
return ((uint64_t)ms * sys_tick_hz / 1000);
#endif
}
}
uint32_t BOOT_TEXT_SRAM_LOC hal_sys_timer_us_to_ticks(uint32_t us)
{
if (us <= (~0UL / MAX_CALIB_SYSTICK_HZ)) {
return ((us * sys_tick_hz / 1000 + 1000 - 1) / 1000 + 1);
} else {
#ifdef TIMER_USE_FPU
return (uint32_t)((float)us / (1000 * 1000) * sys_tick_hz + 1 + 1);
#else
return (((uint64_t)us * sys_tick_hz / 1000 + 1000 - 1) / 1000 + 1);
#endif
}
}
uint32_t BOOT_TEXT_SRAM_LOC hal_sys_timer_ticks_to_ms(uint32_t tick)
{
if (tick <= (~0UL / 1000)) {
return tick * 1000 / CONFIG_SYSTICK_HZ;
} else {
#ifdef TIMER_USE_FPU
return (uint32_t)((float)tick / CONFIG_SYSTICK_HZ * 1000);
#else
return (uint64_t)tick * 1000 / CONFIG_SYSTICK_HZ;
#endif
}
}
uint32_t BOOT_TEXT_SRAM_LOC hal_sys_timer_ticks_to_us(uint32_t tick)
{
if (tick <= (~0UL / (1000 * 1000))) {
return tick * (1000 * 1000) / CONFIG_SYSTICK_HZ;
} else {
#ifdef TIMER_USE_FPU
return (uint32_t)((float)tick / CONFIG_SYSTICK_HZ * (1000 * 1000));
#else
return (uint64_t)tick * (1000 * 1000) / CONFIG_SYSTICK_HZ;
#endif
}
}
#endif
#ifndef RTOS
int osDelay(uint32_t ms)
{
hal_sys_timer_delay(MS_TO_TICKS(ms));
return 0;
}
#endif
static void hal_timer00_irq_handler(void)
{
clear_timer_irq(&dual_timer0->timer[0]);
dual_timer0->timer[0].Control &= ~TIMER_CTRL_INTEN;
}
void hal_timer_setup(enum HAL_TIMER_TYPE_T type, HAL_TIMER_IRQ_HANDLER_T handler)
{
uint32_t mode;
if (type == HAL_TIMER_TYPE_ONESHOT) {
mode = TIMER_CTRL_ONESHOT;
} else if (type == HAL_TIMER_TYPE_PERIODIC) {
mode = TIMER_CTRL_MODE_PERIODIC;
} else {
mode = 0;
}
irq_handler = handler;
clear_timer_irq(&dual_timer0->timer[1]);
#ifdef ELAPSED_TIMER_ENABLED
dual_timer0->elapsed_timer[1].ElapsedCtrl = TIMER_ELAPSED_CTRL_CLR;
#endif
if (handler) {
NVIC_SetVector(TIMER01_IRQn, (uint32_t)hal_timer01_irq_handler);
NVIC_SetPriority(TIMER01_IRQn, IRQ_PRIORITY_NORMAL);
NVIC_ClearPendingIRQ(TIMER01_IRQn);
NVIC_EnableIRQ(TIMER01_IRQn);
}
dual_timer0->timer[1].Control = mode |
(handler ? TIMER_CTRL_INTEN : 0) |
TIMER_CTRL_PRESCALE_DIV_1 |
TIMER_CTRL_SIZE_32_BIT;
}
void hal_timer_start(uint32_t load)
{
start_time = hal_sys_timer_get();
hal_timer_reload(load);
hal_timer_continue();
}
void hal_timer_stop(void)
{
dual_timer0->timer[1].Control &= ~TIMER_CTRL_EN;
#ifdef ELAPSED_TIMER_ENABLED
dual_timer0->elapsed_timer[1].ElapsedCtrl = TIMER_ELAPSED_CTRL_CLR;
#endif
clear_timer_irq(&dual_timer0->timer[1]);
NVIC_ClearPendingIRQ(TIMER01_IRQn);
}
void hal_timer_continue(void)
{
#ifdef ELAPSED_TIMER_ENABLED
dual_timer0->elapsed_timer[1].ElapsedCtrl = TIMER_ELAPSED_CTRL_EN | TIMER_ELAPSED_CTRL_CLR;
#endif
dual_timer0->timer[1].Control |= TIMER_CTRL_EN;
}
int hal_timer_is_enabled(void)
{
return !!(dual_timer0->timer[1].Control & TIMER_CTRL_EN);
}
void hal_timer_reload(uint32_t load)
{
if (load > HAL_TIMER_LOAD_DELTA) {
//load_value = load;
load -= HAL_TIMER_LOAD_DELTA;
} else {
//load_value = HAL_TIMER_LOAD_DELTA + 1;
load = 1;
}
set_timer_load(&dual_timer0->timer[1], load, SLOW_TIMER_VAL_DELTA);
}
uint32_t hal_timer_get(void)
{
return get_timer_value(&dual_timer0->timer[1], SLOW_TIMER_VAL_DELTA);
}
int hal_timer_irq_active(void)
{
return NVIC_GetActive(TIMER01_IRQn);
}
int hal_timer_irq_pending(void)
{
// Or NVIC_GetPendingIRQ(TIMER2_IRQn) ?
return (dual_timer0->timer[1].MIS & TIMER_MIS_MIS);
}
uint32_t hal_timer_get_overrun_time(void)
{
#ifdef ELAPSED_TIMER_ENABLED
uint32_t extra;
if (dual_timer0->elapsed_timer[1].ElapsedCtrl & TIMER_ELAPSED_CTRL_EN) {
extra = dual_timer0->elapsed_timer[1].ElapsedVal;
} else {
extra = 0;
}
return extra;
#else
return 0;
#endif
}
uint32_t hal_timer_get_elapsed_time(void)
{
//return load_value + hal_timer_get_overrun_time();
return hal_sys_timer_get() - start_time;
}
static void hal_timer01_irq_handler(void)
{
uint32_t elapsed;
clear_timer_irq(&dual_timer0->timer[1]);
if (irq_handler) {
elapsed = hal_timer_get_elapsed_time();
irq_handler(elapsed);
} else {
dual_timer0->timer[1].Control &= ~TIMER_CTRL_INTEN;
}
}
uint32_t hal_timer_get_passed_ticks(uint32_t curr_ticks, uint32_t prev_ticks)
{
if(curr_ticks < prev_ticks)
return ((0xffffffff - prev_ticks + 1) + curr_ticks);
else
return (curr_ticks - prev_ticks);
}