pinebuds/services/multimedia/audio/process/anc/cfg/anc_cfg.c
Ben V. Brown 75381150fd Formatting
Formatting Pass 1

Lots of fixups to adding stdint and stdbool all over the place

Formatting Pass 2
Formatting Pass 3
Formatting Pass 4

Update app_bt_stream.cpp
2023-02-02 07:56:49 +11:00

2200 lines
63 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "anc_process.h"
#include "aud_section.h"
#include "aud_section_inc.h"
#include "hal_location.h"
#include "hal_sysfreq.h"
#include "hal_trace.h"
#include "plat_types.h"
#include "tgt_hardware.h"
#ifdef USB_ANC_MC_EQ_TUNING
#include "analog.h"
#include "audioflinger.h"
#include "crc32.h"
#include "hal_aud.h"
#include "hal_cmu.h"
#include "hal_codec.h"
#include "hal_dma.h"
#include "hal_iomux.h"
#include "hal_norflash.h"
#include "hal_timer.h"
#include "hw_codec_iir_process.h"
#include "hw_iir_process.h"
#include "pmu.h"
#include "stdint.h"
#include "string.h"
#endif
#ifdef AUDIO_ANC_FB_MC
#include "cmsis.h"
#endif
#ifdef ANC_COEF_LIST_NUM
#if (ANC_COEF_LIST_NUM < 1)
#error "Invalid ANC_COEF_LIST_NUM configuration"
#endif
#else
#define ANC_COEF_LIST_NUM (1)
#endif
extern const struct_anc_cfg *anc_coef_list_50p7k[ANC_COEF_LIST_NUM];
extern const struct_anc_cfg *anc_coef_list_48k[ANC_COEF_LIST_NUM];
extern const struct_anc_cfg *anc_coef_list_44p1k[ANC_COEF_LIST_NUM];
const struct_anc_cfg *WEAK anc_coef_list_50p7k[ANC_COEF_LIST_NUM] = {};
const struct_anc_cfg *WEAK anc_coef_list_48k[ANC_COEF_LIST_NUM] = {};
const struct_anc_cfg *WEAK anc_coef_list_44p1k[ANC_COEF_LIST_NUM] = {};
static enum ANC_INDEX cur_coef_idx = ANC_INDEX_0;
static enum AUD_SAMPRATE_T cur_coef_samprate;
#ifdef AUDIO_ANC_FB_MC
#define AUD_IIR_NUM (8)
typedef struct {
aud_item anc_cfg_mc_l;
aud_item anc_cfg_mc_r;
float mc_history_l[AUD_IIR_NUM][4];
float mc_history_r[AUD_IIR_NUM][4];
} IIR_MC_CFG_T;
static IIR_MC_CFG_T mc_iir_cfg;
#endif
#ifndef CODEC_OUTPUT_DEV
#define CODEC_OUTPUT_DEV CFG_HW_AUD_OUTPUT_PATH_SPEAKER_DEV
#endif
int anc_load_cfg(void) {
int res = 0;
const struct_anc_cfg **list;
anc_set_ch_map(CODEC_OUTPUT_DEV);
#ifdef __AUDIO_RESAMPLE__
res = anccfg_loadfrom_audsec(anc_coef_list_50p7k, anc_coef_list_48k,
ANC_COEF_LIST_NUM);
list = anc_coef_list_50p7k;
TRACE(0, "50.7k!!!!");
if (res) {
TRACE(
2,
"[%s] WARNING(%d): Can not load anc coefficient from audio section!!!",
__func__, res);
} else {
TRACE(1, "[%s] Load anc coefficient from audio section.", __func__);
#if (AUD_SECTION_STRUCT_VERSION == 1)
TRACE(5, "[%s] L: gain = %d, len = %d, dac = %d, adc = %d", __func__,
list[0]->anc_cfg_ff_l.total_gain, list[0]->anc_cfg_ff_l.fir_len,
list[0]->anc_cfg_ff_l.dac_gain_offset,
list[0]->anc_cfg_ff_l.adc_gain_offset);
TRACE(5, "[%s] R: gain = %d, len = %d, dac = %d, adc = %d", __func__,
list[0]->anc_cfg_ff_r.total_gain, list[0]->anc_cfg_ff_r.fir_len,
list[0]->anc_cfg_ff_r.dac_gain_offset,
list[0]->anc_cfg_ff_r.adc_gain_offset);
#elif (AUD_SECTION_STRUCT_VERSION == 2)
for (int i = 0; i < ANC_COEF_LIST_NUM; i++) {
TRACE(3, "appmode%d,FEEDFORWARD,L:gain %d,R:gain %d", i,
list[i]->anc_cfg_ff_l.total_gain, list[i]->anc_cfg_ff_r.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef ff 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[2]);
}
TRACE(3, "appmode%d,FEEDBACK,L:gain %d,R:gain %d", i,
list[i]->anc_cfg_fb_l.total_gain, list[i]->anc_cfg_fb_r.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef fb 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[2]);
}
}
#elif (AUD_SECTION_STRUCT_VERSION == 3)
for (int i = 0; i < ANC_COEF_LIST_NUM; i++) {
TRACE(2, "appmode%d,FEEDFORWARD,L:gain %d", i,
list[i]->anc_cfg_ff_l.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef ff 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[2]);
}
TRACE(2, "appmode%d,FEEDBACK,L:gain %d", i,
list[i]->anc_cfg_fb_l.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef fb 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[2]);
}
}
#endif
}
#else
res = anccfg_loadfrom_audsec(anc_coef_list_48k, anc_coef_list_44p1k,
ANC_COEF_LIST_NUM);
list = anc_coef_list_44p1k;
TRACE(0, "44.1k!!!!");
if (res) {
TRACE(
2,
"[%s] WARNING(%d): Can not load anc coefficient from audio section!!!",
__func__, res);
} else {
TRACE(1, "[%s] Load anc coefficient from audio section.", __func__);
#if (AUD_SECTION_STRUCT_VERSION == 1)
TRACE(5, "[%s] L: gain = %d, len = %d, dac = %d, adc = %d", __func__,
list[0]->anc_cfg_ff_l.total_gain, list[0]->anc_cfg_ff_l.fir_len,
list[0]->anc_cfg_ff_l.dac_gain_offset,
list[0]->anc_cfg_ff_l.adc_gain_offset);
TRACE(5, "[%s] R: gain = %d, len = %d, dac = %d, adc = %d", __func__,
list[0]->anc_cfg_ff_r.total_gain, list[0]->anc_cfg_ff_r.fir_len,
list[0]->anc_cfg_ff_r.dac_gain_offset,
list[0]->anc_cfg_ff_r.adc_gain_offset);
#elif (AUD_SECTION_STRUCT_VERSION == 2)
for (int i = 0; i < ANC_COEF_LIST_NUM; i++) {
TRACE(3, "appmode%d,FEEDFORWARD,L:gain %d,R:gain %d", i,
list[i]->anc_cfg_ff_l.total_gain, list[i]->anc_cfg_ff_r.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef ff 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[2]);
}
TRACE(3, "appmode%d,FEEDBACK,L:gain %d,R:gain %d", i,
list[i]->anc_cfg_fb_l.total_gain, list[i]->anc_cfg_fb_r.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef fb 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[2]);
}
}
#elif (AUD_SECTION_STRUCT_VERSION == 3)
for (int i = 0; i < ANC_COEF_LIST_NUM; i++) {
TRACE(2, "appmode%d,FEEDFORWARD,L:gain %d", i,
list[i]->anc_cfg_ff_l.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef ff 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[2]);
}
TRACE(2, "appmode%d,FEEDBACK,L:gain %d", i,
list[i]->anc_cfg_fb_l.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef fb 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[2]);
}
}
#endif
}
res = anccfg_loadfrom_audsec(anc_coef_list_48k, anc_coef_list_44p1k,
ANC_COEF_LIST_NUM);
list = anc_coef_list_48k;
TRACE(0, "48k!!!!");
if (res) {
TRACE(
2,
"[%s] WARNING(%d): Can not load anc coefficient from audio section!!!",
__func__, res);
} else {
TRACE(1, "[%s] Load anc coefficient from audio section.", __func__);
#if (AUD_SECTION_STRUCT_VERSION == 1)
TRACE(5, "[%s] L: gain = %d, len = %d, dac = %d, adc = %d", __func__,
list[0]->anc_cfg_ff_l.total_gain, list[0]->anc_cfg_ff_l.fir_len,
list[0]->anc_cfg_ff_l.dac_gain_offset,
list[0]->anc_cfg_ff_l.adc_gain_offset);
TRACE(5, "[%s] R: gain = %d, len = %d, dac = %d, adc = %d", __func__,
list[0]->anc_cfg_ff_r.total_gain, list[0]->anc_cfg_ff_r.fir_len,
list[0]->anc_cfg_ff_r.dac_gain_offset,
list[0]->anc_cfg_ff_r.adc_gain_offset);
#elif (AUD_SECTION_STRUCT_VERSION == 2)
for (int i = 0; i < ANC_COEF_LIST_NUM; i++) {
TRACE(3, "appmode%d,FEEDFORWARD,L:gain %d,R:gain %d", i,
list[i]->anc_cfg_ff_l.total_gain, list[i]->anc_cfg_ff_r.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef ff 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[2]);
}
TRACE(3, "appmode%d,FEEDBACK,L:gain %d,R:gain %d", i,
list[i]->anc_cfg_fb_l.total_gain, list[i]->anc_cfg_fb_r.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef fb 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[2]);
}
}
#elif (AUD_SECTION_STRUCT_VERSION == 3)
for (int i = 0; i < ANC_COEF_LIST_NUM; i++) {
TRACE(2, "appmode%d,FEEDFORWARD,L:gain %d", i,
list[i]->anc_cfg_ff_l.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef ff 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_ff_l.iir_coef[j].coef_a[2]);
}
TRACE(2, "appmode%d,FEEDBACK,L:gain %d", i,
list[i]->anc_cfg_fb_l.total_gain);
for (int j = 0; j < AUD_IIR_NUM; j++) {
TRACE(7,
"appmode%d,iir coef fb 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, "
"0x%08x",
i, list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_b[2],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[0],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[1],
list[i]->anc_cfg_fb_l.iir_coef[j].coef_a[2]);
}
}
#endif
}
#endif
return res;
}
int anc_select_coef(enum AUD_SAMPRATE_T rate, enum ANC_INDEX index,
enum ANC_TYPE_T anc_type, ANC_GAIN_TIME anc_gain_delay) {
const struct_anc_cfg **list = NULL;
if (index >= ANC_COEF_LIST_NUM) {
return 1;
}
#ifdef CHIP_BEST1000
switch (rate) {
case AUD_SAMPRATE_96000:
list = anc_coef_list_48k;
break;
case AUD_SAMPRATE_88200:
list = anc_coef_list_44p1k;
break;
default:
break;
}
#else
switch (rate) {
case AUD_SAMPRATE_48000:
list = anc_coef_list_48k;
break;
case AUD_SAMPRATE_44100:
list = anc_coef_list_44p1k;
break;
#ifdef __AUDIO_RESAMPLE__
case AUD_SAMPRATE_50781:
list = anc_coef_list_50p7k;
break;
#endif
default:
break;
}
#endif
ASSERT(list != NULL && list[index] != NULL,
"The coefs of Samprate %d is NULL", rate);
if (anc_opened(anc_type)) {
hal_sysfreq_req(HAL_SYSFREQ_USER_ANC, HAL_CMU_FREQ_52M);
anc_set_cfg(list[index], anc_type, anc_gain_delay);
hal_sysfreq_req(HAL_SYSFREQ_USER_ANC, HAL_CMU_FREQ_32K);
#ifdef AUDIO_ANC_FB_MC
mc_iir_cfg.anc_cfg_mc_l = (*list[index]).anc_cfg_mc_l;
mc_iir_cfg.anc_cfg_mc_r = (*list[index]).anc_cfg_mc_r;
#endif
}
cur_coef_idx = index;
cur_coef_samprate = rate;
return 0;
}
enum ANC_INDEX anc_get_current_coef_index(void) { return cur_coef_idx; }
enum AUD_SAMPRATE_T anc_get_current_coef_samplerate(void) {
return cur_coef_samprate;
}
#ifdef AUDIO_ANC_FB_MC
void anc_mc_run_init(enum AUD_SAMPRATE_T rate) {
const struct_anc_cfg **list = NULL;
switch (rate) {
case AUD_SAMPRATE_48000:
list = anc_coef_list_48k;
break;
case AUD_SAMPRATE_44100:
list = anc_coef_list_44p1k;
break;
#ifdef __AUDIO_RESAMPLE__
case AUD_SAMPRATE_50781:
list = anc_coef_list_50p7k;
break;
#endif
default:
break;
}
ASSERT(list != NULL && list[cur_coef_idx] != NULL,
"The coefs of Samprate %d is NULL", rate);
mc_iir_cfg.anc_cfg_mc_l = (*list[cur_coef_idx]).anc_cfg_mc_l;
mc_iir_cfg.anc_cfg_mc_r = (*list[cur_coef_idx]).anc_cfg_mc_r;
for (int j = 0; j < AUD_IIR_NUM; j++) {
for (int i = 0; i < 4; i++) {
mc_iir_cfg.mc_history_l[j][i] = 0.0f;
mc_iir_cfg.mc_history_r[j][i] = 0.0f;
}
}
return;
}
void anc_mc_run_setup(enum AUD_SAMPRATE_T rate) {
const struct_anc_cfg **list = NULL;
switch (rate) {
case AUD_SAMPRATE_48000:
list = anc_coef_list_48k;
break;
case AUD_SAMPRATE_44100:
list = anc_coef_list_44p1k;
break;
#ifdef __AUDIO_RESAMPLE__
case AUD_SAMPRATE_50781:
list = anc_coef_list_50p7k;
break;
#endif
default:
break;
}
ASSERT(list != NULL && list[cur_coef_idx] != NULL,
"The coefs of Samprate %d is NULL", rate);
mc_iir_cfg.anc_cfg_mc_l = (*list[cur_coef_idx]).anc_cfg_mc_l;
mc_iir_cfg.anc_cfg_mc_r = (*list[cur_coef_idx]).anc_cfg_mc_r;
return;
}
static inline int32_t iir_ssat_24bits(float in) {
int res = 0;
int32_t out;
res = (int)in;
out = __SSAT(res, 24);
return out;
}
static inline int32_t iir_ssat_16bits(float in) {
int res = 0;
int32_t out;
res = (int)in;
out = __SSAT(res, 16);
return out;
}
SRAM_TEXT_LOC int anc_mc_run_stereo(uint8_t *buf, int len, float left_gain,
float right_gain,
enum AUD_BITS_T sample_bit) {
int len_mono;
float gain_l = 0, gain_r = 0;
int32_t *coefs = NULL;
float *history = NULL;
float x0, x1, x2;
float y0, y1, y2;
// Coefs
float a0, a1, a2;
float b0, b1, b2;
// ASSERT(mc_iir_cfg.anc_cfg_mc_l.iir_counter==mc_iir_cfg.anc_cfg_mc_r.iir_counter,
// "mc need the same counter in left and right ch L:%d,R:%d",
// mc_iir_cfg.anc_cfg_mc_l.iir_counter,mc_iir_cfg.anc_cfg_mc_r.iir_counter);
if (sample_bit == AUD_BITS_16) {
int16_t *iir_buf;
len_mono = len >> 2;
gain_l = (mc_iir_cfg.anc_cfg_mc_l.total_gain / 512.0f) * left_gain;
if (mc_iir_cfg.anc_cfg_mc_l.iir_counter == 0 ||
mc_iir_cfg.anc_cfg_mc_l.iir_bypass_flag) {
iir_buf = (int16_t *)buf;
for (int j = 0; j < len_mono; j++) {
x0 = *iir_buf * gain_l;
*iir_buf++ = iir_ssat_16bits(x0);
iir_buf++;
}
} else {
for (int i = 0; i < mc_iir_cfg.anc_cfg_mc_l.iir_counter; i++) {
// Coef
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_a;
a0 = *coefs++;
a1 = *coefs++;
a2 = *coefs;
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_b;
b0 = *coefs++;
b1 = *coefs++;
b2 = *coefs;
a1 = a1 / a0;
a2 = a2 / a0;
b0 = b0 / a0;
b1 = b1 / a0;
b2 = b2 / a0;
// TRACE(7,"[%d] %f, %f, %f, %f, %f, %f", i, a0, a1, a2, b0, b1, b2);
// Left
history = mc_iir_cfg.mc_history_l[i];
x1 = *history++;
x2 = *history++;
y1 = *history++;
y2 = *history;
iir_buf = (int16_t *)buf;
if (i == 0) {
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf * gain_l;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_16bits(y0);
iir_buf++;
}
} else {
iir_buf++;
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_16bits(y0);
iir_buf++;
}
}
// Left
history = mc_iir_cfg.mc_history_l[i];
*history++ = x1;
*history++ = x2;
*history++ = y1;
*history = y2;
}
}
gain_r = (mc_iir_cfg.anc_cfg_mc_r.total_gain / 512.0f) * right_gain;
if (mc_iir_cfg.anc_cfg_mc_r.iir_counter == 0 ||
mc_iir_cfg.anc_cfg_mc_r.iir_bypass_flag) {
iir_buf = (int16_t *)buf;
iir_buf++;
for (int j = 0; j < len_mono; j++) {
x0 = *iir_buf * gain_r;
*iir_buf++ = iir_ssat_16bits(x0);
iir_buf++;
}
} else {
for (int i = 0; i < mc_iir_cfg.anc_cfg_mc_r.iir_counter; i++) {
// Coef
coefs = mc_iir_cfg.anc_cfg_mc_r.iir_coef[i].coef_a;
a0 = *coefs++;
a1 = *coefs++;
a2 = *coefs;
coefs = mc_iir_cfg.anc_cfg_mc_r.iir_coef[i].coef_b;
b0 = *coefs++;
b1 = *coefs++;
b2 = *coefs;
a1 = a1 / a0;
a2 = a2 / a0;
b0 = b0 / a0;
b1 = b1 / a0;
b2 = b2 / a0;
// TRACE(7,"[%d] %f, %f, %f, %f, %f, %f", i, a0, a1, a2, b0, b1, b2);
// right
history = mc_iir_cfg.mc_history_r[i];
x1 = *history++;
x2 = *history++;
y1 = *history++;
y2 = *history;
iir_buf = (int16_t *)buf;
iir_buf++;
if (i == 0) {
for (int j = 0; j < len_mono; j++) {
// right channel
x0 = *iir_buf * gain_r;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_16bits(y0);
iir_buf++;
}
} else {
for (int j = 0; j < len_mono; j++) {
// right channel
x0 = *iir_buf;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_16bits(y0);
iir_buf++;
}
}
// right
history = mc_iir_cfg.mc_history_r[i];
*history++ = x1;
*history++ = x2;
*history++ = y1;
*history = y2;
}
}
} else if (sample_bit == AUD_BITS_24) {
int32_t *iir_buf;
len_mono = len >> 3;
gain_l = (mc_iir_cfg.anc_cfg_mc_l.total_gain / 512.0f) * left_gain;
if (mc_iir_cfg.anc_cfg_mc_l.iir_counter == 0 ||
mc_iir_cfg.anc_cfg_mc_l.iir_bypass_flag) {
iir_buf = (int32_t *)buf;
for (int j = 0; j < len_mono; j++) {
x0 = *iir_buf * gain_l;
*iir_buf++ = iir_ssat_24bits(x0);
iir_buf++;
}
} else {
for (int i = 0; i < mc_iir_cfg.anc_cfg_mc_l.iir_counter; i++) {
// Coef
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_a;
a0 = *coefs++;
a1 = *coefs++;
a2 = *coefs;
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_b;
b0 = *coefs++;
b1 = *coefs++;
b2 = *coefs;
a1 = a1 / a0;
a2 = a2 / a0;
b0 = b0 / a0;
b1 = b1 / a0;
b2 = b2 / a0;
// TRACE(7,"[%d] %f, %f, %f, %f, %f, %f", i, a0, a1, a2, b0, b1, b2);
// Left
history = mc_iir_cfg.mc_history_l[i];
x1 = *history++;
x2 = *history++;
y1 = *history++;
y2 = *history;
iir_buf = (int32_t *)buf;
if (i == 0) {
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf * gain_l;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_24bits(y0);
iir_buf++;
}
} else {
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_24bits(y0);
iir_buf++;
}
}
// Left
history = mc_iir_cfg.mc_history_l[i];
*history++ = x1;
*history++ = x2;
*history++ = y1;
*history = y2;
}
}
gain_r = (mc_iir_cfg.anc_cfg_mc_r.total_gain / 512.0f) * right_gain;
if (mc_iir_cfg.anc_cfg_mc_r.iir_counter == 0 ||
mc_iir_cfg.anc_cfg_mc_r.iir_bypass_flag) {
iir_buf = (int32_t *)buf;
iir_buf++;
for (int j = 0; j < len_mono; j++) {
x0 = *iir_buf * gain_r;
*iir_buf++ = iir_ssat_24bits(x0);
iir_buf++;
}
} else {
for (int i = 0; i < mc_iir_cfg.anc_cfg_mc_r.iir_counter; i++) {
// Coef
coefs = mc_iir_cfg.anc_cfg_mc_r.iir_coef[i].coef_a;
a0 = *coefs++;
a1 = *coefs++;
a2 = *coefs;
coefs = mc_iir_cfg.anc_cfg_mc_r.iir_coef[i].coef_b;
b0 = *coefs++;
b1 = *coefs++;
b2 = *coefs;
a1 = a1 / a0;
a2 = a2 / a0;
b0 = b0 / a0;
b1 = b1 / a0;
b2 = b2 / a0;
// TRACE(7,"[%d] %f, %f, %f, %f, %f, %f", i, a0, a1, a2, b0, b1, b2);
// right
history = mc_iir_cfg.mc_history_r[i];
x1 = *history++;
x2 = *history++;
y1 = *history++;
y2 = *history;
iir_buf = (int32_t *)buf;
iir_buf++;
if (i == 0) {
for (int j = 0; j < len_mono; j++) {
// right channel
x0 = *iir_buf * gain_r;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_24bits(y0);
iir_buf++;
}
} else {
for (int j = 0; j < len_mono; j++) {
// right channel
x0 = *iir_buf;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_24bits(y0);
iir_buf++;
}
}
// right
history = mc_iir_cfg.mc_history_r[i];
*history++ = x1;
*history++ = x2;
*history++ = y1;
*history = y2;
}
}
} else {
ASSERT(false, "Can't support sample bit mode:%d", sample_bit);
}
return 0;
}
SRAM_TEXT_LOC int anc_mc_run_mono(uint8_t *buf, int len, float left_gain,
enum AUD_BITS_T sample_bit) {
int len_mono;
int num;
float gain_l = 0;
int32_t *coefs = NULL;
float *history = NULL;
// Left
float x0, x1, x2;
float y0, y1, y2;
// Coefs
float POSSIBLY_UNUSED a0, a1, a2;
float b0, b1, b2;
if (sample_bit == AUD_BITS_16) {
int16_t *iir_buf;
len_mono = len >> 1;
gain_l = (mc_iir_cfg.anc_cfg_mc_l.total_gain / 512.0f) * left_gain;
num = mc_iir_cfg.anc_cfg_mc_l.iir_counter;
if (num == 0 || mc_iir_cfg.anc_cfg_mc_l.iir_bypass_flag) {
iir_buf = (int16_t *)buf;
for (int j = 0; j < len_mono; j++) {
x0 = *iir_buf * gain_l;
*iir_buf++ = iir_ssat_16bits(x0);
}
return 0;
}
for (int i = 0; i < num; i++) {
// Coef
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_a;
a0 = *coefs++;
a1 = *coefs++;
a2 = *coefs;
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_b;
b0 = *coefs++;
b1 = *coefs++;
b2 = *coefs;
a1 = a1 / a0;
a2 = a2 / a0;
b0 = b0 / a0;
b1 = b1 / a0;
b2 = b2 / a0;
// TRACE(7,"[%d] %f, %f, %f, %f, %f, %f", i, a0, a1, a2, b0, b1, b2);
// Left
history = mc_iir_cfg.mc_history_l[i];
x1 = *history++;
x2 = *history++;
y1 = *history++;
y2 = *history;
iir_buf = (int16_t *)buf;
if (i == 0) {
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf * gain_l;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_16bits(y0);
}
} else {
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_16bits(y0);
}
}
// Left
history = mc_iir_cfg.mc_history_l[i];
*history++ = x1;
*history++ = x2;
*history++ = y1;
*history = y2;
}
} else if (sample_bit == AUD_BITS_24) {
int32_t *iir_buf;
len_mono = len >> 2;
gain_l = (mc_iir_cfg.anc_cfg_mc_l.total_gain / 512.0f) * left_gain;
num = mc_iir_cfg.anc_cfg_mc_l.iir_counter;
if (num == 0) {
iir_buf = (int32_t *)buf;
for (int j = 0; j < len_mono; j++) {
x0 = *iir_buf * gain_l;
*iir_buf++ = iir_ssat_24bits(x0);
}
return 0;
}
for (int i = 0; i < num; i++) {
// Coef
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_a;
a0 = *coefs++;
a1 = *coefs++;
a2 = *coefs;
coefs = mc_iir_cfg.anc_cfg_mc_l.iir_coef[i].coef_b;
b0 = *coefs++;
b1 = *coefs++;
b2 = *coefs;
a1 = a1 / a0;
a2 = a2 / a0;
b0 = b0 / a0;
b1 = b1 / a0;
b2 = b2 / a0;
// TRACE(7,"[%d] %f, %f, %f, %f, %f, %f", i, a0, a1, a2, b0, b1,
// b2);
// Left
history = mc_iir_cfg.mc_history_l[i];
x1 = *history++;
x2 = *history++;
y1 = *history++;
y2 = *history;
iir_buf = (int32_t *)buf;
if (i == 0) {
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf * gain_l;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_24bits(y0);
}
} else {
for (int j = 0; j < len_mono; j++) {
// Left channel
x0 = *iir_buf;
y0 = x0 * b0 + x1 * b1 + x2 * b2 - y1 * a1 - y2 * a2;
y2 = y1;
y1 = y0;
x2 = x1;
x1 = x0;
*iir_buf++ = iir_ssat_24bits(y0);
}
}
// Left
history = mc_iir_cfg.mc_history_l[i];
*history++ = x1;
*history++ = x2;
*history++ = y1;
*history = y2;
}
} else {
ASSERT(false, "Can't support sample bit mode:%d", sample_bit);
}
return 0;
}
#endif
#ifdef USB_ANC_MC_EQ_TUNING
struct message_t {
struct msg_hdr_t {
unsigned char prefix;
unsigned char type;
unsigned char seq;
unsigned char len;
} hdr;
unsigned char data[255];
};
#define PREFIX_CHAR 0xBE
enum MSG_TYPE {
TYPE_SYS = 0x00,
TYPE_READ = 0x01,
TYPE_WRITE = 0x02,
TYPE_BULK_READ = 0x03,
TYPE_SYNC = 0x50,
TYPE_SIG_INFO = 0x51,
TYPE_SIG = 0x52,
TYPE_CODE_INFO = 0x53,
TYPE_CODE = 0x54,
TYPE_RUN = 0x55,
TYPE_SECTOR_SIZE = 0x60,
TYPE_ERASE_BURN_START = 0x61,
TYPE_ERASE_BURN_DATA = 0x62,
TYPE_OBSOLETED_63 = 0x63,
TYPE_OBSOLETED_64 = 0x64,
TYPE_FLASH_CMD = 0x65,
TYPE_GET_SECTOR_INFO = 0x66,
TYPE_SEC_REG_ERASE_BURN_START = 0x67,
TYPE_SEC_REG_ERASE_BURN_DATA = 0x68,
// Extended types
TYPE_PROD_TEST = 0x81,
TYPE_RUNTIME_CMD = 0x82,
TYPE_BT_CALIB_CMD = 0x83,
TYPE_PROTO_EL = 0xA0,
TYPE_INVALID = 0xFF,
};
enum ERR_CODE {
ERR_NONE = 0x00,
ERR_LEN = 0x01,
ERR_CHECKSUM = 0x02,
ERR_NOT_SYNC = 0x03,
ERR_NOT_SEC = 0x04,
ERR_SYNC_WORD = 0x05,
ERR_SYS_CMD = 0x06,
ERR_DATA_ADDR = 0x07,
ERR_DATA_LEN = 0x08,
ERR_ACCESS_RIGHT = 0x09,
ERR_TYPE_INVALID = 0x0F,
// ERR_BOOT_OK = 0x10,
ERR_BOOT_MAGIC = 0x11,
ERR_BOOT_SEC = 0x12,
ERR_BOOT_HASH_TYPE = 0x13,
ERR_BOOT_KEY_TYPE = 0x14,
ERR_BOOT_KEY_LEN = 0x15,
ERR_BOOT_SIG_LEN = 0x16,
ERR_BOOT_SIG = 0x17,
ERR_BOOT_CRC = 0x18,
ERR_BOOT_LEN = 0x19,
ERR_SIG_CODE_SIZE = 0x1A,
ERR_SIG_SIG_LEN = 0x1B,
ERR_SIG_INFO_MISSING = 0x1C,
ERR_BOOT_KEY_ID = 0x1D,
ERR_BOOT_HASH = 0x1E,
ERR_CODE_OK = 0x20,
ERR_BOOT_MISSING = 0x21,
ERR_CODE_SIZE_SIG = 0x22,
ERR_CODE_ADDR_SIZE = 0x23,
ERR_CODE_INFO_MISSING = 0x24,
ERR_CODE_CRC = 0x25,
ERR_CODE_SIG = 0x26,
ERR_CODE_MISSING = 0x31,
ERR_VERSION = 0x32,
ERR_BURN_OK = 0x60,
ERR_SECTOR_SIZE = 0x61,
ERR_SECTOR_SEQ_OVERFLOW = 0x62,
ERR_BURN_INFO_MISSING = 0x63,
ERR_SECTOR_DATA_LEN = 0x64,
ERR_SECTOR_DATA_CRC = 0x65,
ERR_SECTOR_SEQ = 0x66,
ERR_ERASE_FLSH = 0x67,
ERR_BURN_FLSH = 0x68,
ERR_VERIFY_FLSH = 0x69,
ERR_FLASH_CMD = 0x6A,
ERR_TYPE_MISMATCHED = 0xE1,
ERR_SEQ_MISMATCHED = 0xE2,
ERR_BUF_TOO_SMALL = 0xE3,
ERR_INTERNAL = 0xFF,
};
//#define PROGRAMMER_ANC_DEBUG
enum ANC_CMD_T {
ANC_CMD_CLOSE = 0,
ANC_CMD_OPEN = 1,
ANC_CMD_GET_CFG = 2,
ANC_CMD_APPLY_CFG = 3,
ANC_CMD_CFG_SETUP = 4,
ANC_CMD_CHANNEL_SETUP = 5,
ANC_CMD_SET_SAMP_RATE = 6,
};
enum FLASH_CMD_TYPE {
FLASH_CMD_ERASE_SECTOR = 0x21,
FLASH_CMD_BURN_DATA = 0x22,
FLASH_CMD_ERASE_CHIP = 0x31,
FLASH_CMD_SEC_REG_ERASE = 0x41,
FLASH_CMD_SEC_REG_BURN = 0x42,
FLASH_CMD_SEC_REG_LOCK = 0x43,
FLASH_CMD_SEC_REG_READ = 0x44,
FLASH_CMD_ENABLE_REMAP = 0x51,
FLASH_CMD_DISABLE_REMAP = 0x52,
};
enum PROD_TEST_CMD_T {
PROD_TEST_CMD_ANC = 0x00000001,
};
static struct_anc_cfg g_anc_config;
#define MAX_READ_DATA_LEN 255
#define MAX_WRITE_DATA_LEN 255
static struct message_t recv_msg;
static struct message_t send_msg = {
{
PREFIX_CHAR,
},
};
#define MAX_SNED_MSG_QUEUE (10)
static unsigned int send_msg_push_seq = 0;
static unsigned int send_msg_pop_seq = 0;
static struct message_t send_msg_queue[MAX_SNED_MSG_QUEUE];
static uint8_t pcsuppt_anc_type = ANC_NOTYPE;
static enum AUD_SAMPRATE_T anc_sample_rate;
static unsigned int burn_addr;
static unsigned int burn_total_len;
static unsigned int sector_size;
static unsigned int sector_cnt;
static unsigned int last_sector_len;
static unsigned int cur_sector_seq;
static unsigned int burn_len;
void anc_set_gpio(enum HAL_GPIO_PIN_T io_pin, bool set_flag) {
// #define ANC_SET_GPIO_PIN HAL_IOMUX_PIN_P2_4
struct HAL_IOMUX_PIN_FUNCTION_MAP pinmux_anc_set_gpio[1] = {
{io_pin, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_NOPULL},
};
hal_iomux_init(pinmux_anc_set_gpio, ARRAY_SIZE(pinmux_anc_set_gpio));
hal_gpio_pin_set_dir(io_pin, HAL_GPIO_DIR_OUT, 0);
if (set_flag)
hal_gpio_pin_set(io_pin);
else
hal_gpio_pin_clr(io_pin);
}
#define MSG_TOTAL_LEN(msg) (sizeof((msg)->hdr) + (msg)->hdr.len + 1)
#define TRACE_TIME(num, str, ...) \
TRACE(1 + num, "[%05u] " str, TICKS_TO_MS(hal_sys_timer_get()), ##__VA_ARGS__)
static unsigned char check_sum(const unsigned char *buf, unsigned char len) {
int i;
unsigned char sum = 0;
for (i = 0; i < len; i++) {
sum += buf[i];
}
return sum;
}
static void trace_stage_info(const char *name) {
TRACE_TIME(1, "------ %s ------", name);
}
static void trace_rw_len_err(const char *name, unsigned int len) {
TRACE(2, "[%s] Length error: %u", name, len);
}
static void trace_rw_info(const char *name, unsigned int addr,
unsigned int len) {
// TRACE(3,"[%s] addr=0x%08X len=%u", name, addr, len);
}
static void trace_flash_cmd_info(const char *name) {
TRACE_TIME(1, "- %s -", name);
}
static void trace_flash_cmd_len_err(const char *name, unsigned int len) {
TRACE(2, "Invalid %s cmd param len: %u", name, len);
}
static void trace_flash_cmd_err(const char *name) {
TRACE_TIME(1, "%s failed", name);
}
static void trace_flash_cmd_done(const char *name) {
TRACE_TIME(1, "%s done", name);
}
int send_reply(const unsigned char *payload, unsigned int len) {
int ret = 0;
if (len + 1 > sizeof(send_msg.data)) {
TRACE(1, "Packet length too long: %u", len);
return -1;
}
send_msg.hdr.type = recv_msg.hdr.type;
send_msg.hdr.seq = recv_msg.hdr.seq;
send_msg.hdr.len = len;
memcpy(&send_msg.data[0], payload, len);
send_msg.data[len] =
~check_sum((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg) - 1);
send_msg_push_seq = send_msg_push_seq % MAX_SNED_MSG_QUEUE;
send_msg_queue[send_msg_push_seq] = send_msg;
send_msg_push_seq++;
return ret;
}
static enum ERR_CODE handle_read_cmd(unsigned int type, unsigned int addr,
unsigned int len) {
union {
unsigned int data[1 + (MAX_READ_DATA_LEN + 3) / 4];
unsigned char buf[(1 + (MAX_READ_DATA_LEN + 3) / 4) * 4];
} d;
int i;
int cnt;
unsigned int *p32;
unsigned short *p16;
const char *name = NULL;
if (type == TYPE_READ) {
name = "READ";
} else {
return ERR_INTERNAL;
}
if (len > MAX_READ_DATA_LEN) {
trace_rw_len_err(name, len);
return ERR_DATA_LEN;
}
if (type == TYPE_READ) {
// Handle half-word and word register reading
if ((len & 0x03) == 0 && (addr & 0x03) == 0) {
cnt = len / 4;
p32 = (unsigned int *)&d.data[1];
for (i = 0; i < cnt; i++) {
p32[i] = *((unsigned int *)addr + i);
}
} else if ((len & 0x01) == 0 && (addr & 0x01) == 0) {
cnt = len / 2;
p16 = (unsigned short *)&d.data[1];
for (i = 0; i < cnt; i++) {
p16[i] = *((unsigned short *)addr + i);
}
} else {
memcpy(&d.data[1], (unsigned char *)addr, len);
}
}
d.buf[3] = ERR_NONE;
send_reply((unsigned char *)&d.buf[3], 1 + len);
return ERR_NONE;
}
static enum ERR_CODE handle_write_cmd(unsigned int addr, unsigned int len,
unsigned char *wdata) {
unsigned int data;
int i;
int cnt;
const char *name = "WRITE";
trace_rw_info(name, addr, len);
if (len > MAX_WRITE_DATA_LEN) {
trace_rw_len_err(name, len);
return ERR_DATA_LEN;
}
// Handle half-word and word register writing
if ((len & 0x03) == 0 && (addr & 0x03) == 0) {
cnt = len / 4;
for (i = 0; i < cnt; i++) {
data = wdata[4 * i] | (wdata[4 * i + 1] << 8) | (wdata[4 * i + 2] << 16) |
(wdata[4 * i + 3] << 24);
*((unsigned int *)addr + i) = data;
}
} else if ((len & 0x01) == 0 && (addr & 0x01) == 0) {
cnt = len / 2;
for (i = 0; i < cnt; i++) {
data = wdata[2 * i] | (wdata[2 * i + 1] << 8);
*((unsigned short *)addr + i) = (unsigned short)data;
}
} else {
memcpy((unsigned char *)addr, wdata, len);
}
data = ERR_NONE;
send_reply((unsigned char *)&data, 1);
return ERR_NONE;
}
static struct_anc_cfg *get_anc_config(void) { return &g_anc_config; }
static void tool_anc_close(void) {
if (pcsuppt_anc_type & ANC_FEEDFORWARD) {
anc_close(ANC_FEEDFORWARD);
af_anc_close(ANC_FEEDFORWARD);
}
if (pcsuppt_anc_type & ANC_FEEDBACK) {
anc_close(ANC_FEEDBACK);
af_anc_close(ANC_FEEDBACK);
}
}
static void tool_anc_open(void) {
if (pcsuppt_anc_type & ANC_FEEDFORWARD) {
af_anc_open(ANC_FEEDFORWARD, anc_sample_rate, anc_sample_rate, NULL);
anc_open(ANC_FEEDFORWARD);
anc_set_gain(512, 512, ANC_FEEDFORWARD);
#ifdef AUDIO_ANC_TT_HW
af_anc_open(ANC_TALKTHRU, anc_sample_rate, anc_sample_rate, NULL);
anc_open(ANC_TALKTHRU);
anc_set_gain(512, 512, ANC_TALKTHRU);
#endif
}
if (pcsuppt_anc_type & ANC_FEEDBACK) {
af_anc_open(ANC_FEEDBACK, anc_sample_rate, anc_sample_rate, NULL);
anc_open(ANC_FEEDBACK);
anc_set_gain(512, 512, ANC_FEEDBACK);
#ifdef AUDIO_ANC_FB_MC_HW
anc_open(ANC_MUSICCANCLE);
anc_set_gain(512, 512, ANC_MUSICCANCLE);
#endif
}
}
#if !defined(AUDIO_ANC_TT_HW)
#if defined(__HW_IIR_EQ_PROCESS__)
static HW_IIR_CFG_T hw_iir_cfg;
#endif
#if defined(__HW_DAC_IIR_EQ_PROCESS__)
static HW_CODEC_IIR_CFG_T hw_codec_iir_cfg;
#endif
#endif
static int handle_anc_cmd(enum ANC_CMD_T cmd, const uint8_t *data,
uint32_t len) {
unsigned char cret = ERR_NONE;
switch (cmd) {
case ANC_CMD_CLOSE: {
TRACE(0, "ANC_CMD_CLOSE ------");
if (len != 0) {
return ERR_LEN;
}
anc_disable();
tool_anc_close();
send_reply(&cret, 1);
break;
}
case ANC_CMD_OPEN: {
TRACE(0, "ANC_CMD_OPEN ------");
if (len != 0) {
return ERR_LEN;
}
hal_sysfreq_req(HAL_SYSFREQ_USER_ANC, HAL_CMU_FREQ_52M);
tool_anc_open();
anc_enable();
send_reply(&cret, 1);
break;
}
case ANC_CMD_GET_CFG: {
TRACE(0, "ANC_CMD_GET_CFG ------");
struct_anc_cfg *anccfg_addr = get_anc_config();
uint32_t addr = (uint32_t)anccfg_addr;
if (len != 0) {
return ERR_LEN;
}
TRACE(1, "send anccfg address 0x%x ------", addr);
send_reply((unsigned char *)&addr, sizeof(addr));
break;
}
case ANC_CMD_APPLY_CFG: {
TRACE(0, "ANC_CMD_APPLY_CFG ------");
if (len != 0) {
return ERR_LEN;
}
TRACE(0, "apply anccfg ------");
// best2000_prod_test_anccfg_apply();
struct_anc_cfg *anccfg = get_anc_config();
// process ANC
if (pcsuppt_anc_type & ANC_FEEDFORWARD) {
anc_set_cfg(anccfg, ANC_FEEDFORWARD, ANC_GAIN_NO_DELAY);
#ifdef AUDIO_ANC_TT_HW
// anc_set_cfg(anccfg,ANC_TALKTHRU,ANC_GAIN_NO_DELAY);
#endif
}
if (pcsuppt_anc_type & ANC_FEEDBACK) {
anc_set_cfg(anccfg, ANC_FEEDBACK, ANC_GAIN_NO_DELAY);
#ifdef AUDIO_ANC_FB_MC_HW
anc_set_cfg(anccfg, ANC_MUSICCANCLE, ANC_GAIN_NO_DELAY);
#endif
}
#ifdef AUDIO_ANC_FB_MC
// process MC
mc_iir_cfg.anc_cfg_mc_l = anccfg->anc_cfg_mc_l;
mc_iir_cfg.anc_cfg_mc_r = anccfg->anc_cfg_mc_r;
#endif
if (anccfg->anc_cfg_mc_l.adc_gain_offset == 0) {
hal_codec_anc_adc_enable(ANC_FEEDFORWARD);
analog_aud_codec_anc_enable(ANC_FEEDFORWARD, true);
hal_codec_anc_adc_enable(ANC_FEEDBACK);
analog_aud_codec_anc_enable(ANC_FEEDBACK, true);
TRACE(0, "ADC UNMUTE........");
} else {
hal_codec_anc_adc_disable(ANC_FEEDFORWARD);
analog_aud_codec_anc_enable(ANC_FEEDFORWARD, false);
hal_codec_anc_adc_disable(ANC_FEEDBACK);
analog_aud_codec_anc_enable(ANC_FEEDBACK, false);
TRACE(0, "ADC MUTE........");
}
if (anccfg->anc_cfg_mc_l.dac_gain_offset == 0) {
analog_aud_codec_nomute();
TRACE(0, "DAC UNMUTE........");
} else {
analog_aud_codec_mute();
TRACE(0, "DAC MUTE........");
}
#if !defined(AUDIO_ANC_TT_HW)
#if defined(__HW_IIR_EQ_PROCESS__)
// process EQ
if (anccfg->anc_cfg_tt_l.total_gain == 0) {
hw_iir_cfg.iir_filtes_l.iir_counter = 0;
} else {
hw_iir_cfg.iir_filtes_l.iir_counter = anccfg->anc_cfg_tt_l.iir_counter;
}
if (anccfg->anc_cfg_tt_r.total_gain == 0) {
hw_iir_cfg.iir_filtes_r.iir_counter = 0;
} else {
hw_iir_cfg.iir_filtes_r.iir_counter = anccfg->anc_cfg_tt_r.iir_counter;
}
for (int i = 0; i < AUD_IIR_NUM_EQ; i++) {
hw_iir_cfg.iir_filtes_l.iir_coef[i].coef_b[0] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_b[0]);
hw_iir_cfg.iir_filtes_l.iir_coef[i].coef_b[1] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_b[1]);
hw_iir_cfg.iir_filtes_l.iir_coef[i].coef_b[2] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_b[2]);
hw_iir_cfg.iir_filtes_l.iir_coef[i].coef_a[0] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_a[0]);
hw_iir_cfg.iir_filtes_l.iir_coef[i].coef_a[1] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_a[1]);
hw_iir_cfg.iir_filtes_l.iir_coef[i].coef_a[2] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_a[2]);
hw_iir_cfg.iir_filtes_r.iir_coef[i].coef_b[0] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_b[0]);
hw_iir_cfg.iir_filtes_r.iir_coef[i].coef_b[1] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_b[1]);
hw_iir_cfg.iir_filtes_r.iir_coef[i].coef_b[2] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_b[2]);
hw_iir_cfg.iir_filtes_r.iir_coef[i].coef_a[0] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_a[0]);
hw_iir_cfg.iir_filtes_r.iir_coef[i].coef_a[1] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_a[1]);
hw_iir_cfg.iir_filtes_r.iir_coef[i].coef_a[2] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_a[2]);
}
hw_iir_set_cfg(&hw_iir_cfg);
#endif
#if defined(__HW_DAC_IIR_EQ_PROCESS__)
#if 0
TRACE(1,"__HW_DAC_IIR_EQ_PROCESS__ ........");
TRACE(1,"eq gain: %d, counter: %d iir_bypass_flag: %d ",anccfg->anc_cfg_tt_l.total_gain, anccfg->anc_cfg_tt_l.iir_counter,anccfg->anc_cfg_tt_l.iir_bypass_flag);
TRACE(1,"eq dac_gain_offset %d, adc_gain_offset %d",anccfg->anc_cfg_tt_l.dac_gain_offset, anccfg->anc_cfg_tt_l.adc_gain_offset);
for(int j = 0; j <AUD_IIR_NUM_EQ; j++)
{
//TRACE(1,"iir coef ff l %10d, %10d, %10d, %10d, %10d, %10d",
TRACE(1,"iir coef eq l 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x",\
anccfg->anc_cfg_tt_l.iir_coef[j].coef_b[0], \
anccfg->anc_cfg_tt_l.iir_coef[j].coef_b[1], \
anccfg->anc_cfg_tt_l.iir_coef[j].coef_b[2], \
anccfg->anc_cfg_tt_l.iir_coef[j].coef_a[0], \
anccfg->anc_cfg_tt_l.iir_coef[j].coef_a[1], \
anccfg->anc_cfg_tt_l.iir_coef[j].coef_a[2]);
}
#endif
// process EQ
if (anccfg->anc_cfg_tt_l.total_gain == 0) {
hw_codec_iir_cfg.iir_filtes_l.iir_counter = 0;
} else {
hw_codec_iir_cfg.iir_filtes_l.iir_counter =
anccfg->anc_cfg_tt_l.iir_counter;
}
if (anccfg->anc_cfg_tt_r.total_gain == 0) {
hw_codec_iir_cfg.iir_filtes_r.iir_counter = 0;
} else {
hw_codec_iir_cfg.iir_filtes_r.iir_counter =
anccfg->anc_cfg_tt_r.iir_counter;
}
for (int i = 0; i < AUD_IIR_NUM_EQ; i++) {
hw_codec_iir_cfg.iir_filtes_l.iir_coef[i].coef_b[0] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_b[0]);
hw_codec_iir_cfg.iir_filtes_l.iir_coef[i].coef_b[1] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_b[1]);
hw_codec_iir_cfg.iir_filtes_l.iir_coef[i].coef_b[2] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_b[2]);
hw_codec_iir_cfg.iir_filtes_l.iir_coef[i].coef_a[0] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_a[0]);
hw_codec_iir_cfg.iir_filtes_l.iir_coef[i].coef_a[1] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_a[1]);
hw_codec_iir_cfg.iir_filtes_l.iir_coef[i].coef_a[2] =
(anccfg->anc_cfg_tt_l.iir_coef[i].coef_a[2]);
hw_codec_iir_cfg.iir_filtes_r.iir_coef[i].coef_b[0] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_b[0]);
hw_codec_iir_cfg.iir_filtes_r.iir_coef[i].coef_b[1] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_b[1]);
hw_codec_iir_cfg.iir_filtes_r.iir_coef[i].coef_b[2] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_b[2]);
hw_codec_iir_cfg.iir_filtes_r.iir_coef[i].coef_a[0] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_a[0]);
hw_codec_iir_cfg.iir_filtes_r.iir_coef[i].coef_a[1] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_a[1]);
hw_codec_iir_cfg.iir_filtes_r.iir_coef[i].coef_a[2] =
(anccfg->anc_cfg_tt_r.iir_coef[i].coef_a[2]);
}
if (anc_sample_rate == AUD_SAMPRATE_50781) {
hw_codec_iir_set_cfg(&hw_codec_iir_cfg, AUD_SAMPRATE_50781,
HW_CODEC_IIR_DAC);
} else {
hw_codec_iir_set_cfg(&hw_codec_iir_cfg, AUD_SAMPRATE_48000,
HW_CODEC_IIR_DAC);
}
#endif
#endif
send_reply(&cret, 1);
break;
}
case ANC_CMD_CFG_SETUP: {
TRACE(0, "ANC_CMD_CFG_SETUP ------");
int ret = 0;
bool diff;
bool high_performance_adc;
bool vcrystal_on;
uint16_t vcodec;
pctool_iocfg *iocfg1, *iocfg2;
if (data[0] == 1) {
pcsuppt_anc_type = ANC_FEEDFORWARD;
} else if (data[0] == 2) {
pcsuppt_anc_type = ANC_FEEDBACK;
} else if (data[0] == 3) {
pcsuppt_anc_type = ANC_FEEDFORWARD | ANC_FEEDBACK;
}
vcodec = (data[1] | (data[2] << 8));
diff = (bool)data[3];
high_performance_adc = false; //(bool)data[4]; // default 0
anc_sample_rate =
(data[5] | (data[6] << 8) | (data[7] << 16) | (data[8] << 24));
vcrystal_on = data[9]; //(bool)data[?]; // default 0
TRACE(4, "vcodec:%d,diff:%d,anc_sample_rate:%d,vcrystal_on:%d.", vcodec,
diff, anc_sample_rate, vcrystal_on);
ret |= pmu_debug_config_vcrystal(vcrystal_on);
ret |= analog_debug_config_audio_output(diff);
ret |= analog_debug_config_codec(vcodec);
ret |= analog_debug_config_low_power_adc(!high_performance_adc);
if (anc_sample_rate == AUD_SAMPRATE_50781) {
hal_cmu_audio_resample_enable();
} else {
hal_cmu_audio_resample_disable();
}
iocfg1 = (pctool_iocfg *)(&data[10]);
iocfg2 = (pctool_iocfg *)(&data[12]);
TRACE(4, "io cfg:%d %d %d %d", iocfg1->io_pin, iocfg1->set_flag,
iocfg2->io_pin, iocfg2->set_flag);
if (iocfg1->io_pin >= 0)
anc_set_gpio(iocfg1->io_pin, iocfg1->set_flag);
if (iocfg2->io_pin >= 0)
anc_set_gpio(iocfg2->io_pin, iocfg2->set_flag);
cret = ret ? ERR_INTERNAL : ERR_NONE;
send_reply((unsigned char *)&cret, 1);
break;
}
case ANC_CMD_CHANNEL_SETUP: {
const enum AUD_CHANNEL_MAP_T channel_map_arr[16] = {
AUD_CHANNEL_MAP_CH0, AUD_CHANNEL_MAP_CH1,
AUD_CHANNEL_MAP_CH2, AUD_CHANNEL_MAP_CH3,
AUD_CHANNEL_MAP_CH4, AUD_CHANNEL_MAP_CH5,
AUD_CHANNEL_MAP_CH6, AUD_CHANNEL_MAP_CH7,
AUD_CHANNEL_MAP_DIGMIC_CH0, AUD_CHANNEL_MAP_DIGMIC_CH1,
AUD_CHANNEL_MAP_DIGMIC_CH2, AUD_CHANNEL_MAP_DIGMIC_CH3,
AUD_CHANNEL_MAP_DIGMIC_CH4, AUD_CHANNEL_MAP_DIGMIC_CH5,
AUD_CHANNEL_MAP_DIGMIC_CH6, AUD_CHANNEL_MAP_DIGMIC_CH7,
};
anc_ff_mic_ch_l = channel_map_arr[data[0]];
anc_ff_mic_ch_r = channel_map_arr[data[1]];
anc_fb_mic_ch_l = channel_map_arr[data[2]];
anc_fb_mic_ch_r = channel_map_arr[data[3]];
TRACE(4,
"anc_ff_mic_ch_l 0x%x,anc_ff_mic_ch_r 0x%x,anc_fb_mic_ch_l "
"0x%x,anc_fb_mic_ch_r 0x%x",
anc_ff_mic_ch_l, anc_ff_mic_ch_r, anc_fb_mic_ch_l, anc_fb_mic_ch_r);
hal_iomux_set_dig_mic_clock_pin(data[4]);
hal_iomux_set_dig_mic_data0_pin(data[5]);
hal_iomux_set_dig_mic_data1_pin(data[6]);
hal_iomux_set_dig_mic_data2_pin(data[7]);
uint8_t phase = data[8];
#if defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
analog_debug_config_vad_mic(!!(phase & (1 << 7)));
phase &= ~(1 << 7);
#endif
hal_codec_config_digmic_phase(phase);
send_reply((unsigned char *)&cret, 1);
break;
}
case ANC_CMD_SET_SAMP_RATE: {
bool opened;
opened = (anc_opened(ANC_FEEDFORWARD) || anc_opened(ANC_FEEDBACK));
if (opened) {
anc_disable();
tool_anc_close();
}
anc_sample_rate =
data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
if (anc_sample_rate == AUD_SAMPRATE_50781) {
hal_cmu_audio_resample_enable();
} else {
hal_cmu_audio_resample_disable();
}
if (opened) {
tool_anc_open();
anc_enable();
}
send_reply((unsigned char *)&cret, 1);
break;
}
}
return ERR_NONE;
}
static int get_sector_info(unsigned int addr, unsigned int *sector_addr,
unsigned int *sector_len) {
int ret;
ret = hal_norflash_get_boundary(HAL_NORFLASH_ID_0, addr, NULL,
(uint32_t *)sector_addr);
if (ret) {
return ret;
}
ret = hal_norflash_get_size(HAL_NORFLASH_ID_0, NULL, NULL,
(uint32_t *)sector_len, NULL);
return ret;
}
static int erase_sector(unsigned int sector_addr, unsigned int sector_len) {
return hal_norflash_erase(HAL_NORFLASH_ID_0, sector_addr, sector_len);
}
static int erase_chip(void) {
return hal_norflash_erase_chip(HAL_NORFLASH_ID_0);
}
static int burn_data(unsigned int addr, const unsigned char *data,
unsigned int len) {
int ret;
ret = hal_norflash_write(HAL_NORFLASH_ID_0, addr, data, len);
return ret;
}
static int verify_flash_data(unsigned int addr, const unsigned char *data,
unsigned int len) {
const unsigned char *fdata;
const unsigned char *mdata;
int i;
fdata = (unsigned char *)addr;
mdata = data;
for (i = 0; i < len; i++) {
if (*fdata++ != *mdata++) {
--fdata;
--mdata;
TRACE(4, "*** Verify flash data failed: 0x%02X @ %p != 0x%02X @ %p",
*fdata, fdata, *mdata, mdata);
return *fdata - *mdata;
}
}
return 0;
}
static enum ERR_CODE handle_sector_info_cmd(unsigned int addr) {
unsigned int sector_addr;
unsigned int sector_len;
unsigned char buf[9];
int ret;
ret = get_sector_info(addr, &sector_addr, &sector_len);
if (ret) {
return ERR_DATA_ADDR;
}
TRACE(3, "addr=0x%08X sector_addr=0x%08X sector_len=%u", addr, sector_addr,
sector_len);
buf[0] = ERR_NONE;
memcpy(&buf[1], &sector_addr, 4);
memcpy(&buf[5], &sector_len, 4);
send_reply(buf, 9);
return ERR_NONE;
}
static enum ERR_CODE handle_flash_cmd(enum FLASH_CMD_TYPE cmd,
unsigned char *param, unsigned int len) {
int ret = 0;
unsigned char cret = ERR_NONE;
const char *name = NULL;
switch (cmd) {
case FLASH_CMD_ERASE_SECTOR: {
unsigned int addr;
unsigned int size;
if (cmd == FLASH_CMD_ERASE_SECTOR) {
name = "ERASE_SECTOR";
}
trace_flash_cmd_info(name);
if (len != 8) {
trace_flash_cmd_len_err(name, len);
return ERR_LEN;
}
addr = param[0] | (param[1] << 8) | (param[2] << 16) | (param[3] << 24);
size = param[4] | (param[5] << 8) | (param[6] << 16) | (param[7] << 24);
TRACE(2, "addr=0x%08X size=%u", addr, size);
if (cmd == FLASH_CMD_ERASE_SECTOR) {
ret = erase_sector(addr, size);
}
if (ret) {
trace_flash_cmd_err(name);
return ERR_ERASE_FLSH;
}
trace_flash_cmd_done(name);
send_reply(&cret, 1);
break;
}
case FLASH_CMD_BURN_DATA: {
unsigned int addr;
if (cmd == FLASH_CMD_BURN_DATA) {
name = "BURN_DATA";
}
trace_flash_cmd_info(name);
if (len <= 4 || len > 20) {
trace_flash_cmd_len_err(name, len);
return ERR_LEN;
}
addr = param[0] | (param[1] << 8) | (param[2] << 16) | (param[3] << 24);
TRACE(2, "addr=0x%08X len=%u", addr, len - 4);
if (cmd == FLASH_CMD_BURN_DATA) {
ret = burn_data(addr, &param[4], len - 4);
}
if (ret) {
trace_flash_cmd_err(name);
return ERR_BURN_FLSH;
}
TRACE_TIME(1, "%s verifying", name);
if (cmd == FLASH_CMD_BURN_DATA) {
ret = verify_flash_data(addr, &param[4], len - 4);
}
if (ret) {
TRACE(1, "%s verify failed", name);
return ERR_VERIFY_FLSH;
}
trace_flash_cmd_done(name);
send_reply(&cret, 1);
break;
}
case FLASH_CMD_ERASE_CHIP: {
name = "CMD_ERASE_CHIP";
trace_flash_cmd_info(name);
if (len != 0) {
trace_flash_cmd_len_err(name, len);
return ERR_LEN;
}
ret = erase_chip();
if (ret) {
trace_flash_cmd_err(name);
return ERR_ERASE_FLSH;
}
trace_flash_cmd_done(name);
send_reply(&cret, 1);
break;
}
default:
TRACE(1, "Unsupported flash cmd: 0x%x", cmd);
return ERR_FLASH_CMD;
}
return ERR_NONE;
}
/*
#define SECTOR_SIZE_64K (1 << 16)
#define SECTOR_SIZE_32K (1 << 15)
#define SECTOR_SIZE_16K (1 << 14)
#define SECTOR_SIZE_4K (1 << 12)
*/
#define BURN_DATA_MSG_OVERHEAD 16
// static const unsigned int size_mask = SECTOR_SIZE_32K | SECTOR_SIZE_4K;
enum PROGRAMMER_STATE {
PROGRAMMER_NONE,
PROGRAMMER_ERASE_BURN_START,
PROGRAMMER_SEC_REG_ERASE_BURN_START,
};
#define BURN_BUFFER_LOC __attribute__((section(".burn_buffer")))
static unsigned char BURN_BUFFER_LOC data_buf[65536 + 2048];
static enum PROGRAMMER_STATE programmer_state = PROGRAMMER_NONE;
/*
static unsigned int count_set_bits(unsigned int i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
*/
static int send_burn_data_reply(enum ERR_CODE code, unsigned short sec_seq,
unsigned char seq) {
int ret = 0;
enum MSG_TYPE type = TYPE_INVALID;
if (programmer_state == PROGRAMMER_ERASE_BURN_START) {
type = TYPE_ERASE_BURN_DATA;
}
send_msg.hdr.type = type;
send_msg.hdr.seq = recv_msg.hdr.seq;
send_msg.hdr.len = 3;
send_msg.data[0] = code;
send_msg.data[1] = sec_seq & 0xFF;
send_msg.data[2] = (sec_seq >> 8) & 0xFF;
send_msg.data[3] =
~check_sum((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg) - 1);
send_msg_push_seq = send_msg_push_seq % MAX_SNED_MSG_QUEUE;
send_msg_queue[send_msg_push_seq] = send_msg;
send_msg_push_seq++;
// ret = send_data((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg));
return ret;
}
int anc_cmd_receve_process(uint8_t *buf, uint32_t len) {
enum MSG_TYPE type;
enum ERR_CODE errcode = ERR_NONE;
unsigned char cret = ERR_NONE;
if (len > sizeof(recv_msg)) {
memcpy(&recv_msg, buf, sizeof(recv_msg));
} else {
memcpy(&recv_msg, buf, len);
}
// Checksum
if (check_sum((unsigned char *)&recv_msg, MSG_TOTAL_LEN(&recv_msg)) != 0xFF) {
trace_stage_info("Checksum error");
return ERR_CHECKSUM;
}
type = recv_msg.hdr.type;
// TRACE(1,"COMMAND:0x%x",type);
switch (type) {
case TYPE_SYS: {
TRACE(0, "SYS CMD");
break;
}
case TYPE_READ: {
unsigned int addr;
unsigned int len;
trace_stage_info("READ CMD");
addr = recv_msg.data[0] | (recv_msg.data[1] << 8) |
(recv_msg.data[2] << 16) | (recv_msg.data[3] << 24);
len = recv_msg.data[4];
TRACE(2, "addr:0x%x,len:%d", addr, len);
errcode = handle_read_cmd(type, addr, len);
if (errcode != ERR_NONE) {
return errcode;
}
break;
}
case TYPE_WRITE: {
unsigned int addr;
unsigned int len;
unsigned char *wdata;
// trace_stage_info("WRITE CMD");
addr = recv_msg.data[0] | (recv_msg.data[1] << 8) |
(recv_msg.data[2] << 16) | (recv_msg.data[3] << 24);
len = recv_msg.hdr.len - 4;
wdata = &recv_msg.data[4];
errcode = handle_write_cmd(addr, len, wdata);
if (errcode != ERR_NONE) {
return errcode;
}
break;
}
case TYPE_ERASE_BURN_START: {
TRACE(0, "TYPE_ERASE_BURN_START CMD");
if (programmer_state == PROGRAMMER_NONE) {
trace_stage_info("ERASE_BURN_START");
burn_addr = recv_msg.data[0] | (recv_msg.data[1] << 8) |
(recv_msg.data[2] << 16) | (recv_msg.data[3] << 24);
burn_total_len = recv_msg.data[4] | (recv_msg.data[5] << 8) |
(recv_msg.data[6] << 16) | (recv_msg.data[7] << 24);
sector_size = recv_msg.data[8] | (recv_msg.data[9] << 8) |
(recv_msg.data[10] << 16) | (recv_msg.data[11] << 24);
TRACE(3, "burn_addr=0x%08X burn_total_len=%u sector_size=%u", burn_addr,
burn_total_len, sector_size);
/*if ((size_mask & sector_size) == 0 || count_set_bits(sector_size) != 1)
{
TRACE(2,"Unsupported sector_size=0x%08X mask=0x%08X", sector_size,
size_mask); return ERR_SECTOR_SIZE;
}*/
sector_cnt = burn_total_len / sector_size;
last_sector_len = burn_total_len % sector_size;
if (last_sector_len) {
sector_cnt++;
} else {
last_sector_len = sector_size;
}
if (sector_cnt > 0xFFFF) {
TRACE(1, "Sector seq overflow: %u", sector_cnt);
return ERR_SECTOR_SEQ_OVERFLOW;
}
send_reply(&cret, 1);
if (burn_total_len == 0) {
TRACE(0, "Burn length = 0");
break;
}
programmer_state = PROGRAMMER_ERASE_BURN_START;
burn_len = 0;
trace_stage_info("ERASE_BURN_START end");
} else {
TRACE(1, "ERROR programmer_state status:%d", programmer_state);
}
break;
}
case TYPE_ERASE_BURN_DATA: {
if (programmer_state == PROGRAMMER_ERASE_BURN_START) {
unsigned int dlen;
unsigned int mcrc;
unsigned int crc;
dlen = recv_msg.data[0] | (recv_msg.data[1] << 8) |
(recv_msg.data[2] << 16) | (recv_msg.data[3] << 24);
mcrc = recv_msg.data[4] | (recv_msg.data[5] << 8) |
(recv_msg.data[6] << 16) | (recv_msg.data[7] << 24);
cur_sector_seq = recv_msg.data[8] | (recv_msg.data[9] << 8);
TRACE(2, " sec_seq=%u dlen=%u", cur_sector_seq, dlen);
if (cur_sector_seq >= sector_cnt) {
TRACE(2, "Bad sector seq: sec_seq=%u sector_cnt=%u", cur_sector_seq,
sector_cnt);
send_burn_data_reply(ERR_SECTOR_SEQ, cur_sector_seq, recv_msg.hdr.seq);
return ERR_NONE;
}
if (((cur_sector_seq + 1) == sector_cnt && dlen != last_sector_len) ||
((cur_sector_seq + 1) != sector_cnt && dlen != sector_size)) {
TRACE(2, " Bad data len: sec_seq=%u dlen=%u", cur_sector_seq, dlen);
send_burn_data_reply(ERR_SECTOR_DATA_LEN, cur_sector_seq,
recv_msg.hdr.seq);
return ERR_NONE;
}
crc = crc32(0, (unsigned char *)&buf[BURN_DATA_MSG_OVERHEAD], dlen);
if (crc != mcrc) {
TRACE(0, "Bad CRC");
send_burn_data_reply(ERR_SECTOR_DATA_CRC, cur_sector_seq,
recv_msg.hdr.seq);
return ERR_NONE;
}
if (burn_len + dlen <= burn_total_len) {
memcpy(&data_buf[burn_len],
(unsigned char *)&buf[BURN_DATA_MSG_OVERHEAD], dlen);
burn_len = burn_len + dlen;
} else {
TRACE(2, "Error burn_len=%d,burn_total_len=%d", burn_len,
burn_total_len);
}
if (burn_len == burn_total_len) {
TRACE(2, "BURN_DATA addr=0x%08X len=%u .........................",
burn_addr, burn_total_len);
int ret = burn_data(burn_addr, data_buf, burn_total_len);
if (ret) {
TRACE(2, "### FLASH_TASK: BURN_DATA failed: addr=0x%08X len=%u ###",
burn_addr, burn_total_len);
return 0;
} else {
TRACE(0, "burn sucessful");
}
ret = verify_flash_data(burn_addr, data_buf, burn_total_len);
if (ret) {
TRACE(0, "verify failed");
return ERR_VERIFY_FLSH;
} else {
TRACE(0, "verify sucessful");
}
}
send_burn_data_reply(ERR_BURN_OK, cur_sector_seq, recv_msg.hdr.seq);
} else {
TRACE(1, "ERROR programmer_state status:%d", programmer_state);
}
break;
}
case TYPE_FLASH_CMD: {
trace_stage_info("FLASH CMD");
errcode = handle_flash_cmd((enum FLASH_CMD_TYPE)recv_msg.data[0],
&recv_msg.data[1], recv_msg.hdr.len - 1);
TRACE_TIME(1, "FLASH CMD ret=%d", errcode);
if (errcode != ERR_NONE) {
return errcode;
}
break;
}
case TYPE_GET_SECTOR_INFO: {
unsigned int addr;
trace_stage_info("GET SECTOR INFO");
addr = recv_msg.data[0] | (recv_msg.data[1] << 8) |
(recv_msg.data[2] << 16) | (recv_msg.data[3] << 24);
errcode = handle_sector_info_cmd(addr);
if (errcode != ERR_NONE) {
return errcode;
}
break;
}
case TYPE_PROD_TEST: {
uint32_t cmd;
trace_stage_info("ANC CMD");
cmd = recv_msg.data[0] | (recv_msg.data[1] << 8) |
(recv_msg.data[2] << 16) | (recv_msg.data[3] << 24);
if (cmd != PROD_TEST_CMD_ANC) {
return ERR_TYPE_INVALID;
}
if (recv_msg.hdr.len < 5) {
TRACE(1, "PROD_TEST/ANC msg length error: %d", recv_msg.hdr.len);
return ERR_LEN;
}
errcode = handle_anc_cmd(recv_msg.data[4], &recv_msg.data[5],
recv_msg.hdr.len - 5);
if (errcode != ERR_NONE) {
return errcode;
}
break;
}
default:
TRACE(1, "COMMAND:0x%x", type);
cret = ERR_TYPE_INVALID;
send_reply((unsigned char *)&cret, 1);
break;
}
return 0;
}
int anc_cmd_send_process(uint8_t **pbuf, uint16_t *len) {
send_msg_pop_seq = send_msg_pop_seq % MAX_SNED_MSG_QUEUE;
*pbuf = (uint8_t *)&send_msg_queue[send_msg_pop_seq];
*len = MSG_TOTAL_LEN(&send_msg);
send_msg_pop_seq++;
return 0;
}
#endif