pinebuds/platform/hal/hal_dma.c
2022-08-15 17:20:27 +08:00

1057 lines
28 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "plat_addr_map.h"
#include "cmsis_nvic.h"
#include "hal_chipid.h"
#include "hal_cmu.h"
#include "hal_dma.h"
#include "hal_location.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "reg_dma.h"
#if (defined(CHIP_BEST1000) || defined(CHIP_BEST2000) || defined(CHIP_BEST2300)) && !(defined(ROM_BUILD) || defined(PROGRAMMER))
#define DMA_REMAP
#endif
enum HAL_DMA_INST_T {
HAL_DMA_INST_AUDMA = 0,
#if (CHIP_HAS_DMA == 1)
HAL_DMA_INST_GPDMA = HAL_DMA_INST_AUDMA,
#else
HAL_DMA_INST_GPDMA,
#endif
HAL_DMA_INST_QTY
};
struct HAL_DMA_FIFO_ADDR_T {
uint32_t count;
const uint32_t *addr;
};
struct HAL_DMA_FIFO_PERIPH_T {
uint32_t count;
const enum HAL_DMA_PERIPH_T *periph;
#ifdef DMA_REMAP
const enum HAL_DMA_PERIPH_T *periph_remap;
#endif
};
/*****************************************************************************
* Private types/enumerations/variables
****************************************************************************/
#include CHIP_SPECIFIC_HDR(hal_dmacfg)
static struct DMA_T * const dma[HAL_DMA_INST_QTY] = {
(struct DMA_T *)AUDMA_BASE,
#if (CHIP_HAS_DMA > 1)
(struct DMA_T *)GPDMA_BASE,
#endif
};
static const IRQn_Type irq_type[HAL_DMA_INST_QTY] = {
AUDMA_IRQn,
#if (CHIP_HAS_DMA > 1)
GPDMA_IRQn,
#endif
};
static void hal_audma_irq_handler(void);
#if (CHIP_HAS_DMA > 1)
static void hal_gpdma_irq_handler(void);
#endif
static const uint32_t irq_entry[HAL_DMA_INST_QTY] = {
(uint32_t)hal_audma_irq_handler,
#if (CHIP_HAS_DMA > 1)
(uint32_t)hal_gpdma_irq_handler,
#endif
};
static const struct HAL_DMA_FIFO_ADDR_T fifo_addr[HAL_DMA_INST_QTY] = {
{
.count = ARRAY_SIZE(audma_fifo_addr),
.addr = audma_fifo_addr,
},
#if (CHIP_HAS_DMA > 1)
{
.count = ARRAY_SIZE(gpdma_fifo_addr),
.addr = gpdma_fifo_addr,
},
#endif
};
static const struct HAL_DMA_FIFO_PERIPH_T fifo_periph[HAL_DMA_INST_QTY] = {
{
.count = ARRAY_SIZE(audma_fifo_periph),
.periph = audma_fifo_periph,
#ifdef DMA_REMAP
.periph_remap = audma_fifo_periph_remap,
#endif
},
#if (CHIP_HAS_DMA > 1)
{
.count = ARRAY_SIZE(gpdma_fifo_periph),
.periph = gpdma_fifo_periph,
#ifdef DMA_REMAP
.periph_remap = gpdma_fifo_periph_remap,
#endif
},
#endif
};
static const uint8_t chan_start[HAL_DMA_INST_QTY] = {
AUDMA_CHAN_START,
#if (CHIP_HAS_DMA > 1)
GPDMA_CHAN_START,
#endif
};
static const uint8_t chan_num[HAL_DMA_INST_QTY] = {
AUDMA_CHAN_NUM,
#if (CHIP_HAS_DMA > 1)
GPDMA_CHAN_NUM,
#endif
};
/* Channel array to monitor free channel */
static bool chan_enabled[HAL_DMA_INST_QTY][DMA_NUMBER_CHANNELS];
static HAL_DMA_IRQ_HANDLER_T handler[HAL_DMA_INST_QTY][DMA_NUMBER_CHANNELS];
#ifdef DMA_REMAP
static uint32_t periph_remap_bitmap[HAL_DMA_INST_QTY];
#endif
#ifdef CORE_SLEEP_POWER_DOWN
static uint32_t saved_dma_regs[HAL_DMA_INST_QTY];
#endif
static const char * const err_invalid_inst = "Invalid DMA inst: %u";
static const char * const err_invalid_chan[HAL_DMA_INST_QTY] = {
"Invalid AUDMA chan: %u",
#if (CHIP_HAS_DMA > 1)
"Invalid GPDMA chan: %u",
#endif
};
static bool dma_opened = false;
static HAL_DMA_DELAY_FUNC dma_delay = NULL;
/*****************************************************************************
* Public types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Private functions
****************************************************************************/
static void hal_dma_delay(uint32_t ms)
{
if (dma_delay && !in_isr()) {
dma_delay(ms);
} else {
hal_sys_timer_delay(MS_TO_TICKS(ms));
}
}
static inline uint8_t generate_chan(enum HAL_DMA_INST_T inst, uint8_t hwch)
{
return ((inst << 4) | (hwch & 0xF));
}
static inline enum HAL_DMA_INST_T get_inst_from_chan(uint8_t ch)
{
return (enum HAL_DMA_INST_T)(ch >> 4);
}
static inline uint8_t get_hwch_from_chan(uint8_t ch)
{
return (ch & 0xF);
}
static inline int get_index_from_periph(enum HAL_DMA_PERIPH_T periph, enum HAL_DMA_INST_T *pinst, uint8_t *pidx)
{
enum HAL_DMA_INST_T inst;
int i;
for (inst = 0; inst < HAL_DMA_INST_QTY; inst++) {
for (i = 0; i < fifo_periph[inst].count; i++) {
if (fifo_periph[inst].periph[i] == periph) {
*pinst = inst;
*pidx = i;
return 0;
}
}
}
return 1;
}
#ifdef DMA_REMAP
static inline int get_remap_index_from_periph(enum HAL_DMA_INST_T inst, enum HAL_DMA_PERIPH_T periph, uint8_t *pidx)
{
int i;
if (fifo_periph[inst].periph_remap == NULL) {
return 1;
}
for (i = 0; i < fifo_periph[inst].count; i++) {
if (fifo_periph[inst].periph_remap[i] == periph) {
*pidx = i;
return 0;
}
}
return 2;
}
#endif
static inline uint32_t hal_dma_get_periph_addr(enum HAL_DMA_PERIPH_T periph)
{
int ret;
enum HAL_DMA_INST_T inst;
uint8_t index;
ret = get_index_from_periph(periph, &inst, &index);
if (ret) {
return 0;
}
return fifo_addr[inst].addr[index];
}
/* Initialize the DMA */
static void hal_dma_open_inst(enum HAL_DMA_INST_T inst)
{
uint8_t i;
/* Reset all channel configuration register */
for (i = 0; i < DMA_NUMBER_CHANNELS; i++) {
dma[inst]->CH[i].CONFIG = 0;
}
/* Clear all DMA interrupt and error flag */
dma[inst]->INTTCCLR = ~0UL;
dma[inst]->INTERRCLR = ~0UL;
dma[inst]->DMACONFIG = (dma[inst]->DMACONFIG & ~(DMA_DMACONFIG_AHB1_BIGENDIAN |
DMA_DMACONFIG_AHB2_BIGENDIAN | DMA_DMACONFIG_CLK_EN_MASK)) |
DMA_DMACONFIG_EN |
#ifdef CHIP_BEST3001
DMA_DMACONFIG_TC_IRQ_EN_MASK |
#endif
0;
#ifdef CHIP_BEST1400
dma[inst]->DMACONFIG &= ~DMA_DMACONFIG_TC_IRQ_EN_MASK;
#endif
/* Reset all channels are free */
for (i = 0; i < DMA_NUMBER_CHANNELS; i++) {
chan_enabled[inst][i] = false;
}
NVIC_SetVector(irq_type[inst], irq_entry[inst]);
if (inst == HAL_DMA_INST_AUDMA) {
NVIC_SetPriority(irq_type[inst], IRQ_PRIORITY_ABOVENORMAL);
} else {
NVIC_SetPriority(irq_type[inst], IRQ_PRIORITY_NORMAL);
}
NVIC_ClearPendingIRQ(irq_type[inst]);
NVIC_EnableIRQ(irq_type[inst]);
}
/* Shutdown the DMA */
static void hal_dma_close_inst(enum HAL_DMA_INST_T inst)
{
NVIC_DisableIRQ(irq_type[inst]);
dma[inst]->DMACONFIG = 0;
}
static bool hal_dma_chan_busy_inst(enum HAL_DMA_INST_T inst, uint8_t hwch)
{
return !!(dma[inst]->ENBLDCHNS & DMA_STAT_CHAN(hwch));
}
static void hal_dma_handle_chan_irq(enum HAL_DMA_INST_T inst, uint8_t hwch)
{
uint32_t remains;
struct HAL_DMA_DESC_T *lli;
bool tcint, errint;
/* Check counter terminal status */
tcint = !!(dma[inst]->INTTCSTAT & DMA_STAT_CHAN(hwch));
/* Check error terminal status */
errint = !!(dma[inst]->INTERRSTAT & DMA_STAT_CHAN(hwch));
if (tcint || errint) {
if (tcint) {
/* Clear terminate counter Interrupt pending */
dma[inst]->INTTCCLR = DMA_STAT_CHAN(hwch);
}
if (errint) {
/* Clear error counter Interrupt pending */
dma[inst]->INTERRCLR = DMA_STAT_CHAN(hwch);
}
if (handler[inst][hwch]) {
remains = GET_BITFIELD(dma[inst]->CH[hwch].CONTROL, DMA_CONTROL_TRANSFERSIZE);
lli = (struct HAL_DMA_DESC_T *)dma[inst]->CH[hwch].LLI;
handler[inst][hwch](generate_chan(inst, hwch), remains, errint, lli);
}
}
}
static void hal_dma_irq_handler(enum HAL_DMA_INST_T inst)
{
uint8_t hwch;
for (hwch = 0; hwch < DMA_NUMBER_CHANNELS; hwch++) {
if ((dma[inst]->INTSTAT & DMA_STAT_CHAN(hwch)) == 0) {
continue;
}
hal_dma_handle_chan_irq(inst, hwch);
}
}
static void hal_audma_irq_handler(void)
{
hal_dma_irq_handler(HAL_DMA_INST_AUDMA);
}
#if (CHIP_HAS_DMA > 1)
static void hal_gpdma_irq_handler(void)
{
hal_dma_irq_handler(HAL_DMA_INST_GPDMA);
}
#endif
static enum HAL_DMA_RET_T hal_dma_init_control(uint32_t *ctrl,
const struct HAL_DMA_CH_CFG_T *cfg,
int tc_irq)
{
uint32_t addr_inc;
enum HAL_DMA_FLOW_CONTROL_T type;
if (cfg->src_tsize > HAL_DMA_MAX_DESC_XFER_SIZE) {
return HAL_DMA_ERR;
}
#ifdef CHIP_BEST1000
type = cfg->type;
#else
type = cfg->type & ~HAL_DMA_FLOW_FLAG_MASK;
#endif
switch (type) {
case HAL_DMA_FLOW_M2M_DMA:
addr_inc = DMA_CONTROL_SI | DMA_CONTROL_DI;
break;
case HAL_DMA_FLOW_M2P_DMA:
case HAL_DMA_FLOW_M2P_PERIPH:
addr_inc = DMA_CONTROL_SI;
break;
case HAL_DMA_FLOW_P2M_DMA:
case HAL_DMA_FLOW_P2M_PERIPH:
addr_inc = DMA_CONTROL_DI;
break;
case HAL_DMA_FLOW_P2P_DMA:
case HAL_DMA_FLOW_P2P_DSTPERIPH:
case HAL_DMA_FLOW_P2P_SRCPERIPH:
addr_inc = 0;
break;
default:
return HAL_DMA_ERR;
}
#ifndef CHIP_BEST1000
if (cfg->type & HAL_DMA_FLOW_FLAG_SI) {
addr_inc |= DMA_CONTROL_SI;
}
if (cfg->type & HAL_DMA_FLOW_FLAG_DI) {
addr_inc |= DMA_CONTROL_DI;
}
#endif
*ctrl = DMA_CONTROL_TRANSFERSIZE(cfg->src_tsize) |
DMA_CONTROL_SBSIZE(cfg->src_bsize) |
DMA_CONTROL_DBSIZE(cfg->dst_bsize) |
DMA_CONTROL_SWIDTH(cfg->src_width) |
DMA_CONTROL_DWIDTH(cfg->dst_width) |
(tc_irq ? DMA_CONTROL_TC_IRQ : 0) |
addr_inc;
return HAL_DMA_OK;
}
/*****************************************************************************
* Generic Public functions
****************************************************************************/
enum HAL_DMA_RET_T hal_dma_init_desc(struct HAL_DMA_DESC_T *desc,
const struct HAL_DMA_CH_CFG_T *cfg,
const struct HAL_DMA_DESC_T *next,
int tc_irq)
{
uint32_t ctrl;
enum HAL_DMA_RET_T ret;
enum HAL_DMA_FLOW_CONTROL_T type;
ret = hal_dma_init_control(&ctrl, cfg, tc_irq);
if (ret != HAL_DMA_OK) {
return ret;
}
#ifdef CHIP_BEST1000
type = cfg->type;
#else
type = cfg->type & ~HAL_DMA_FLOW_FLAG_MASK;
#endif
if (type == HAL_DMA_FLOW_M2M_DMA || type == HAL_DMA_FLOW_M2P_DMA ||
type == HAL_DMA_FLOW_M2P_PERIPH) {
desc->src = cfg->src;
} else {
desc->src = hal_dma_get_periph_addr(cfg->src_periph);
}
if (type == HAL_DMA_FLOW_M2M_DMA || type == HAL_DMA_FLOW_P2M_DMA ||
type == HAL_DMA_FLOW_P2M_PERIPH) {
desc->dst = cfg->dst;
} else {
desc->dst = hal_dma_get_periph_addr(cfg->dst_periph);
}
desc->lli = (uint32_t)next;
desc->ctrl = ctrl;
return HAL_DMA_OK;
}
enum HAL_DMA_RET_T hal_dma_sg_2d_start(const struct HAL_DMA_DESC_T *desc,
const struct HAL_DMA_CH_CFG_T *cfg,
const struct HAL_DMA_2D_CFG_T *src_2d,
const struct HAL_DMA_2D_CFG_T *dst_2d)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
enum HAL_DMA_FLOW_CONTROL_T type;
uint8_t src_periph, dst_periph;
enum HAL_DMA_INST_T periph_inst;
int ret;
uint32_t irq_mask, try_burst;
uint32_t lock;
inst = get_inst_from_chan(cfg->ch);
hwch = get_hwch_from_chan(cfg->ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
#ifdef CHIP_BEST1000
type = cfg->type;
#else
type = cfg->type & ~HAL_DMA_FLOW_FLAG_MASK;
#endif
if (type == HAL_DMA_FLOW_M2M_DMA || type == HAL_DMA_FLOW_M2P_DMA ||
type == HAL_DMA_FLOW_M2P_PERIPH) {
src_periph = 0;
} else {
ret = get_index_from_periph(cfg->src_periph, &periph_inst, &src_periph);
ASSERT(ret == 0, "Failed to get src periph: %d", cfg->src_periph);
#ifdef DMA_REMAP
if (periph_remap_bitmap[periph_inst] & (1 << src_periph)) {
periph_inst ^= 1;
ret = get_remap_index_from_periph(periph_inst, cfg->src_periph, &src_periph);
ASSERT(ret == 0, "Failed to get remap src periph: %d", cfg->src_periph);
}
#endif
ASSERT(inst == periph_inst, "Mismatch inst in chan=0x%02x and src periph %d", cfg->ch, cfg->src_periph);
}
if (type == HAL_DMA_FLOW_M2M_DMA || type == HAL_DMA_FLOW_P2M_DMA ||
type == HAL_DMA_FLOW_P2M_PERIPH) {
dst_periph = 0;
} else {
ret = get_index_from_periph(cfg->dst_periph, &periph_inst, &dst_periph);
ASSERT(ret == 0, "Failed to get dst periph: %d", cfg->dst_periph);
#ifdef DMA_REMAP
if (periph_remap_bitmap[periph_inst] & (1 << dst_periph)) {
periph_inst ^= 1;
ret = get_remap_index_from_periph(periph_inst, cfg->dst_periph, &dst_periph);
ASSERT(ret == 0, "Failed to get remap dst periph: %d", cfg->dst_periph);
}
#endif
ASSERT(inst == periph_inst, "Mismatch inst in chan=0x%02x and dst periph %d", cfg->ch, cfg->dst_periph);
}
if (!chan_enabled[inst][hwch]) {
// Not acquired
return HAL_DMA_ERR;
}
if (hal_dma_chan_busy_inst(inst, hwch)) {
// Busy
return HAL_DMA_ERR;
}
if (cfg->handler == NULL) {
irq_mask = 0;
} else {
irq_mask = DMA_CONFIG_ERR_IRQMASK | DMA_CONFIG_TC_IRQMASK;
handler[inst][hwch] = cfg->handler;
}
try_burst = cfg->try_burst ? DMA_CONFIG_TRY_BURST : 0;
/* Reset the Interrupt status */
dma[inst]->INTTCCLR = DMA_STAT_CHAN(hwch);
dma[inst]->INTERRCLR = DMA_STAT_CHAN(hwch);
dma[inst]->CH[hwch].SRCADDR = desc->src;
dma[inst]->CH[hwch].DSTADDR = desc->dst;
dma[inst]->CH[hwch].LLI = desc->lli;
dma[inst]->CH[hwch].CONTROL = desc->ctrl;
dma[inst]->CH[hwch].CONFIG = DMA_CONFIG_SRCPERIPH(src_periph) |
DMA_CONFIG_DSTPERIPH(dst_periph) |
DMA_CONFIG_TRANSFERTYPE(type) |
irq_mask |
try_burst;
#ifndef CHIP_BEST1000
if (src_2d) {
dma[inst]->_2D[hwch].SRCX = DMA_2D_MODIFY(src_2d->xmodify) | DMA_2D_COUNT(src_2d->xcount);
dma[inst]->_2D[hwch].SRCY = DMA_2D_MODIFY(src_2d->ymodify) | DMA_2D_COUNT(src_2d->ycount);
dma[inst]->_2D[hwch].CTRL |= DMA_2D_CTRL_SRC_EN;
} else {
dma[inst]->_2D[hwch].CTRL &= ~DMA_2D_CTRL_SRC_EN;
}
if (dst_2d) {
dma[inst]->_2D[hwch].DSTX = DMA_2D_MODIFY(dst_2d->xmodify) | DMA_2D_COUNT(dst_2d->xcount);
dma[inst]->_2D[hwch].DSTY = DMA_2D_MODIFY(dst_2d->ymodify) | DMA_2D_COUNT(dst_2d->ycount);
dma[inst]->_2D[hwch].CTRL |= DMA_2D_CTRL_DST_EN;
} else {
dma[inst]->_2D[hwch].CTRL &= ~DMA_2D_CTRL_DST_EN;
}
#endif
lock = int_lock();
if (cfg->start_cb) {
cfg->start_cb(cfg->ch);
}
dma[inst]->CH[hwch].CONFIG |= DMA_CONFIG_EN;
int_unlock(lock);
return HAL_DMA_OK;
}
enum HAL_DMA_RET_T hal_dma_sg_start(const struct HAL_DMA_DESC_T *desc,
const struct HAL_DMA_CH_CFG_T *cfg)
{
return hal_dma_sg_2d_start(desc, cfg, NULL, NULL);
}
enum HAL_DMA_RET_T hal_dma_start(const struct HAL_DMA_CH_CFG_T *cfg)
{
struct HAL_DMA_DESC_T desc;
enum HAL_DMA_RET_T ret;
ret = hal_dma_init_desc(&desc, cfg, NULL, 1);
if (ret != HAL_DMA_OK) {
return ret;
}
ret = hal_dma_sg_start(&desc, cfg);
if (ret != HAL_DMA_OK) {
return ret;
}
return HAL_DMA_OK;
}
uint32_t hal_dma_cancel(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint32_t remains;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
dma[inst]->CH[hwch].CONFIG &= ~DMA_CONFIG_EN;
dma[inst]->INTTCCLR = DMA_STAT_CHAN(hwch);
dma[inst]->INTERRCLR = DMA_STAT_CHAN(hwch);
remains = GET_BITFIELD(dma[inst]->CH[hwch].CONTROL, DMA_CONTROL_TRANSFERSIZE);
return remains;
}
uint32_t hal_dma_stop(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint8_t retry = 0;
const uint8_t max_retry = 10;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
dma[inst]->CH[hwch].CONFIG |= DMA_CONFIG_HALT;
#if 1
while ((dma[inst]->CH[hwch].CONFIG & DMA_CONFIG_ACTIVE) && (++retry < max_retry)) {
if (retry <= 3) {
hal_sys_timer_delay_us(10);
} else {
hal_dma_delay(1);
}
}
#else
while (dma[inst]->CH[hwch].CONFIG & DMA_CONFIG_ACTIVE);
#endif
return hal_dma_cancel(ch);
}
uint8_t hal_dma_get_chan(enum HAL_DMA_PERIPH_T periph, enum HAL_DMA_GET_CHAN_T policy)
{
enum HAL_DMA_INST_T inst;
int ret;
uint8_t i, hwch;
uint8_t got = HAL_DMA_CHAN_NONE;
uint32_t lock;
ASSERT(policy == HAL_DMA_HIGH_PRIO || policy == HAL_DMA_LOW_PRIO || policy == HAL_DMA_LOW_PRIO_ONLY,
"Invalid DMA policy: %d", policy);
if (periph == HAL_GPDMA_MEM) {
inst = HAL_DMA_INST_GPDMA;
} else if (periph == HAL_AUDMA_MEM) {
inst = HAL_DMA_INST_AUDMA;
} else {
ret = get_index_from_periph(periph, &inst, &i);
ASSERT(ret == 0, "Invalid DMA periph: %d", periph);
#ifdef DMA_REMAP
if (periph_remap_bitmap[inst] & (1 << i)) {
inst ^= 1;
}
#endif
}
lock = int_lock();
for (i = 0; i < DMA_NUMBER_CHANNELS; i++) {
if (policy == HAL_DMA_HIGH_PRIO) {
hwch = i;
} else if (policy == HAL_DMA_LOW_PRIO) {
hwch = DMA_NUMBER_CHANNELS - 1 - i;
} else {
hwch = DMA_NUMBER_CHANNELS - 1 - i;
if (hwch < 6) {
break;
}
}
if (!chan_enabled[inst][hwch] && !hal_dma_chan_busy_inst(inst, hwch)) {
chan_enabled[inst][hwch] = true;
got = generate_chan(inst, hwch);
dma[inst]->DMACONFIG |= DMA_DMACONFIG_CLK_EN(1 << hwch);
break;
}
}
int_unlock(lock);
return got;
}
void hal_dma_free_chan(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint32_t lock;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
ASSERT(chan_enabled[inst][hwch], "DMA chan not enabled: inst=%u hwch=%u", inst, hwch);
hal_dma_cancel(ch);
lock = int_lock();
chan_enabled[inst][hwch] = false;
dma[inst]->DMACONFIG &= ~DMA_DMACONFIG_CLK_EN(1 << hwch);
int_unlock(lock);
}
uint32_t hal_dma_get_cur_src_addr(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
return dma[inst]->CH[hwch].SRCADDR;
}
uint32_t hal_dma_get_cur_dst_addr(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
return dma[inst]->CH[hwch].DSTADDR;
}
void SRAM_TEXT_LOC hal_dma_get_cur_src_remain_and_addr(uint8_t ch, uint32_t *remain, uint32_t *src)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint32_t lock;
uint32_t size[2];
uint32_t srcaddr[2];
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
lock = int_lock();
size[0] = dma[inst]->CH[hwch].CONTROL;
srcaddr[0] = dma[inst]->CH[hwch].SRCADDR;
size[1] = dma[inst]->CH[hwch].CONTROL;
srcaddr[1] = dma[inst]->CH[hwch].SRCADDR;
int_unlock(lock);
size[0] = GET_BITFIELD(size[0], DMA_CONTROL_TRANSFERSIZE);
size[1] = GET_BITFIELD(size[1], DMA_CONTROL_TRANSFERSIZE);
if (size[0] == size[1]) {
*remain = size[0];
*src = srcaddr[0];
} else {
*remain = size[1];
*src = srcaddr[1];
}
return;
}
enum HAL_DMA_RET_T hal_dma_irq_run_chan(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
if ((dma[inst]->INTSTAT & DMA_STAT_CHAN(hwch)) == 0) {
return HAL_DMA_ERR;
}
hal_dma_handle_chan_irq(inst, hwch);
return HAL_DMA_OK;
}
bool hal_dma_chan_busy(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
return hal_dma_chan_busy_inst(inst, hwch);
}
bool hal_dma_busy(void)
{
enum HAL_DMA_INST_T inst;
int hwch;
for (inst = HAL_DMA_INST_AUDMA; inst < HAL_DMA_INST_QTY; inst++) {
for (hwch = chan_start[inst]; hwch < chan_num[inst]; hwch++) {
if (hal_dma_chan_busy_inst(inst, hwch)) {
return true;
}
}
}
return false;
}
uint32_t hal_dma_get_sg_remain_size(uint8_t ch)
{
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint32_t remains;
const struct HAL_DMA_DESC_T *desc, *first;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
remains = GET_BITFIELD(dma[inst]->CH[hwch].CONTROL, DMA_CONTROL_TRANSFERSIZE);
first = (const struct HAL_DMA_DESC_T *)dma[inst]->CH[hwch].LLI;
desc = first;
while (desc) {
remains += GET_BITFIELD(desc->ctrl, DMA_CONTROL_TRANSFERSIZE);
desc = (const struct HAL_DMA_DESC_T *)desc->lli;
if (desc == first) {
break;
}
}
return remains;
}
void hal_dma_tc_irq_enable(uint8_t ch)
{
#if !(defined(CHIP_BEST1000) || defined(CHIP_BEST2000) || defined(CHIP_BEST3001) || defined(CHIP_BEST3005))
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint32_t lock;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
lock = int_lock();
#ifdef CHIP_BEST2300
if (inst == HAL_DMA_INST_AUDMA) {
hal_cmu_dma_tc_irq_set_chan(hwch);
}
#else
dma[inst]->DMACONFIG |= DMA_DMACONFIG_TC_IRQ_EN(1 << hwch);
#endif
int_unlock(lock);
#endif
}
void hal_dma_tc_irq_disable(uint8_t ch)
{
#if !(defined(CHIP_BEST1000) || defined(CHIP_BEST2000) || defined(CHIP_BEST3001) || defined(CHIP_BEST3005))
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint32_t lock;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
lock = int_lock();
#ifdef CHIP_BEST2300
if (inst == HAL_DMA_INST_AUDMA) {
hal_cmu_dma_tc_irq_clear_chan(hwch);
}
#else
dma[inst]->DMACONFIG &= ~DMA_DMACONFIG_TC_IRQ_EN(1 << hwch);
#endif
int_unlock(lock);
#endif
}
void hal_dma_set_burst_addr_inc(uint8_t ch, const struct HAL_DMA_BURST_ADDR_INC_T *inc)
{
#if !(defined(CHIP_BEST1000) || defined(CHIP_BEST2000) || defined(CHIP_BEST3001) || defined(CHIP_BEST3005))
enum HAL_DMA_INST_T inst;
uint8_t hwch;
uint32_t lock;
inst = get_inst_from_chan(ch);
hwch = get_hwch_from_chan(ch);
ASSERT(inst < HAL_DMA_INST_QTY, err_invalid_inst, inst);
ASSERT(hwch < DMA_NUMBER_CHANNELS, err_invalid_chan[inst], hwch);
lock = int_lock();
if (inc && inc->src_inc_en) {
dma[inst]->CH[hwch].CONTROL |= DMA_CONTROL_BURST_SI;
dma[inst]->_2D[hwch].SRC_INC = SET_BITFIELD(dma[inst]->_2D[hwch].SRC_INC, DMA_BURST_SRC_INC_VAL, inc->src_inc_val);
} else {
dma[inst]->CH[hwch].CONTROL &= ~DMA_CONTROL_BURST_SI;
}
if (inc && inc->dst_inc_en) {
dma[inst]->CH[hwch].CONTROL |= DMA_CONTROL_BURST_DI;
dma[inst]->_2D[hwch].DST_INC = SET_BITFIELD(dma[inst]->_2D[hwch].DST_INC, DMA_BURST_DST_INC_VAL, inc->dst_inc_val);
} else {
dma[inst]->CH[hwch].CONTROL &= ~DMA_CONTROL_BURST_DI;
}
int_unlock(lock);
#endif
}
void hal_dma_clear_burst_addr_inc(uint8_t ch)
{
hal_dma_set_burst_addr_inc(ch, NULL);
}
void hal_dma_set_desc_burst_addr_inc(struct HAL_DMA_DESC_T *desc, const struct HAL_DMA_BURST_ADDR_INC_T *inc)
{
#if !(defined(CHIP_BEST1000) || defined(CHIP_BEST2000) || defined(CHIP_BEST3001) || defined(CHIP_BEST3005))
if (inc && inc->src_inc_en) {
desc->ctrl |= DMA_CONTROL_BURST_SI;
} else {
desc->ctrl &= ~DMA_CONTROL_BURST_SI;
}
if (inc && inc->dst_inc_en) {
desc->ctrl |= DMA_CONTROL_BURST_DI;
} else {
desc->ctrl &= ~DMA_CONTROL_BURST_DI;
}
#endif
}
void hal_dma_clear_desc_burst_addr_inc(struct HAL_DMA_DESC_T *desc)
{
hal_dma_set_desc_burst_addr_inc(desc, NULL);
}
#ifdef DMA_REMAP
void hal_dma_remap_periph(enum HAL_DMA_PERIPH_T periph, int enable)
{
enum HAL_DMA_INST_T inst1, inst2;
uint8_t index1, index2;
int ret;
uint32_t lock;
// Tag the periph
ret = get_index_from_periph(periph, &inst1, &index1);
ASSERT(ret == 0, "Invalid DMA periph for remap1: %d", periph);
// Tag the peer periph
inst2 = inst1 ^ 1;
ret = get_remap_index_from_periph(inst2, periph, &index2);
ASSERT(ret == 0, "Invalid DMA periph for remap2: %d", periph);
lock = int_lock();
if (enable) {
periph_remap_bitmap[inst1] |= (1 << index1);
periph_remap_bitmap[inst2] |= (1 << index2);
#ifndef CHIP_BEST1000
// For best2000, index1 == index2
hal_cmu_dma_swap_enable(index1);
#endif
} else {
periph_remap_bitmap[inst1] &= ~(1 << index1);
periph_remap_bitmap[inst2] &= ~(1 << index2);
#ifndef CHIP_BEST1000
hal_cmu_dma_swap_disable(index1);
#endif
}
int_unlock(lock);
}
#endif
void hal_dma_open(void)
{
enum HAL_DMA_INST_T inst;
if (dma_opened) {
return;
}
for (inst = 0; inst < HAL_DMA_INST_QTY; inst++) {
hal_dma_open_inst(inst);
}
#ifdef DMA_REMAP
#ifdef CHIP_BEST1000
if (hal_get_chip_metal_id() >= HAL_CHIP_METAL_ID_4) {
hal_dma_remap_periph(HAL_AUDMA_I2S0_RX, 1);
hal_dma_remap_periph(HAL_AUDMA_I2S0_TX, 1);
hal_dma_remap_periph(HAL_AUDMA_SPDIF0_RX, 1);
hal_dma_remap_periph(HAL_AUDMA_SPDIF0_TX, 1);
}
#endif
#endif
dma_opened = true;
}
void hal_dma_close(void)
{
enum HAL_DMA_INST_T inst;
if (!dma_opened) {
return;
}
for (inst = 0; inst < HAL_DMA_INST_QTY; inst++) {
hal_dma_close_inst(inst);
}
dma_opened = false;
}
#ifdef CORE_SLEEP_POWER_DOWN
void hal_dma_sleep(void)
{
enum HAL_DMA_INST_T inst;
for (inst = 0; inst < HAL_DMA_INST_QTY; inst++) {
saved_dma_regs[inst] = dma[inst]->DMACONFIG;
}
}
void hal_dma_wakeup(void)
{
enum HAL_DMA_INST_T inst;
for (inst = 0; inst < HAL_DMA_INST_QTY; inst++) {
dma[inst]->DMACONFIG = saved_dma_regs[inst];
}
}
#endif
HAL_DMA_DELAY_FUNC hal_dma_set_delay_func(HAL_DMA_DELAY_FUNC new_func)
{
HAL_DMA_DELAY_FUNC old_func = dma_delay;
dma_delay = new_func;
return old_func;
}