pinebuds/platform/drivers/bt/best2300p/bt_drv_rfconfig.c

710 lines
22 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "bt_drv.h"
#include "hal_i2c.h"
#include "hal_uart.h"
#include "plat_types.h"
#ifdef RTOS
#include "cmsis_os.h"
#endif
#include "bt_drv_2300p_internal.h"
#include "bt_drv_interface.h"
#include "bt_drv_internal.h"
#include "bt_drv_reg_op.h"
#include "cmsis.h"
#include "hal_btdump.h"
#include "hal_chipid.h"
#include "hal_cmu.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "iqcorrect.h"
#include "pmu.h"
#include "tgt_hardware.h"
#define AUTO_CAL 0
#ifndef BT_RF_MAX_XTAL_TUNE_PPB
// Default 10 ppm/bit or 10000 ppb/bit
#define BT_RF_MAX_XTAL_TUNE_PPB 10000
#endif
#ifndef BT_RF_XTAL_TUNE_FACTOR
// Default 0.2 ppm/bit or 200 ppb/bit
#define BT_RF_XTAL_TUNE_FACTOR 200
#endif
#define DEFAULT_XTAL_FCAP 0x8080
#define XTAL_FCAP_NORMAL_SHIFT 0
#define XTAL_FCAP_NORMAL_MASK (0xFF << XTAL_FCAP_NORMAL_SHIFT)
#define XTAL_FCAP_NORMAL(n) BITFIELD_VAL(XTAL_FCAP_NORMAL, n)
#define BT_XTAL_CMOM_DR (1 << 13)
#define RF_REG_XTAL_FCAP 0xE9
#define RF_REG_XTAL_CMOM_DR 0xE8
/* ljh add for sync modify rf RF_REG_XTAL_FCAP value*/
#define SPI_TRIG_RX_NEG_TIMEOUT MS_TO_TICKS(3)
#define SPI_TRIG_NEG_TIMEOUT SPI_TRIG_RX_NEG_TIMEOUT
enum BIT_OFFSET_CMD_TYPE_T {
BIT_OFFSET_CMD_STOP = 0,
BIT_OFFSET_CMD_START,
BIT_OFFSET_CMD_ACK,
};
static uint16_t xtal_fcap = DEFAULT_XTAL_FCAP;
static uint16_t init_xtal_fcap = DEFAULT_XTAL_FCAP;
// rampup start 1--->2->3 rampup ok
// rampdown start 3-->2-->1-->0 rampdown ok
// 3a06=3b3f
// for pa@1.8v
struct bt_drv_tx_table_t {
uint16_t tbl[16][3];
};
struct RF_SYS_INIT_ITEM {
uint16_t reg;
uint16_t set;
uint16_t mask;
uint16_t delay;
};
static const struct RF_SYS_INIT_ITEM rf_sys_init_tbl[] = {
{0xb5, 0x8000, 0x8000, 0},
{0xc2, 0x7188, 0x7fff, 0},
#ifdef LBRT
{0xc4, 0x0043, 0x0043, 0}, // enable lbrt adc clk[6]
#else
{0xc4, 0x0003, 0x0003, 0},
#endif
};
// zhangzhd agc config use default 1216
#define REG_EB_VAL 0x000c
#define REG_181_VAL (0x00bf)
#define REG_EC_VAL 0x000d
#define REG_182_VAL 0x00bf
#define REG_ED_VAL 0x000e
#define REG_183_VAL 0x00bf
#define REG_EE_VAL 0x000b
#define REG_184_VAL 0x00bf
#define REG_EF_VAL 0x0007
#define REG_185_VAL 0x00bf
#define REG_F0_VAL 0x0007
#define REG_186_VAL 0x00af
#define REG_F1_VAL 0x0007
#define REG_187_VAL 0x009f
#define REG_F2_VAL 0x0007
#define REG_188_VAL 0x008f
// zhangzhd agc config end
const uint16_t rf_init_tbl_1[][3] = {
{0x88, 0x8640, 0},
{0x8b, 0x8a4a, 0}, // set rx flt cap,filter start up
#if defined(__FANG_HW_AGC_CFG_ADC__)
{0xd1, 0x8401, 0}, // set ra adc gain -3db
{0x8e, 0x0D28, 0}, // adc noise reduction
#else
{0xd1, 0x8403, 0}, // set gain
{0x8e, 0x0128, 0}, // adc noise reduction
#endif
{0x90, 0x8e1f, 0}, // enlarge txflt BW
{0x91, 0x05c0, 0}, // by walker 20180427
{0x92, 0x668e, 0}, // update by luobin 2019/3/22
{0x97, 0x2523, 0}, // update by luobin 2019.0523
{0x98, 0x1324, 0}, // update by walker 2019.01.14, modify for yield
{0x9a, 0x4470, 0}, // div2 rc
{0x9b, 0xfd52, 0}, // update by walker 2018.10.24
{0x9c, 0x180f, 0}, /////////luobin
{0xa3, 0x0789, 0},
{0xb0, 0x0000, 0},
{0xb1, 0x0000, 0},
{0xb3, 0x31f3, 0}, //
{0xb4, 0x883c, 0},
{0xb6, 0x3156, 0},
{0xb7, 0x183f, 0}, // update by walker 2018.07.30
{0xb9, 0x8000, 0}, // cap3g6 off
{0xba, 0x104e, 0},
#if defined(__FANG_LNA_CFG__)
{0xac, 0x080e, 0}, // pre-charge set to 5us
{0x85, 0x7f00, 0}, // NFMI RXADC LDO rise up
// {0xc3,0x0068,0},//add by xrz increase pll cal time 2018/10/20
{0xc3, 0x0044, 0},
#else
{0xc3, 0x0050, 0},
#endif
{0xc5, 0x4b50, 0}, // vco ictrl dr
{0xc9, 0x3a08, 0}, // vco ictrl
{0xd3, 0xc1c1, 0},
{0xd4, 0x000f, 0},
{0xd5, 0x4000, 0},
{0xd6, 0x7980, 0},
{0xe8, 0xe000, 0},
{0xf3, 0x0c41, 0}, // by fang
{0x1a6, 0x0600, 0},
{0x1ae, 0x6a00, 0}, // fastlock en
{0x1d4, 0x0000, 0},
{0x1d7, 0xc4ff, 0}, // update by walker 2018.10.10
{0x1de, 0x2000, 0},
{0x1df, 0x2087, 0},
{0x1f4, 0x2241, 0}, // by walker 20180427
{0x1fa, 0x03df, 0}, // rst needed
{0x1fa, 0x83df, 0},
{0xeb, REG_EB_VAL, 0}, // gain_idx:0
{0x181, REG_181_VAL, 0},
{0xec, REG_EC_VAL, 0}, // gain_idx:1
{0x182, REG_182_VAL, 0},
{0xed, REG_ED_VAL, 0}, // gain_idx:2
{0x183, REG_183_VAL, 0},
{0xee, REG_EE_VAL, 0}, // gain_idx:3
{0x184, REG_184_VAL, 0},
{0xef, REG_EF_VAL, 0}, // gain_idx:4
{0x185, REG_185_VAL, 0},
{0xf0, REG_F0_VAL, 0}, // gain_idx:5
{0x186, REG_186_VAL, 0},
{0xf1, REG_F1_VAL, 0}, // gain_idx:6
{0x187, REG_187_VAL, 0},
{0xf2, REG_F2_VAL, 0}, // gain_idx:7
{0x188, REG_188_VAL, 0},
{0x1d6, 0x7e58, 0}, // set lbrt rxflt dccal_ready=1
{0x1c8, 0xdfc0, 0}, // en rfpll bias in lbrt mode
{0x1c9, 0xa0cf, 0}, // en log bias
{0x82, 0x0caa, 0}, // select rfpll and cplx_dir=0 and en rxflt test
{0xf4, 0x2181, 0}, // set flt_cap to match flt_gain
{0x86, 0xdc99, 0}, // set nfmi tmix
{0xdf, 0x2006, 0}, // set nfmi tmix vcm
#ifdef __HW_AGC__
{0x1c7, 0x007d, 0}, // open lbrt adc and vcm bias current
#endif
{0x18c, 0x0000, 0}, // max tx gain lbrt
// air @ LBRT 31.5m
{0x1d8, 0x9162, 0}, // lbrt tx freqword
{0x1d9, 0x9162, 0}, // lbrt tx freqword
{0x1da, 0x9162, 0}, // lbrt tx freqword
{0x1db, 0x9162, 0}, // lbrt tx freqword
{0x1dc, 0x0000, 0}, // txlccap
{0x1dd, 0x0000, 0}, // txlccap
{0x1ed, 0x0000, 0}, // rxlccap
{0x1ee, 0x0000, 0}, // rxlccap
{0x1e9, 0x0a0a, 0}, // set rfpll divn in lbrt tx mode
{0x1ea, 0x0a0a, 0},
{0x1eb, 0x0a0a, 0}, // set rfpll divn in lbrt rx mode
{0x1ec, 0x0a0a, 0},
{0x1ef, 0x8a76, 0}, // lbrt rx freqword
{0x1f0, 0x8a76, 0}, // lbrt rx freqword
{0x1f1, 0x8a76, 0}, // lbrt rx freqword
{0x1f2, 0x8a76, 0}, // lbrt rx freqword
{0x87, 0x9f00, 0}, //{0x87,0x9f40,0}
{0x81, 0x9207, 0},
{0xce, 0xfc08, 0},
{0x8A, 0x4EA4, 0}, // use rfpll for nfmi adclk
//[below for ibrt]
{0x8c, 0x9100, 0},
{0xab, 0x1c0c, 0}, // 2019.05.08 by luofei
{0xa5, 0x0404, 0}, // rfpll pu time
{0xa6, 0x2D20, 0}, // 2019.05.23 by luobin
{0xa8, 0x2D22, 0}, // 2019.05.23 by luobin
{0x1b7, 0x2c00, 0}, // 2019.05.08 by luofei
{0x1ad, 0x9000, 0}, // 2M tx filter baseband
{0xdc, 0x8820, 0}, // fa pa pwrup time
{0x8f, 0x71b8, 0}, // tx dac by luobin
};
#ifdef __HW_AGC__
const uint16_t rf_init_tbl_1_hw_agc[][3] = // hw agc table
{
{0xad, 0xa04a, 1}, // hwagc en=1
{0xCD, 0x0040, 0}, // default 0x0000
{0xcf, 0x7f32, 0}, // lna gain dr=0 //default 0x0000
{0xd0, 0xe91f, 0}, // i2v flt gain dr=0 //default 0x0000
{0xeb, 0x0007, 0}, // gain_idx:0
{0xec, 0x0007, 0}, // gain_idx:1
{0xed, 0x0007, 0}, // gain_idx:2
{0xee, 0x000d, 0}, // gain_idx:3
{0xef, 0x000d, 0}, // gain_idx:4
{0xf0, 0x000d, 0}, // gain_idx:5
{0xf1, 0x000d, 0}, // gain_idx:6
{0xf2, 0x000c, 0}, // gain_idx:7
};
#endif //__HW_AGC__
const uint16_t rf_init_tbl_1_sw_agc[][3] = // sw agc table
{
{0xad, 0xa00a, 1}, // hwagc en=0
{0xCD, 0x0000, 0}, // default 0x0000
{0xcf, 0x0000, 0}, // lna gain dr=0 //default 0x0000
{0xd0, 0x0000, 0}, // i2v flt gain dr=0 //default 0x0000
{0xeb, REG_EB_VAL, 0}, // gain_idx:0
{0xec, REG_EC_VAL, 0}, // gain_idx:1
{0xed, REG_ED_VAL, 0}, // gain_idx:2
{0xee, REG_EE_VAL, 0}, // gain_idx:3
{0xef, REG_EF_VAL, 0}, // gain_idx:4
{0xf0, REG_F0_VAL, 0}, // gain_idx:5
{0xf1, REG_F1_VAL, 0}, // gain_idx:6
{0xf2, REG_F2_VAL, 0}, // gain_idx:7
};
uint32_t btdrv_rf_get_max_xtal_tune_ppb(void) {
return BT_RF_MAX_XTAL_TUNE_PPB;
}
uint32_t btdrv_rf_get_xtal_tune_factor(void) { return BT_RF_XTAL_TUNE_FACTOR; }
void btdrv_rf_init_xtal_fcap(uint32_t fcap) {
xtal_fcap = SET_BITFIELD(xtal_fcap, XTAL_FCAP_NORMAL, fcap);
btdrv_write_rf_reg(RF_REG_XTAL_FCAP, xtal_fcap);
init_xtal_fcap = xtal_fcap;
}
uint32_t btdrv_rf_get_init_xtal_fcap(void) {
return GET_BITFIELD(init_xtal_fcap, XTAL_FCAP_NORMAL);
}
uint32_t btdrv_rf_get_xtal_fcap(void) {
return GET_BITFIELD(xtal_fcap, XTAL_FCAP_NORMAL);
}
void btdrv_rf_set_xtal_fcap(uint32_t fcap, uint8_t is_direct) {
xtal_fcap = SET_BITFIELD(xtal_fcap, XTAL_FCAP_NORMAL, fcap);
btdrv_write_rf_reg(RF_REG_XTAL_FCAP, xtal_fcap);
}
int btdrv_rf_xtal_fcap_busy(uint8_t is_direct) { return 0; }
void btdrv_rf_bit_offset_track_enable(bool enable) { return; }
uint32_t btdrv_rf_bit_offset_get(void) { return 0; }
uint16_t btdrv_rf_bitoffset_get(uint8_t conidx) {
uint16_t bitoffset;
bitoffset = BTDIGITAL_REG(EM_BT_BITOFF_ADDR + conidx * BT_EM_SIZE) & 0x3ff;
return bitoffset;
}
void btdrv_rf_log_delay_cal(void) {
unsigned short read_value;
unsigned short write_value;
BT_DRV_TRACE(0, "btdrv_rf_log_delay_cal\n");
btdrv_write_rf_reg(0xa7, 0x0028);
btdrv_write_rf_reg(0xd4, 0x0000);
btdrv_write_rf_reg(0xd5, 0x4002);
// *(volatile uint32_t*)(0xd02201e4) = 0x000a00b0;
*(volatile uint32_t *)(0xd0340020) = 0x030e01c1;
BT_DRV_TRACE(1, "0xd0340020 =%x\n", *(volatile uint32_t *)(0xd0340020));
btdrv_delay(1);
btdrv_write_rf_reg(0xd2, 0x5003);
btdrv_delay(1);
btdrv_read_rf_reg(0x1e2, &read_value);
BT_DRV_TRACE(1, "0x1e2 read_value:%x\n", read_value);
if (read_value == 0xff80) {
btdrv_write_rf_reg(0xd3, 0xffff);
} else {
write_value = ((read_value >> 7) & 0x0001) | ((read_value & 0x007f) << 1) |
((read_value & 0x8000) >> 7) | ((read_value & 0x7f00) << 1);
BT_DRV_TRACE(1, "d3 write_value:%x\n", write_value);
btdrv_write_rf_reg(0xd3, write_value);
}
btdrv_delay(1);
// *(volatile uint32_t*)(0xd02201e4) = 0x00000000;
*(volatile uint32_t *)(0xd0340020) = 0x010e01c0;
BT_DRV_TRACE(1, "0xd0340020 =%x\n", *(volatile uint32_t *)(0xd0340020));
btdrv_write_rf_reg(0xd4, 0x000f);
btdrv_write_rf_reg(0xd2, 0x1003);
btdrv_write_rf_reg(0xd5, 0x4000);
}
void btdrv_rf_rx_gain_adjust_req(uint32_t user, bool lowgain) { return; }
// rf Image calib
void btdtv_rf_image_calib(void) {
uint16_t read_val;
// read calibrated val from efuse 0x05 register
pmu_get_efuse(PMU_EFUSE_PAGE_SW_CFG, &read_val);
// check if bit 11 has been set
uint8_t calb_done_flag = ((read_val & 0x800) >> 11);
if (calb_done_flag) {
BT_DRV_TRACE(1, "EFUSE REG[5]=%x", read_val);
} else {
BT_DRV_TRACE(0, "EFUSE REG[5] rf image has not been calibrated!");
return;
}
//[bit 12] calib flag
uint8_t calib_val = ((read_val & 0x1000) >> 12);
btdrv_read_rf_reg(0x9b, &read_val);
read_val &= 0xfcff;
if (calib_val == 0) {
read_val |= 1 << 8;
} else if (calib_val == 1) {
read_val |= 1 << 9;
}
BT_DRV_TRACE(1, "write rf image calib val=%x in REG[0x9b]", read_val);
btdrv_write_rf_reg(0x9b, read_val);
}
#ifdef TX_IQ_CAL
const uint16_t tx_cal_rfreg_set[][3] = {
// iq cal path
{0x1c4, 0xffcf, 0},
{0x1c5, 0xf8ff, 0},
{0x1c6, 0x007f, 0},
{0x1c7, 0x03ff, 0},
{0x1d6, 0x7a58, 0},
{0x1d7, 0xc0f7, 0},
{0x1f4, 0x2481, 0},
{0x94, 0x11c3, 0},
{0x95, 0xe5c0, 0},
{0xd1, 0x846b, 0},
{0xae, 0x0403, 0},
{0x86, 0xccd9, 0},
{0xf3, 0x0c75, 0},
{0xf4, 0x0309, 0},
{0xcf, 0x8090, 0},
{0x82, 0x2cab, 0},
// nfmi adc
{0xc4, 0x00c3, 0},
{0xae, 0x07ff, 0},
{0x85, 0x470f, 0},
{0x82, 0x4aab, 0},
{0x82, 0xecab, 0},
{0x87, 0xa211, 0},
{0x87, 0xe211, 0},
{0x84, 0xfff8, 0},
};
const uint16_t tx_cal_rfreg_store[][1] = {
{0x1c4}, {0x1c5}, {0x1c6}, {0x1c7}, {0x1d6}, {0x1d7}, {0x1f4},
{0x94}, {0x95}, {0xd1}, {0xae}, {0x86}, {0xf3}, {0xf4},
{0xcf}, {0x82}, {0xc4}, {0x85}, {0x87}, {0x84},
};
int bt_iqimb_ini();
int bt_iqimb_test_ex(int mismatch_type);
void btdrv_tx_iq_cal(void) {
uint8_t i;
const uint16_t(*tx_cal_rfreg_set_p)[3];
const uint16_t(*tx_cal_rfreg_store_p)[1];
uint32_t reg_set_tbl_size;
uint32_t reg_store_tbl_size;
uint16_t value;
uint32_t tx_cal_digreg_store[5];
tx_cal_rfreg_store_p = &tx_cal_rfreg_store[0];
reg_store_tbl_size =
sizeof(tx_cal_rfreg_store) / sizeof(tx_cal_rfreg_store[0]);
uint16_t tx_cal_rfreg_store[reg_store_tbl_size];
BT_DRV_TRACE(0, "reg_store:\n");
for (i = 0; i < reg_store_tbl_size; i++) {
btdrv_read_rf_reg(tx_cal_rfreg_store_p[i][0], &value);
tx_cal_rfreg_store[i] = value;
BT_DRV_TRACE(2, "reg=%x,v=%x", tx_cal_rfreg_store_p[i][0], value);
}
tx_cal_digreg_store[0] = *(volatile uint32_t *)(0xd0330038);
tx_cal_digreg_store[1] = *(volatile uint32_t *)(0xd0350364);
tx_cal_digreg_store[2] = *(volatile uint32_t *)(0xd0350360);
tx_cal_digreg_store[3] = *(volatile uint32_t *)(0xd035037c);
tx_cal_digreg_store[4] = *(volatile uint32_t *)(0xd02201e4);
BT_DRV_TRACE(1, "0xd0330038:%x\n", tx_cal_digreg_store[0]);
BT_DRV_TRACE(1, "0xd0350364:%x\n", tx_cal_digreg_store[1]);
BT_DRV_TRACE(1, "0xd0350360:%x\n", tx_cal_digreg_store[2]);
BT_DRV_TRACE(1, "0xd035037c:%x\n", tx_cal_digreg_store[3]);
BT_DRV_TRACE(1, "0xd02201e4:%x\n", tx_cal_digreg_store[4]);
tx_cal_rfreg_set_p = &tx_cal_rfreg_set[0];
reg_set_tbl_size = sizeof(tx_cal_rfreg_set) / sizeof(tx_cal_rfreg_set[0]);
BT_DRV_TRACE(0, "reg_set:\n");
for (i = 0; i < reg_set_tbl_size; i++) {
btdrv_write_rf_reg(tx_cal_rfreg_set_p[i][0], tx_cal_rfreg_set_p[i][1]);
if (tx_cal_rfreg_set_p[i][2] != 0)
btdrv_delay(tx_cal_rfreg_set_p[i][2]); // delay
btdrv_read_rf_reg(tx_cal_rfreg_set_p[i][0], &value);
BT_DRV_TRACE(2, "reg=%x,v=%x", tx_cal_rfreg_set_p[i][0], value);
}
// iq cal cordic
*(volatile uint32_t *)(0xd0330038) = 0x0020010d;
btdrv_delay(1);
*(volatile uint32_t *)(0xd0350364) = 0x002eb948;
*(volatile uint32_t *)(0xd0350360) = 0x007fc240;
*(volatile uint32_t *)(0xd035037c) = 0x00020405;
*(volatile uint32_t *)(0xd02201e4) = 0x000a0000;
BT_DRV_TRACE(1, "0xd0330038:%x\n", *(volatile uint32_t *)(0xd0330038));
BT_DRV_TRACE(1, "0xd0350364:%x\n", *(volatile uint32_t *)(0xd0350364));
BT_DRV_TRACE(1, "0xd0350360:%x\n", *(volatile uint32_t *)(0xd0350360));
BT_DRV_TRACE(1, "0xd035037c:%x\n", *(volatile uint32_t *)(0xd035037c));
BT_DRV_TRACE(1, "0xd02201e4:%x\n", *(volatile uint32_t *)(0xd02201e4));
bt_iqimb_ini();
bt_iqimb_test_ex(1);
BT_DRV_TRACE(0, "reg_reset:\n");
for (i = 0; i < reg_store_tbl_size; i++) {
btdrv_write_rf_reg(tx_cal_rfreg_store_p[i][0], tx_cal_rfreg_store[i]);
btdrv_read_rf_reg(tx_cal_rfreg_store_p[i][0], &value);
BT_DRV_TRACE(2, "reg=%x,v=%x", tx_cal_rfreg_store_p[i][0], value);
}
*(volatile uint32_t *)(0xd0330038) = tx_cal_digreg_store[0];
*(volatile uint32_t *)(0xd0350364) = tx_cal_digreg_store[1];
*(volatile uint32_t *)(0xd0350360) = tx_cal_digreg_store[2];
*(volatile uint32_t *)(0xd035037c) = tx_cal_digreg_store[3];
*(volatile uint32_t *)(0xd02201e4) = tx_cal_digreg_store[4];
BT_DRV_TRACE(1, "0xd0330038:%x\n", *(volatile uint32_t *)(0xd0330038));
BT_DRV_TRACE(1, "0xd0350364:%x\n", *(volatile uint32_t *)(0xd0350364));
BT_DRV_TRACE(1, "0xd0350360:%x\n", *(volatile uint32_t *)(0xd0350360));
BT_DRV_TRACE(1, "0xd035037c:%x\n", *(volatile uint32_t *)(0xd035037c));
BT_DRV_TRACE(1, "0xd02201e4:%x\n", *(volatile uint32_t *)(0xd02201e4));
}
#endif
uint8_t btdrv_rf_init(void) {
uint16_t value;
const uint16_t(*rf_init_tbl_p)[3];
uint32_t tbl_size;
// uint8_t ret;
uint8_t i;
for (i = 0; i < ARRAY_SIZE(rf_sys_init_tbl); i++) {
btdrv_read_rf_reg(rf_sys_init_tbl[i].reg, &value);
value = (value & ~rf_sys_init_tbl[i].mask) |
(rf_sys_init_tbl[i].set & rf_sys_init_tbl[i].mask);
if (rf_sys_init_tbl[i].delay) {
btdrv_delay(rf_sys_init_tbl[i].delay);
}
btdrv_write_rf_reg(rf_sys_init_tbl[i].reg, value);
}
rf_init_tbl_p = &rf_init_tbl_1[0];
tbl_size = sizeof(rf_init_tbl_1) / sizeof(rf_init_tbl_1[0]);
for (i = 0; i < tbl_size; i++) {
btdrv_write_rf_reg(rf_init_tbl_p[i][0], rf_init_tbl_p[i][1]);
if (rf_init_tbl_p[i][2] != 0)
btdrv_delay(rf_init_tbl_p[i][2]); // delay
}
bt_drv_tx_pwr_init();
#ifdef __HW_AGC__
for (i = 0;
i < sizeof(rf_init_tbl_1_hw_agc) / sizeof(rf_init_tbl_1_hw_agc[0]);
i++) {
btdrv_write_rf_reg(rf_init_tbl_1_hw_agc[i][0], rf_init_tbl_1_hw_agc[i][1]);
if (rf_init_tbl_1_hw_agc[i][2] != 0)
btdrv_delay(rf_init_tbl_1_hw_agc[i][2]); // delay
}
#endif
// need before rf log delay cal
btdtv_rf_image_calib();
btdrv_rf_log_delay_cal();
btdrv_spi_trig_init();
#ifdef TX_IQ_CAL
hal_btdump_clk_enable();
bt_iq_calibration_setup();
hal_btdump_clk_disable();
#endif
return 1;
}
void bt_drv_rf_reset(void) {
btdrv_write_rf_reg(0x80, 0xcafe);
btdrv_write_rf_reg(0x80, 0x5fee);
}
static void bt_drv_switch_hw_sw_agc(enum BT_AGC_MODE_T agc_mode) {
static enum BT_AGC_MODE_T agc_mode_bak = BT_AGC_MODE_NONE;
uint16_t i = 0;
if (agc_mode_bak != agc_mode) {
agc_mode_bak = agc_mode;
BT_DRV_TRACE(1, "BT_DRV:use AGC mode=%d[1:HW,0:SW]", agc_mode);
uint32_t lock = int_lock_global();
if (agc_mode == BT_AGC_MODE_HW) {
#ifdef __HW_AGC__
bt_drv_reg_op_hw_sw_agc_select(BT_AGC_MODE_HW);
for (i = 0;
i < sizeof(rf_init_tbl_1_hw_agc) / sizeof(rf_init_tbl_1_hw_agc[0]);
i++) {
btdrv_write_rf_reg(rf_init_tbl_1_hw_agc[i][0],
rf_init_tbl_1_hw_agc[i][1]);
if (rf_init_tbl_1_hw_agc[i][2] != 0)
btdrv_delay(rf_init_tbl_1_hw_agc[i][2]); // delay
}
#endif
} else {
bt_drv_reg_op_hw_sw_agc_select(BT_AGC_MODE_SW);
for (i = 0;
i < sizeof(rf_init_tbl_1_sw_agc) / sizeof(rf_init_tbl_1_sw_agc[0]);
i++) {
btdrv_write_rf_reg(rf_init_tbl_1_sw_agc[i][0],
rf_init_tbl_1_sw_agc[i][1]);
if (rf_init_tbl_1_sw_agc[i][2] != 0)
btdrv_delay(rf_init_tbl_1_sw_agc[i][2]); // delay
}
}
int_unlock_global(lock);
}
}
void bt_drv_select_agc_mode(enum BT_WORK_MODE_T mode) {
#ifdef __HYBIRD_AGC__
enum BT_AGC_MODE_T agc_mode = BT_AGC_MODE_SW;
switch (mode) {
case BT_IDLE_MODE:
agc_mode = BT_AGC_MODE_HW;
break;
case BT_A2DP_WORK_MODE:
case BT_HFP_WORK_MODE:
agc_mode = BT_AGC_MODE_SW;
break;
default:
BT_DRV_TRACE(1, "BT_DRV:set error mork mode=%d", mode);
break;
}
bt_drv_switch_hw_sw_agc(agc_mode);
#endif
}
static uint16_t efuse;
static int16_t rf18b_6_4, rf18b_10_8, rf18b_14_12;
#define TX_POWET_CALIB_FACTOR 0x2
static int check_btpower_efuse_invalid(void) {
pmu_get_efuse(PMU_EFUSE_PAGE_BT_POWER, &efuse);
BT_DRV_TRACE(1, "efuse_8=0x%x", efuse);
rf18b_6_4 = (efuse & 0x70) >> 4; // address_8 [6:4]
rf18b_10_8 = (efuse & 0x700) >> 8; // address_8 [10:8]
rf18b_14_12 = (efuse & 0x7000) >> 12; // address_8 [14:12]
if ((0 == efuse) || (rf18b_6_4 > 5) || (rf18b_10_8 > 5) ||
(rf18b_14_12 > 5)) {
BT_DRV_TRACE(0, "invalid efuse value.");
return 0;
}
return 1;
}
void bt_drv_tx_pwr_init(void) {
// ble txpower need modify ble tx idx @ bt_drv_config.c
// modify bit4~7 to change ble tx gain
btdrv_write_rf_reg(0x189, 0x0071); // min tx gain 2019.02.26
btdrv_write_rf_reg(0x18a, 0x0071); // mid tx gain 2019.02.26
if (0 == check_btpower_efuse_invalid())
btdrv_write_rf_reg(0x18b, 0x0071); // max tx gain 2019.02.26
}
void bt_drv_tx_pwr_init_for_testmode(void) {
// ble txpower need modify ble tx idx @ bt_drv_config.c
// modify bit4~7 to change ble tx gain
btdrv_write_rf_reg(0x189, 0x007a); // min tx gain 2019.02.26
btdrv_write_rf_reg(0x18a, 0x0076); // mid tx gain 2019.02.26
if (0 == check_btpower_efuse_invalid())
btdrv_write_rf_reg(0x18b, 0x0071); // max tx gain 2019.02.26
}
void btdrv_txpower_calib(void) {
uint16_t rf92_11_8;
uint16_t tmp_val;
int16_t average_value; // may be negative, so use signed numbers
uint16_t read_value;
uint16_t bit7_symbol, bit11_symbol, bit15_symbol;
if (0 == check_btpower_efuse_invalid())
return;
bit7_symbol = (efuse & 0x80) >> 4;
bit11_symbol = (efuse & 0x800) >> 8;
bit15_symbol = (efuse & 0x8000) >> 12;
rf92_11_8 = efuse & 0xf; // address_8 [3:0]
BT_DRV_TRACE(3, "bit7_symbol=%d, bit11_symbol=%d, bit15_symbol=%d",
bit7_symbol, bit11_symbol, bit15_symbol);
BT_DRV_TRACE(4, "rf92_11_8=%x, rf18b_6_4=%x, rf18b_10_8=%x, rf18b_14_12=%x",
rf92_11_8, rf18b_6_4, rf18b_10_8, rf18b_14_12);
rf18b_6_4 = (bit7_symbol == 0) ? rf18b_6_4 : -rf18b_6_4;
rf18b_10_8 = (bit11_symbol == 0) ? rf18b_10_8 : -rf18b_10_8;
rf18b_14_12 = (bit15_symbol == 0) ? rf18b_14_12 : -rf18b_14_12;
// set 0x92[11:8] begin
btdrv_read_rf_reg(0x92, &tmp_val);
BT_DRV_TRACE(1, "read reg 0x92 val=%x", tmp_val);
tmp_val &= 0xf0ff; // clear [11:8]
tmp_val |= ((rf92_11_8 & 0xffff) << 8); // set efuse[3:0] to rf_92 [11:8]
BT_DRV_TRACE(2, "%d write reg 0x92 val=%x", __LINE__, tmp_val);
btdrv_write_rf_reg(0x92, tmp_val);
// set 0x92[11:8] end
// set 0x18b[3:0] begin
btdrv_read_rf_reg(0x18b, &read_value); // 0x18b
average_value =
(int16_t)(((float)(rf18b_6_4 + rf18b_10_8 + rf18b_14_12) / 6.f) + 0.5f);
BT_DRV_TRACE(2, "calc average_value=0x%x, dec:%d", average_value,
average_value);
if (0 < average_value) {
btdrv_read_rf_reg(0x92, &tmp_val);
tmp_val &= 0x0fff; // clear [15:12]
if (1 == average_value) {
tmp_val |= ((0x8 & 0xffff) << 12);
} else // average_value [2,~]
{
tmp_val |= ((0xA & 0xffff) << 12);
}
BT_DRV_TRACE(2, "%d write reg 0x92 val=%x", __LINE__, tmp_val);
btdrv_write_rf_reg(0x92, tmp_val);
}
tmp_val = TX_POWET_CALIB_FACTOR - average_value;
if (average_value > TX_POWET_CALIB_FACTOR)
tmp_val = 0;
BT_DRV_TRACE(1, "finally tmp_val=%x", tmp_val);
read_value &= 0xff00; // clear [3:0] & [7:4]
read_value |= (tmp_val | (0x7 << 4)); // get 0x18b [3:0] & [7:4]
btdrv_write_rf_reg(0x18b, read_value);
BT_DRV_TRACE(1, "write reg 0x18b val=0x%x", read_value);
// set 0x18b[3:0] end
}