pinebuds/services/ble_profiles/glp/glpc/src/glpc.c

443 lines
13 KiB
C

/**
****************************************************************************************
* @addtogroup GLPC
* @{
****************************************************************************************
*/
/*
* INCLUDE FILES
****************************************************************************************
*/
#include "rwip_config.h"
#if (BLE_GL_COLLECTOR)
#include "glpc.h"
#include "glpc_task.h"
#include "gap.h"
#include "ke_mem.h"
#include "co_utils.h"
/*
* TYPE DEFINITIONS
****************************************************************************************
*/
/*
* LOCAL FUNCTION DEFINITIONS
****************************************************************************************
*/
/**
****************************************************************************************
* @brief Initialization of the GLPC module.
* This function performs all the initializations of the Profile module.
* - Creation of database (if it's a service)
* - Allocation of profile required memory
* - Initialization of task descriptor to register application
* - Task State array
* - Number of tasks
* - Default task handler
*
* @param[out] env Collector or Service allocated environment data.
* @param[in|out] start_hdl Service start handle (0 - dynamically allocated), only applies for services.
* @param[in] app_task Application task number.
* @param[in] sec_lvl Security level (AUTH, EKS and MI field of @see enum attm_value_perm_mask)
* @param[in] param Configuration parameters of profile collector or service (32 bits aligned)
*
* @return status code to know if profile initialization succeed or not.
****************************************************************************************
*/
static uint8_t glpc_init (struct prf_task_env* env, uint16_t* start_hdl, uint16_t app_task, uint8_t sec_lvl, void* params)
{
uint8_t idx;
//-------------------- allocate memory required for the profile ---------------------
struct glpc_env_tag* glpc_env =
(struct glpc_env_tag* ) ke_malloc(sizeof(struct glpc_env_tag), KE_MEM_ATT_DB);
// allocate GLPC required environment variable
env->env = (prf_env_t*) glpc_env;
glpc_env->prf_env.app_task = app_task
| (PERM_GET(sec_lvl, SVC_MI) ? PERM(PRF_MI, ENABLE) : PERM(PRF_MI, DISABLE));
glpc_env->prf_env.prf_task = env->task | PERM(PRF_MI, ENABLE);
// initialize environment variable
env->id = TASK_ID_GLPC;
glpc_task_init(&(env->desc));
for(idx = 0; idx < GLPC_IDX_MAX ; idx++)
{
glpc_env->env[idx] = NULL;
// service is ready, go into an Idle state
ke_state_set(KE_BUILD_ID(env->task, idx), GLPC_FREE);
}
return GAP_ERR_NO_ERROR;
}
/**
****************************************************************************************
* @brief Destruction of the GLPC module - due to a reset for instance.
* This function clean-up allocated memory (attribute database is destroyed by another
* procedure)
*
* @param[in|out] env Collector or Service allocated environment data.
****************************************************************************************
*/
static void glpc_destroy(struct prf_task_env* env)
{
uint8_t idx;
struct glpc_env_tag* glpc_env = (struct glpc_env_tag*) env->env;
// cleanup environment variable for each task instances
for(idx = 0; idx < GLPC_IDX_MAX ; idx++)
{
if(glpc_env->env[idx] != NULL)
{
ke_free(glpc_env->env[idx]);
}
}
// free profile environment variables
env->env = NULL;
ke_free(glpc_env);
}
/**
****************************************************************************************
* @brief Handles Connection creation
*
* @param[in|out] env Collector or Service allocated environment data.
* @param[in] conidx Connection index
****************************************************************************************
*/
static void glpc_create(struct prf_task_env* env, uint8_t conidx)
{
/* Put GLP Client in Idle state */
ke_state_set(KE_BUILD_ID(env->task, conidx), GLPC_IDLE);
}
/**
****************************************************************************************
* @brief Handles Disconnection
*
* @param[in|out] env Collector or Service allocated environment data.
* @param[in] conidx Connection index
* @param[in] reason Detach reason
****************************************************************************************
*/
static void glpc_cleanup(struct prf_task_env* env, uint8_t conidx, uint8_t reason)
{
struct glpc_env_tag* glpc_env = (struct glpc_env_tag*) env->env;
// clean-up environment variable allocated for task instance
if(glpc_env->env[conidx] != NULL)
{
ke_free(glpc_env->env[conidx]);
glpc_env->env[conidx] = NULL;
}
/* Put GLP Client in Free state */
ke_state_set(KE_BUILD_ID(env->task, conidx), GLPC_FREE);
}
/*
* GLOBAL VARIABLE DEFINITIONS
****************************************************************************************
*/
/// GLPC Task interface required by profile manager
const struct prf_task_cbs glpc_itf =
{
glpc_init,
glpc_destroy,
glpc_create,
glpc_cleanup,
};
/*
* EXPORTED FUNCTIONS DEFINITIONS
****************************************************************************************
*/
const struct prf_task_cbs* glpc_prf_itf_get(void)
{
return &glpc_itf;
}
void glpc_enable_rsp_send(struct glpc_env_tag *glpc_env, uint8_t conidx, uint8_t status)
{
// Send to APP the details of the discovered attributes on GLPS
struct glpc_enable_rsp * rsp = KE_MSG_ALLOC(GLPC_ENABLE_RSP,
prf_dst_task_get(&(glpc_env->prf_env), conidx),
prf_src_task_get(&(glpc_env->prf_env), conidx),
glpc_enable_rsp);
rsp->status = status;
if (status == GAP_ERR_NO_ERROR)
{
rsp->gls = glpc_env->env[conidx]->gls;
// Register GLPC task in gatt for indication/notifications
prf_register_atthdl2gatt(&(glpc_env->prf_env), conidx, &(glpc_env->env[conidx]->gls.svc));
// Go to IDLE state
ke_state_set(prf_src_task_get(&(glpc_env->prf_env), conidx), GLPC_IDLE);
}
ke_msg_send(rsp);
}
uint8_t glpc_unpack_meas_value(uint8_t *packed_meas, struct glp_meas* meas_val,
uint16_t *seq_num)
{
uint8_t cursor = 0;
// Flags
meas_val->flags = packed_meas[cursor];
cursor += 1;
// Sequence Number
*seq_num = co_read16p(packed_meas + cursor);
cursor += 2;
// Base Time
cursor += prf_unpack_date_time(packed_meas + cursor, &(meas_val->base_time));
//Time Offset
if((meas_val->flags & GLP_MEAS_TIME_OFF_PRES) != 0)
{
meas_val->time_offset = co_read16p(packed_meas + cursor);
cursor += 2;
}
// Glucose Concentration, type and location
if((meas_val->flags & GLP_MEAS_GL_CTR_TYPE_AND_SPL_LOC_PRES) != 0)
{
meas_val->concentration = co_read16p(packed_meas + cursor);
cursor += 2;
/* type and location are 2 nibble values */
meas_val->location = packed_meas[cursor] >> 4;
meas_val->type = packed_meas[cursor] & 0xF;
cursor += 1;
}
// Sensor Status Annunciation
if((meas_val->flags & GLP_MEAS_SENS_STAT_ANNUN_PRES) != 0)
{
meas_val->status = co_read16p(packed_meas + cursor);
cursor += 2;
}
return cursor;}
uint8_t glpc_unpack_meas_ctx_value(uint8_t *packed_meas_ctx,
struct glp_meas_ctx* meas_ctx_val,
uint16_t* seq_num)
{
uint8_t cursor = 0;
// Flags
meas_ctx_val->flags = packed_meas_ctx[cursor];
cursor += 1;
// Sequence Number
*seq_num = co_read16p(packed_meas_ctx + cursor);
cursor += 2;
// Extended Flags
if((meas_ctx_val->flags & GLP_CTX_EXTD_F_PRES) != 0)
{
meas_ctx_val->ext_flags = packed_meas_ctx[cursor];
cursor += 1;
}
// Carbohydrate ID And Carbohydrate Present
if((meas_ctx_val->flags & GLP_CTX_CRBH_ID_AND_CRBH_PRES) != 0)
{
// Carbohydrate ID
meas_ctx_val->carbo_id = packed_meas_ctx[cursor];
cursor += 1;
// Carbohydrate Present
meas_ctx_val->carbo_val = co_read16p(packed_meas_ctx + cursor);
cursor += 2;
}
// Meal Present
if((meas_ctx_val->flags & GLP_CTX_MEAL_PRES) != 0)
{
meas_ctx_val->meal = packed_meas_ctx[cursor];
cursor += 1;
}
// Tester-Health Present
if((meas_ctx_val->flags & GLP_CTX_TESTER_HEALTH_PRES) != 0)
{
// Tester and Health are 2 nibble values
meas_ctx_val->health = packed_meas_ctx[cursor] >> 4;
meas_ctx_val->tester = packed_meas_ctx[cursor] & 0xF;
cursor += 1;
}
// Exercise Duration & Exercise Intensity Present
if((meas_ctx_val->flags & GLP_CTX_EXE_DUR_AND_EXE_INTENS_PRES) != 0)
{
// Exercise Duration
meas_ctx_val->exercise_dur = co_read16p(packed_meas_ctx + cursor);
cursor += 2;
// Exercise Intensity
meas_ctx_val->exercise_intens = packed_meas_ctx[cursor];
cursor += 1;
}
// Medication ID And Medication Present
if((meas_ctx_val->flags & GLP_CTX_MEDIC_ID_AND_MEDIC_PRES) != 0)
{
// Medication ID
meas_ctx_val->med_id = packed_meas_ctx[cursor];
cursor += 1;
// Medication Present
meas_ctx_val->med_val = co_read16p(packed_meas_ctx + cursor);
cursor += 2;
}
// HbA1c Present
if((meas_ctx_val->flags & GLP_CTX_HBA1C_PRES) != 0)
{
// HbA1c
meas_ctx_val->hba1c_val = co_read16p(packed_meas_ctx + cursor);
cursor += 2;
}
return cursor;
}
uint8_t glpc_pack_racp_req(uint8_t *packed_val,
const struct glp_racp_req* racp_req)
{
uint8_t cursor = 0;
// command op code
packed_val[cursor] = racp_req->op_code;
cursor++;
// operator of the function
packed_val[cursor] = racp_req->filter.operator;
cursor++;
// Abort operation don't require any other parameter
if(racp_req->op_code == GLP_REQ_ABORT_OP)
{
return cursor;
}
// check if request requires operand (filter)
if((racp_req->filter.operator >= GLP_OP_LT_OR_EQ)
&& (racp_req->filter.operator <= GLP_OP_WITHIN_RANGE_OF))
{
// command filter type
packed_val[cursor] = racp_req->filter.filter_type;
cursor++;
// filter uses sequence number
if(racp_req->filter.filter_type == GLP_FILTER_SEQ_NUMBER)
{
// minimum value
if((racp_req->filter.operator == GLP_OP_GT_OR_EQ)
|| (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF))
{
// minimum value
co_write16p(packed_val + cursor,racp_req->filter.val.seq_num.min);
cursor +=2;
}
// maximum value
if((racp_req->filter.operator == GLP_OP_LT_OR_EQ)
|| (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF))
{
// maximum value
co_write16p(packed_val + cursor,racp_req->filter.val.seq_num.max);
cursor +=2;
}
}
// filter uses user facing time
else
{
// retrieve minimum value
if((racp_req->filter.operator == GLP_OP_GT_OR_EQ)
|| (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF))
{
// retrieve minimum facing time
cursor += prf_pack_date_time((packed_val + cursor),
&(racp_req->filter.val.time.facetime_min));
}
// retrieve maximum value
if((racp_req->filter.operator == GLP_OP_LT_OR_EQ)
|| (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF))
{
// retrieve maximum facing time
cursor += prf_pack_date_time((packed_val + cursor),
&(racp_req->filter.val.time.facetime_max));
}
}
}
return cursor;
}
uint8_t glpc_unpack_racp_rsp(uint8_t *packed_val,
struct glp_racp_rsp* racp_rsp)
{
uint8_t cursor = 0;
// response op code
racp_rsp->op_code = packed_val[cursor];
cursor++;
// operator (null)
cursor++;
// number of records
if(racp_rsp->op_code == GLP_REQ_NUM_OF_STRD_RECS_RSP)
{
racp_rsp->operand.num_of_record = co_read16p(packed_val + cursor);
cursor += 2;
}
else
{
// requested opcode
racp_rsp->operand.rsp.op_code_req = packed_val[cursor];
cursor++;
// command status
racp_rsp->operand.rsp.status = packed_val[cursor];
cursor++;
}
return cursor;
}
uint8_t glpc_validate_request(struct glpc_env_tag *glpc_env, uint8_t conidx, uint8_t char_code)
{
uint8_t status = GAP_ERR_NO_ERROR;
// check if feature val characteristic exists
if(glpc_env->env[conidx]->gls.chars[char_code].val_hdl == ATT_INVALID_HANDLE)
{
status = PRF_ERR_INEXISTENT_HDL;
}
return (status);
}
#endif /* (BLE_GL_COLLECTOR) */
/// @} GLPC