pinebuds/services/ble_profiles/cpp/cppc/src/cppc_task.c

709 lines
25 KiB
C

/**
****************************************************************************************
* @addtogroup CPPCTASK
* @{
****************************************************************************************
*/
/*
* INCLUDE FILES
****************************************************************************************
*/
#include "rwip_config.h"
#if (BLE_CP_COLLECTOR)
#include "cpp_common.h"
#include "cppc.h"
#include "cppc_task.h"
#include "gap.h"
#include "gattc_task.h"
#include "ke_mem.h"
#include "ke_timer.h"
#include "co_utils.h"
/*
* STRUCTURES
****************************************************************************************
*/
/// State machine used to retrieve Cycling Power service characteristics
/// information
const struct prf_char_def cppc_cps_char[CPP_CPS_CHAR_MAX] = {
/// CP Measurement
[CPP_CPS_MEAS_CHAR] = {ATT_CHAR_CP_MEAS, ATT_MANDATORY, ATT_CHAR_PROP_NTF},
/// CP Feature
[CPP_CPS_FEAT_CHAR] = {ATT_CHAR_CP_FEAT, ATT_MANDATORY, ATT_CHAR_PROP_RD},
/// Sensor Location
[CPP_CPS_SENSOR_LOC_CHAR] = {ATT_CHAR_SENSOR_LOC, ATT_MANDATORY,
ATT_CHAR_PROP_RD},
/// Vector
[CPP_CPS_VECTOR_CHAR] = {ATT_CHAR_CP_VECTOR, ATT_OPTIONAL,
ATT_CHAR_PROP_NTF},
/// SC Control Point
[CPP_CPS_CTNL_PT_CHAR] = {ATT_CHAR_CP_CNTL_PT, ATT_OPTIONAL,
ATT_CHAR_PROP_WR | ATT_CHAR_PROP_IND},
};
/// State machine used to retrieve Cycling Power service characteristic
/// descriptor information
const struct prf_char_desc_def cppc_cps_char_desc[CPPC_DESC_MAX] = {
/// CP Measurement Char. - Client Characteristic Configuration
[CPPC_DESC_CP_MEAS_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_MANDATORY,
CPP_CPS_MEAS_CHAR},
/// CP Measurement Char. - Server Characteristic Configuration
[CPPC_DESC_CP_MEAS_SV_CFG] = {ATT_DESC_SERVER_CHAR_CFG, ATT_OPTIONAL,
CPP_CPS_MEAS_CHAR},
/// CP Vector Char. - Client Characteristic Configuration
[CPPC_DESC_VECTOR_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_OPTIONAL,
CPP_CPS_VECTOR_CHAR},
/// Control Point Char. - Client Characteristic Configuration
[CPPC_DESC_CTNL_PT_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_OPTIONAL,
CPP_CPS_CTNL_PT_CHAR},
};
/*
* HANDLER FUNCTIONS DEFINITIONS
****************************************************************************************
*/
/**
****************************************************************************************
* @brief Handles reception of the @ref CPPC_ENABLE_REQ message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cppc_enable_req_handler(ke_msg_id_t const msgid,
struct cppc_enable_req *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
// Status
uint8_t status = GAP_ERR_NO_ERROR;
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
uint8_t state = ke_state_get(dest_id);
// Cycling Power Profile Collector Role Task Environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
ASSERT_INFO(cppc_env != NULL, dest_id, src_id);
if ((state == CPPC_IDLE) && (cppc_env->env[conidx] == NULL)) {
// allocate environment variable for task instance
cppc_env->env[conidx] = (struct cppc_cnx_env *)ke_malloc(
sizeof(struct cppc_cnx_env), KE_MEM_ATT_DB);
memset(cppc_env->env[conidx], 0, sizeof(struct cppc_cnx_env));
// Config connection, start discovering
if (param->con_type == PRF_CON_DISCOVERY) {
// start discovering CPS on peer
prf_disc_svc_send(&(cppc_env->prf_env), conidx, ATT_SVC_CYCLING_POWER);
// Go to DISCOVERING state
ke_state_set(dest_id, CPPC_DISCOVERING);
}
// normal connection, get saved att details
else {
cppc_env->env[conidx]->cps = param->cps;
// send APP confirmation that can start normal connection to TH
cppc_enable_rsp_send(cppc_env, conidx, GAP_ERR_NO_ERROR);
}
}
else if (state != CPPC_FREE) {
status = PRF_ERR_REQ_DISALLOWED;
}
// send an error if request fails
if (status != GAP_ERR_NO_ERROR) {
cppc_enable_rsp_send(cppc_env, conidx, status);
}
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CPPC_READ_CMD message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cppc_read_req_handler(ke_msg_id_t const msgid,
struct cpps_read_cmd *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
uint8_t state = ke_state_get(dest_id);
uint8_t status = PRF_ERR_REQ_DISALLOWED;
// Message status
uint8_t msg_status = KE_MSG_CONSUMED;
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
if (state == CPPC_IDLE) {
ASSERT_INFO(cppc_env != NULL, dest_id, src_id);
// environment variable not ready
if (cppc_env->env[conidx] == NULL) {
status = PRF_APP_ERROR;
} else {
// Get the handler
uint16_t hdl = cppc_get_read_handle_req(cppc_env, conidx, param);
// Check if handle is viable
if (hdl != ATT_INVALID_SEARCH_HANDLE) {
// Force the operation value
param->operation = CPPC_READ_OP_CODE;
// Store the command structure
cppc_env->env[conidx]->operation = param;
msg_status = KE_MSG_NO_FREE;
// Send the read request
prf_read_char_send(&(cppc_env->prf_env), conidx,
cppc_env->env[conidx]->cps.svc.shdl,
cppc_env->env[conidx]->cps.svc.ehdl, hdl);
// Go to the Busy state
ke_state_set(dest_id, CPPC_BUSY);
status = ATT_ERR_NO_ERROR;
} else {
status = PRF_ERR_INEXISTENT_HDL;
}
}
} else if (state == CPPC_FREE) {
status = GAP_ERR_DISCONNECTED;
} else {
// Another procedure is pending, keep the command for later
msg_status = KE_MSG_SAVED;
status = GAP_ERR_NO_ERROR;
}
if (status != GAP_ERR_NO_ERROR) {
// Send the complete event message to the task id stored in the environment
cppc_send_cmp_evt(cppc_env, conidx, CPPC_READ_OP_CODE, status);
}
return (int)msg_status;
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CPPC_CFG_NTFIND_CMD message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cppc_cfg_ntfind_cmd_handler(ke_msg_id_t const msgid,
struct cppc_cfg_ntfind_cmd *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
uint8_t state = ke_state_get(dest_id);
// Message status
uint8_t msg_status = KE_MSG_CONSUMED;
if (cppc_env != NULL) {
// Status
uint8_t status = PRF_ERR_REQ_DISALLOWED;
// Handle
uint16_t handle = ATT_INVALID_SEARCH_HANDLE;
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
do {
if (state != CPPC_IDLE) {
// Another procedure is pending, keep the command for later
msg_status = KE_MSG_SAVED;
break;
}
ASSERT_ERR(cppc_env->env[conidx] != NULL);
// Get handle
status = cppc_get_write_desc_handle_req(conidx, param, cppc_env, &handle);
} while (0);
if ((status == GAP_ERR_NO_ERROR) && (handle != ATT_INVALID_SEARCH_HANDLE)) {
// Set the operation code
param->operation = CPPC_CFG_NTF_IND_OP_CODE;
// Store the command structure
cppc_env->env[conidx]->operation = param;
msg_status = KE_MSG_NO_FREE;
// Go to the Busy state
ke_state_set(dest_id, CPPC_BUSY);
// Send GATT Write Request
prf_gatt_write_ntf_ind(&cppc_env->prf_env, conidx, handle,
param->ntfind_cfg);
}
} else {
cppc_send_no_conn_cmp_evt(dest_id, src_id, CPPC_CFG_NTF_IND_OP_CODE);
}
return (int)msg_status;
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CPPC_CTNL_PT_CFG_REQ message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cppc_ctnl_pt_cfg_req_handler(ke_msg_id_t const msgid,
struct cppc_ctnl_pt_cfg_req *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
// Message status
uint8_t msg_status = KE_MSG_CONSUMED;
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
if (cppc_env != NULL) {
// Status
uint8_t status = GAP_ERR_NO_ERROR;
do {
// State is Connected or Busy
ASSERT_ERR(ke_state_get(dest_id) > CPPC_FREE);
// Check the provided connection handle
if (cppc_env->env[conidx] == NULL) {
status = PRF_ERR_INVALID_PARAM;
break;
}
if (ke_state_get(dest_id) != CPPC_IDLE) {
// Another procedure is pending, keep the command for later
msg_status = KE_MSG_SAVED;
// Status is GAP_ERR_NO_ERROR, no message will be sent to the
// application
break;
}
// Check if the characteristic has been found
if (cppc_env->env[conidx]->cps.descs[CPPC_DESC_CTNL_PT_CL_CFG].desc_hdl !=
ATT_INVALID_SEARCH_HANDLE) {
// Request array declaration
uint8_t req[CPP_CP_CNTL_PT_REQ_MAX_LEN];
// Pack request
uint8_t nb = cppc_pack_ctnl_pt_req(param, req, &status);
if (status == GAP_ERR_NO_ERROR) {
// Set the operation code
param->operation = CPPC_CTNL_PT_CFG_WR_OP_CODE;
// Store the command structure
cppc_env->env[conidx]->operation = param;
// Store the command information
msg_status = KE_MSG_NO_FREE;
// Go to the Busy state
ke_state_set(dest_id, CPPC_BUSY);
// Send the write request
prf_gatt_write(
&(cppc_env->prf_env), conidx,
cppc_env->env[conidx]->cps.chars[CPP_CPS_CTNL_PT_CHAR].val_hdl,
(uint8_t *)&req[0], nb, GATTC_WRITE);
}
} else {
status = PRF_ERR_INEXISTENT_HDL;
}
} while (0);
if (status != GAP_ERR_NO_ERROR) {
// Send a complete event status to the application
cppc_send_cmp_evt(cppc_env, conidx, CPPC_CTNL_PT_CFG_WR_OP_CODE, status);
}
} else {
// No connection
cppc_send_no_conn_cmp_evt(dest_id, src_id, CPPC_CTNL_PT_CFG_WR_OP_CODE);
}
return (int)msg_status;
}
/**
****************************************************************************************
* @brief Handles reception of the @ref CPPC_TIMEOUT_TIMER_IND message. This
*message is received when the peer device doesn't send a SC Control Point
*indication within 30s after reception of the write response.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int cppc_timeout_timer_ind_handler(ke_msg_id_t const msgid,
void const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
// Get connection index
uint8_t conidx = KE_IDX_GET(dest_id);
if (cppc_env != NULL) {
ASSERT_ERR(cppc_env->env[conidx]->operation != NULL);
ASSERT_ERR(
((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation ==
CPPC_CTNL_PT_CFG_IND_OP_CODE);
// Send the complete event message
cppc_send_cmp_evt(cppc_env, conidx, CPPC_CTNL_PT_CFG_WR_OP_CODE,
PRF_ERR_PROC_TIMEOUT);
}
// else drop the message
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_SDP_SVC_IND_HANDLER message.
* The handler stores the found service details for service discovery.
* @param[in] msgid Id of the message received (probably unused).
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance (probably unused).
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_sdp_svc_ind_handler(ke_msg_id_t const msgid,
struct gattc_sdp_svc_ind const *ind,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
uint8_t state = ke_state_get(dest_id);
if (state == CPPC_DISCOVERING) {
uint8_t conidx = KE_IDX_GET(dest_id);
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
ASSERT_INFO(cppc_env != NULL, dest_id, src_id);
ASSERT_INFO(cppc_env->env[conidx] != NULL, dest_id, src_id);
if (cppc_env->env[conidx]->nb_svc == 0) {
// Retrieve CPS characteristics and descriptors
prf_extract_svc_info(ind, CPP_CPS_CHAR_MAX, &cppc_cps_char[0],
&cppc_env->env[conidx]->cps.chars[0], CPPC_DESC_MAX,
&cppc_cps_char_desc[0],
&cppc_env->env[conidx]->cps.descs[0]);
// Even if we get multiple responses we only store 1 range
cppc_env->env[conidx]->cps.svc.shdl = ind->start_hdl;
cppc_env->env[conidx]->cps.svc.ehdl = ind->end_hdl;
}
cppc_env->env[conidx]->nb_svc++;
}
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_CMP_EVT message.
* @param[in] msgid Id of the message received.
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance.
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_cmp_evt_handler(ke_msg_id_t const msgid,
struct gattc_cmp_evt const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
// Status
uint8_t status;
if (cppc_env != NULL) {
uint8_t conidx = KE_IDX_GET(dest_id);
uint8_t state = ke_state_get(dest_id);
if (state == CPPC_DISCOVERING) {
status = param->status;
if ((status == ATT_ERR_ATTRIBUTE_NOT_FOUND) ||
(status == ATT_ERR_NO_ERROR)) {
// Discovery
// check characteristic validity
if (cppc_env->env[conidx]->nb_svc == 1) {
status = prf_check_svc_char_validity(CPP_CPS_CHAR_MAX,
cppc_env->env[conidx]->cps.chars,
cppc_cps_char);
}
// too much services
else if (cppc_env->env[conidx]->nb_svc > 1) {
status = PRF_ERR_MULTIPLE_SVC;
}
// no services found
else {
status = PRF_ERR_STOP_DISC_CHAR_MISSING;
}
// check descriptor validity
if (status == GAP_ERR_NO_ERROR) {
status = prf_check_svc_char_desc_validity(
CPPC_DESC_MAX, cppc_env->env[conidx]->cps.descs,
cppc_cps_char_desc, cppc_env->env[conidx]->cps.chars);
}
}
cppc_enable_rsp_send(cppc_env, conidx, status);
}
else if (state == CPPC_BUSY) {
switch (param->operation) {
case GATTC_READ: {
// Send the complete event status
cppc_send_cmp_evt(cppc_env, conidx, CPPC_READ_OP_CODE, param->status);
} break;
case GATTC_WRITE:
case GATTC_WRITE_NO_RESPONSE: {
uint8_t operation =
((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation;
if (operation == CPPC_CFG_NTF_IND_OP_CODE) {
// Send the complete event status
cppc_send_cmp_evt(cppc_env, conidx, operation, param->status);
}
else if (operation == CPPC_CTNL_PT_CFG_WR_OP_CODE) {
if (param->status == GAP_ERR_NO_ERROR) {
// Start Timeout Procedure
ke_timer_set(CPPC_TIMEOUT_TIMER_IND, dest_id, ATT_TRANS_RTX);
// Wait for the response indication
((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation =
CPPC_CTNL_PT_CFG_IND_OP_CODE;
} else {
// Send the complete event status
cppc_send_cmp_evt(cppc_env, conidx, operation, param->status);
}
}
} break;
case GATTC_REGISTER:
case GATTC_UNREGISTER: {
// Do nothing
} break;
default: {
ASSERT_ERR(0);
} break;
}
}
}
// else ignore the message
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_READ_IND message.
* Generic event received after every simple read command sent to peer server.
* @param[in] msgid Id of the message received (probably unused).
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance (probably unused).
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_read_ind_handler(ke_msg_id_t const msgid,
struct gattc_read_ind const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
uint8_t state = ke_state_get(dest_id);
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
if (state == CPPC_BUSY) {
uint8_t conidx = KE_IDX_GET(dest_id);
ASSERT_INFO(cppc_env != NULL, dest_id, src_id);
ASSERT_INFO(cppc_env->env[conidx] != NULL, dest_id, src_id);
// Send the read value to the HL
struct cppc_value_ind *ind = KE_MSG_ALLOC(
CPPC_VALUE_IND, prf_dst_task_get(&(cppc_env->prf_env), conidx), dest_id,
cppc_value_ind);
switch (
((struct cpps_read_cmd *)cppc_env->env[conidx]->operation)->read_code) {
// Read CP Feature Characteristic value
case (CPPC_RD_CP_FEAT): {
ind->value.sensor_feat = co_read32p(&param->value[0]);
// Mask the reserved bits
// ind->value.sensor_feat &= CPP_FEAT_ALL_SUPP;
} break;
// Read Sensor Location Characteristic value
case (CPPC_RD_SENSOR_LOC): {
ind->value.sensor_loc = param->value[0];
} break;
// Read Client Characteristic Configuration Descriptor value
case (CPPC_RD_WR_CP_MEAS_CL_CFG):
case (CPPC_RD_WR_CP_MEAS_SV_CFG):
case (CPPC_RD_WR_VECTOR_CFG):
case (CPPC_RD_WR_CTNL_PT_CFG): {
co_write16p(&ind->value.ntf_cfg, param->value[0]);
} break;
default: {
ASSERT_ERR(0);
} break;
}
ind->att_code =
((struct cpps_read_cmd *)cppc_env->env[conidx]->operation)->read_code;
// Send the message to the application
ke_msg_send(ind);
}
// else drop the message
return (KE_MSG_CONSUMED);
}
/**
****************************************************************************************
* @brief Handles reception of the @ref GATTC_EVENT_IND message.
* @param[in] msgid Id of the message received (probably unused).
* @param[in] param Pointer to the parameters of the message.
* @param[in] dest_id ID of the receiving task instance (probably unused).
* @param[in] src_id ID of the sending task instance.
* @return If the message was consumed or not.
****************************************************************************************
*/
__STATIC int gattc_event_ind_handler(ke_msg_id_t const msgid,
struct gattc_event_ind const *param,
ke_task_id_t const dest_id,
ke_task_id_t const src_id) {
uint8_t conidx = KE_IDX_GET(dest_id);
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
if (cppc_env != NULL) {
switch (param->type) {
case (GATTC_NOTIFY): {
if (param->handle ==
cppc_env->env[conidx]->cps.chars[CPP_CPS_MEAS_CHAR].val_hdl) {
// Unpack measurement
cppc_unpack_meas_ind(conidx, param, cppc_env);
} else if (param->handle == cppc_env->env[conidx]
->cps.chars[CPP_CPS_VECTOR_CHAR]
.val_hdl) {
// Unpack vector
cppc_unpack_vector_ind(conidx, param, cppc_env);
} else {
ASSERT_ERR(0);
}
} break;
case (GATTC_INDICATE): {
// confirm that indication has been correctly received
struct gattc_event_cfm *cfm =
KE_MSG_ALLOC(GATTC_EVENT_CFM, src_id, dest_id, gattc_event_cfm);
cfm->handle = param->handle;
ke_msg_send(cfm);
// Check if we were waiting for the indication
if (cppc_env->env[conidx]->operation != NULL) {
if (((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation ==
CPPC_CTNL_PT_CFG_IND_OP_CODE) {
// Stop the procedure timeout timer
ke_timer_clear(CPPC_TIMEOUT_TIMER_IND, dest_id);
// Unpack control point
cppc_unpack_ctln_pt_ind(conidx, param, cppc_env);
// Send the complete event message
cppc_send_cmp_evt(cppc_env, conidx, CPPC_CTNL_PT_CFG_WR_OP_CODE,
GAP_ERR_NO_ERROR);
}
// else drop the message
}
// else drop the message
} break;
default: {
ASSERT_ERR(0);
} break;
}
}
return (KE_MSG_CONSUMED);
}
/*
* GLOBAL VARIABLE DEFINITIONS
****************************************************************************************
*/
/// Specifies the default message handlers
KE_MSG_HANDLER_TAB(cppc){
{GATTC_SDP_SVC_IND, (ke_msg_func_t)gattc_sdp_svc_ind_handler},
{CPPC_READ_CMD, (ke_msg_func_t)cppc_read_req_handler},
{GATTC_READ_IND, (ke_msg_func_t)gattc_read_ind_handler},
{CPPC_CFG_NTFIND_CMD, (ke_msg_func_t)cppc_cfg_ntfind_cmd_handler},
{CPPC_CTNL_PT_CFG_REQ, (ke_msg_func_t)cppc_ctnl_pt_cfg_req_handler},
{GATTC_EVENT_IND, (ke_msg_func_t)gattc_event_ind_handler},
{GATTC_EVENT_REQ_IND, (ke_msg_func_t)gattc_event_ind_handler},
{CPPC_TIMEOUT_TIMER_IND, (ke_msg_func_t)cppc_timeout_timer_ind_handler},
{CPPC_ENABLE_REQ, (ke_msg_func_t)cppc_enable_req_handler},
{GATTC_CMP_EVT, (ke_msg_func_t)gattc_cmp_evt_handler},
};
void cppc_task_init(struct ke_task_desc *task_desc) {
// Get the address of the environment
struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc);
task_desc->msg_handler_tab = cppc_msg_handler_tab;
task_desc->msg_cnt = ARRAY_LEN(cppc_msg_handler_tab);
task_desc->state = cppc_env->state;
task_desc->idx_max = CPPC_IDX_MAX;
}
#endif //(BLE_CP_COLLECTOR)
/// @} CPPCTASK