pinebuds/platform/drivers/bt/best2300p/iqcorrect.c
Ben V. Brown 75381150fd Formatting
Formatting Pass 1

Lots of fixups to adding stdint and stdbool all over the place

Formatting Pass 2
Formatting Pass 3
Formatting Pass 4

Update app_bt_stream.cpp
2023-02-02 07:56:49 +11:00

913 lines
28 KiB
C

#ifdef RTOS
#include <math.h>
#include <stdio.h>
#include "hal_dma.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "heap_api.h"
#include "bt_drv.h"
#include "cmsis_os.h"
#include "hal_btdump.h"
#include "iqcorrect.h"
#include "nvrecord.h"
#include "nvrecord_dev.h"
#include "nvrecord_env.h"
#include "string.h"
#ifdef TX_IQ_CAL
#define LOG_MODULE HAL_TRACE_MODULE_APP
#define NTbl (1024)
#define fftSize 1024
#define bitshift 10
#define pi (3.1415926535898)
#define min(a, b) (((a) < (b)) ? (a) : (b))
#define READ_REG(b, a) *(volatile uint32_t *)(b + a)
#define WRITE_REG(v, b, a) *(volatile uint32_t *)(b + a) = v
#define BUF_SIZE (1024)
#define MAX_COUNT 5
volatile int iqimb_dma_status = 0;
// short M0data[BUF_SIZE];
#define MED_MEM_POOL_SIZE (20 * 1024)
static uint8_t *g_medMemPool = NULL;
extern void *rt_malloc(unsigned int size);
extern void rt_free(void *rmem);
typedef struct ComplexInt_ {
int re;
int im;
} ComplexInt;
typedef struct Complexflt_ {
float re;
float im;
} ComplexFlt;
typedef struct ComplexShort_ {
short re;
short im;
} ComplexShort;
#ifdef DCCalib
static void Tblgen(ComplexShort *w0, ComplexShort *w1, ComplexShort *w2,
int len) {
for (int i = 0; i < len; i++) {
w0[i].re = (short)(cos(2 * pi * i / (2048.0 / 32)) * 32767);
w0[i].im = (short)(sin(2 * pi * i / (2048.0 / 32)) * 32767);
w1[i].re = (short)(cos(2 * pi * i / (2048.0 / 31)) * 32767);
w1[i].im = (short)(sin(2 * pi * i / (2048.0 / 31)) * 32767);
w2[i].re = (short)(cos(2 * pi * i / (2048.0 / 33)) * 32767);
w2[i].im = (short)(sin(2 * pi * i / (2048.0 / 33)) * 32767);
}
}
#endif
static void Tblgen_iq(ComplexShort *w0, ComplexShort *w1, ComplexShort *w2,
int len) {
for (int i = 0; i < len; i++) {
w0[i].re = (short)(cos(2 * pi * i / (2048.0 / 64)) * 32767);
w0[i].im = (short)(sin(2 * pi * i / (2048.0 / 64)) * 32767);
w1[i].re = (short)(cos(2 * pi * i / (2048.0 / 63)) * 32767);
w1[i].im = (short)(sin(2 * pi * i / (2048.0 / 63)) * 32767);
w2[i].re = (short)(cos(2 * pi * i / (2048.0 / 65)) * 32767);
w2[i].im = (short)(sin(2 * pi * i / (2048.0 / 65)) * 32767);
}
}
/*
typedef struct IQMismatchPreprocessState_
{
short *M0data;
ComplexShort *Table0;
ComplexShort *Table1;
ComplexShort *Table2;
} IQMismatchPreprocessState;
IQMismatchPreprocessState st_g;
short st_M0data[fftSize];
short st_Table0[2*NTbl];
short st_Table1[2*NTbl];
short st_Table2[2*NTbl];
IQMismatchPreprocessState *st;
IQMismatchPreprocessState *IQMismatchPreprocessState_init(int Cohcnt)
{
st_g.M0data = st_M0data;
st_g.Table0= st_Table0;
st_g.Table1= st_Table1;
st_g.Table2= st_Table2;
return &st_g;
}
*/
typedef struct IQMismatchPreprocessState_ {
short *M0data;
ComplexShort *Table0;
ComplexShort *Table1;
ComplexShort *Table2;
} IQMismatchPreprocessState;
IQMismatchPreprocessState *IQMismatchPreprocessState_init(int fft_size) {
BT_DRV_TRACE(0, "malloc ini");
IQMismatchPreprocessState *st = (IQMismatchPreprocessState *)med_calloc(
1, sizeof(IQMismatchPreprocessState));
st->M0data = (short *)med_calloc(fft_size, sizeof(short));
st->Table0 = (ComplexShort *)med_calloc(fft_size, sizeof(ComplexShort));
st->Table1 = (ComplexShort *)med_calloc(fft_size, sizeof(ComplexShort));
st->Table2 = (ComplexShort *)med_calloc(fft_size, sizeof(ComplexShort));
BT_DRV_TRACE(
5, "st:%p, st->M0data:%p, st->Table0:%p, st->Table1:%p, st->Table2:%p",
st, st->M0data, st->Table0, st->Table1, st->Table2);
BT_DRV_TRACE(0, "malloc ok");
return st;
}
int32_t IQMismatchPreprocessState_destroy(IQMismatchPreprocessState *st) {
BT_DRV_TRACE(
5, "st:%p, st->M0data:%p, st->Table0:%p, st->Table1:%p, st->Table2:%p",
st, st->M0data, st->Table0, st->Table1, st->Table2);
med_free(st->M0data);
med_free(st->Table0);
med_free(st->Table1);
med_free(st->Table2);
med_free(st);
return 0;
}
int IQMismatchParameterCalc_ex(short *M0data, short Cohcnt,
ComplexShort *Table0, ComplexShort *Table1,
ComplexShort *Table2, int fftsize) {
int i, j, k;
float M0 = 0;
// ComplexInt tmp0;
ComplexFlt tmp0;
ComplexFlt tmp1;
ComplexFlt tmp2;
for (j = 0; j < Cohcnt; j++) {
tmp0.re = 0.0f;
tmp0.im = 0.0f;
tmp1.re = 0.0f;
tmp1.im = 0.0f;
tmp2.re = 0.0f;
tmp2.im = 0.0f;
k = 0;
for (i = 0; i < fftsize; i++) {
if (k >= fftsize)
k = 0;
tmp0.re = tmp0.re + (((int)M0data[i] * (int)Table0[k].re) >> 15);
tmp0.im = tmp0.im + (((int)M0data[i] * (int)Table0[k].im) >> 15);
tmp1.re = tmp1.re + (((int)M0data[i] * (int)Table1[k].re) >> 15);
tmp1.im = tmp1.im + (((int)M0data[i] * (int)Table1[k].im) >> 15);
tmp2.re = tmp2.re + (((int)M0data[i] * (int)Table2[k].re) >> 15);
tmp2.im = tmp2.im + (((int)M0data[i] * (int)Table2[k].im) >> 15);
k = k + 1;
}
tmp0.re = tmp0.re / fftsize; // >> bitshift;
tmp0.im = tmp0.im / fftsize; // >>bitshift;
tmp1.re = tmp1.re / fftsize; // >> bitshift;
tmp1.im = tmp1.im / fftsize; // >>bitshift;
tmp2.re = tmp2.re / fftsize; // >> bitshift;
tmp2.im = tmp2.im / fftsize; // >>bitshift;
M0 = M0 + tmp0.re * tmp0.re + tmp0.im * tmp0.im;
M0 = M0 + tmp1.re * tmp1.re + tmp1.im * tmp1.im;
M0 = M0 + tmp2.re * tmp2.re + tmp2.im * tmp2.im;
}
return (int)(M0 / Cohcnt);
}
void caculate_energy_main_test(IQMismatchPreprocessState *st, int *Energy,
int *Energy1, int fftsize) {
short Cohcnt = 1;
*Energy1 = IQMismatchParameterCalc_ex(st->M0data, Cohcnt, st->Table0,
st->Table1, st->Table2, fftsize);
}
static struct HAL_DMA_DESC_T iqimb_dma_desc[1];
static void iqimb_dma_dout_handler(uint32_t remains, uint32_t error,
struct HAL_DMA_DESC_T *lli) {
hal_audma_free_chan(0);
hal_btdump_disable();
iqimb_dma_status = 0;
return;
}
int bt_iqimb_dma_enable(short *dma_dst_data, uint16_t size) {
struct HAL_DMA_CH_CFG_T iqimb_dma_cfg;
// BT_DRV_TRACE(0,"bt_iqimb_dma_enable :");
iqimb_dma_status = 1;
memset(&iqimb_dma_cfg, 0, sizeof(iqimb_dma_cfg));
// iqimb_dma_cfg.ch = hal_audma_get_chan(HAL_AUDMA_DSD_RX,HAL_DMA_HIGH_PRIO);
iqimb_dma_cfg.ch = hal_audma_get_chan(HAL_AUDMA_BTDUMP, HAL_DMA_HIGH_PRIO);
iqimb_dma_cfg.dst_bsize = HAL_DMA_BSIZE_16;
iqimb_dma_cfg.dst_periph = 0; // useless
iqimb_dma_cfg.dst_width = HAL_DMA_WIDTH_WORD;
iqimb_dma_cfg.handler = (HAL_DMA_IRQ_HANDLER_T)iqimb_dma_dout_handler;
iqimb_dma_cfg.src = 0; // useless
iqimb_dma_cfg.src_bsize = HAL_DMA_BSIZE_4;
// iqimb_dma_cfg.src_periph = HAL_AUDMA_DSD_RX;
iqimb_dma_cfg.src_periph = HAL_AUDMA_BTDUMP;
iqimb_dma_cfg.src_tsize = size; // 1600; //1600*2/26=123us
iqimb_dma_cfg.src_width = HAL_DMA_WIDTH_WORD;
// iqimb_dma_cfg.src_width = HAL_DMA_WIDTH_HALFWORD;
iqimb_dma_cfg.try_burst = 1;
iqimb_dma_cfg.type = HAL_DMA_FLOW_P2M_DMA;
iqimb_dma_cfg.dst = (uint32_t)(dma_dst_data);
hal_audma_init_desc(&iqimb_dma_desc[0], &iqimb_dma_cfg, 0, 1);
hal_audma_sg_start(&iqimb_dma_desc[0], &iqimb_dma_cfg);
// configed after mismatch parameter done, or apb clock muxed.
// wait
for (volatile int i = 0; i < 5000; i++)
;
hal_btdump_enable();
return 1;
}
int bt_iqimb_ini() {
uint32_t val;
BT_DRV_TRACE(0, "bt_iqimb_ini :");
// config gpadc 26m
val = READ_REG(0xd0350208, 0x0);
val &= 0xffefffff; // bit20
val |= (1 << 18); // reg_gclk_en(BTM_CLK_26RXNFMI)
val &= 0xffbfffff; // bit22
val |= (1 << 20); // reg_gclk_en(BTM_CLK_26RXDUMP)
val &= 0xfdffffff; // bit25
val |= (1 << 25); // reg_gclk_en(BTM_CLK_26RXADC)
WRITE_REG(val, 0xd0350208, 0x0);
BT_DRV_TRACE(1, "0xd0350208 : 0x%08x", val);
val = READ_REG(0xd0350228, 0x0);
val &= 0xffefffff; // bit20
val |= (1 << 18); // reg_gclk_mode(BTM_CLK_26RXNFMI)
val &= 0xffbfffff; // bit22
val |= (1 << 20); // reg_gclk_mode(BTM_CLK_26RXDUMP)
val &= 0xfdffffff; // bit25
val |= (1 << 25); // reg_gclk_mode(BTM_CLK_26RXADC)
WRITE_REG(val, 0xd0350228, 0x0);
BT_DRV_TRACE(1, "0xd0350228 : 0x%08x", val);
// for rx mux to gpadc
val = READ_REG(0xd0350218, 0x0);
val &= 0xfffffff0; // bit3:0 1110 reg_diagcntl(3 downto 0)
val |= (0xe << 0);
val &= 0xfffffbff; // bit10 1 reg_diagcntl(10)
val |= (0x1 << 10);
WRITE_REG(val, 0xd0350218, 0x0);
BT_DRV_TRACE(1, "0xd0350218 : 0x%08x", val);
val = READ_REG(0xd0330024, 0x0);
val &= 0xfffffff7; // bit3:0 1110 reg_diagcntl(3 downto 0)
val |= (0x1 << 15);
WRITE_REG(val, 0xd0330024, 0x0);
BT_DRV_TRACE(1, "0xd0330024 : 0x%08x", val);
val = READ_REG(0xd0330034, 0x0);
val &= 0x03ffffff; // bit3:0 1110 reg_diagcntl(3 downto 0)
val |= (0x1b << 26);
WRITE_REG(val, 0xd0330034, 0x0);
BT_DRV_TRACE(1, "0xd0330034 : 0x%08x", val);
WRITE_REG(0x002eb948, 0xd0350364, 0x0);
val = READ_REG(0xd0330038, 0x0);
val |= (0x1 << 24);
WRITE_REG(val, 0xd0330038, 0x0);
WRITE_REG(0, 0xc000033c, 0x0);
return 1;
}
void check_mem_data(void *data, int len) {
short *share_mem = (short *)data;
BT_DRV_TRACE(3, "check_mem_data :share_mem= %p, 0x%x, 0x%x", share_mem,
share_mem[0], share_mem[1]);
int16_t i = 0;
int16_t m = 0;
int16_t remain = len;
for (m = 0; m < 32; m++) {
for (i = 0; i < 32; i++) {
if (remain > 16) {
DUMP16("%04x ", share_mem, 16);
share_mem += 16;
remain -= 16;
} else {
DUMP16("%04x ", share_mem, remain);
remain = 0;
return;
}
}
// BT_DRV_TRACE(0,"\n");
// BT_DRV_TRACE(1,"addr :0x%08x\n",share_mem);
hal_sys_timer_delay(MS_TO_TICKS(200));
}
}
int bt_Txdc_cal_set(int ch_num, int dc_add) {
uint32_t val;
uint32_t tmp = (uint32_t)dc_add;
// sel apb clock
val = READ_REG(0xd0350348, 0x0);
if (ch_num == 0) {
val &= 0xfffffc00; // bit31 1 int_en_mismatch
val |= tmp & 0x3ff;
} else {
// BT_DRV_TRACE(1,"bt_Txdc_cal_set, dcadd : 0x%08x",tmp);
val &= 0xfc00ffff; // bit31 1 int_en_mismatch
val |= (tmp & 0x3ff) << 16;
}
WRITE_REG(val, 0xd0350348, 0x0);
// BT_DRV_TRACE(1,"bt_Txdc_cal_set, 0xd0350348 : 0x%08x",val);
return 1;
}
// g/p mismatch base addr 0xd0310000
// dc_i: 0xd0350348 9:0
// dc_q: 0xd0350348 25:16
int bt_iqimb_add_mismatch(int ch_num, int gain_mis, int phase_mis, int dc_i,
int dc_q, uint32_t addr) {
uint32_t val;
// sel apb clock
val = READ_REG(0xd0350348, 0x0);
val &= 0x7fffffff; // bit31 1 int_en_mismatch
val |= (0x0 << 31);
WRITE_REG(val, 0xd0350348, 0x0);
val = (phase_mis << 16) | (gain_mis & 0x0000ffff);
WRITE_REG(val, addr, ch_num * 4);
// tval = READ_REG(addr,0x0);
// BT_DRV_TRACE(1,"bt_iqimb_add_mismatch, iq : 0x%08x",tval);
WRITE_REG(0x400000, 0xd0350220, 0);
WRITE_REG(0x400000, 0xd0350224, 0);
// bt_Txdc_cal_set(0,dc_i);
// bt_Txdc_cal_set(1,dc_q);
/*
val = READ_REG(0xd0350348,0x0);
val &= 0xfffffc00; //bit9:0
val |= dc_i;
val &= 0xfc00ffff; //bit25:16
val |= (dc_q<<16);
WRITE_REG(val,0xd0350348,0x0);
*/
// sel 26m clock
val = READ_REG(0xd0350348, 0x0);
val &= 0x7fffffff; // bit31 1 int_en_mismatch
val |= (0x1 << 31);
WRITE_REG(val, 0xd0350348, 0x0);
return 1;
}
void DC_correction(IQMismatchPreprocessState *st, int *dc_i_r, int *dc_q_r,
int fftsize) {
uint8_t k;
int Energy, Energy1, tmp;
int dc_iters = 2;
int dc_i;
int dc_q;
int dc_step = 4;
int dc_i_base;
int dc_q_base;
int P0, PIplus, PIneg, PQplus, PQneg, PIPQ;
int CI, CQ, tmp_D;
dc_i_base = 0;
dc_q_base = 0;
for (k = 0; k < dc_iters; k++) {
dc_i = dc_i_base;
dc_q = dc_q_base;
bt_Txdc_cal_set(0, dc_i);
bt_Txdc_cal_set(1, dc_q);
bt_iqimb_dma_enable(st->M0data, (BUF_SIZE / 2));
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
P0 = Energy1;
dc_i = dc_i_base + dc_step;
dc_q = dc_q_base;
bt_Txdc_cal_set(0, dc_i);
bt_Txdc_cal_set(1, dc_q);
bt_iqimb_dma_enable(st->M0data, (BUF_SIZE / 2));
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
PIplus = Energy1;
dc_i = dc_i_base - dc_step;
dc_q = dc_q_base;
bt_Txdc_cal_set(0, dc_i);
bt_Txdc_cal_set(1, dc_q);
bt_iqimb_dma_enable(st->M0data, (BUF_SIZE / 2));
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
PIneg = Energy1;
dc_i = dc_i_base;
dc_q = dc_q_base + dc_step;
bt_Txdc_cal_set(0, dc_i);
bt_Txdc_cal_set(1, dc_q);
bt_iqimb_dma_enable(st->M0data, (BUF_SIZE / 2));
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
PQplus = Energy1;
dc_i = dc_i_base;
dc_q = dc_q_base - dc_step;
bt_Txdc_cal_set(0, dc_i);
bt_Txdc_cal_set(1, dc_q);
bt_iqimb_dma_enable(st->M0data, (BUF_SIZE / 2));
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
PQneg = Energy1;
dc_i = dc_i_base + dc_step;
dc_q = dc_q_base + dc_step;
bt_Txdc_cal_set(0, dc_i);
bt_Txdc_cal_set(1, dc_q);
bt_iqimb_dma_enable(st->M0data, (BUF_SIZE / 2));
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
PIPQ = Energy1;
tmp = 2 * PIplus * PIplus + 2 * PQplus * PQplus + 2 * PIPQ * PIPQ;
tmp = tmp - 6 * P0 * P0;
tmp = tmp + 4 * P0 * (PIneg + PQneg + PIPQ);
tmp = tmp + 2 * (PIplus * (PQplus - PQneg) - PIneg * (PQplus + PQneg));
tmp_D = tmp - 4 * PIPQ * (PIplus + PQplus);
tmp = P0 * (2 * (PIplus - PIneg) + PQplus - PQneg);
tmp = tmp - PIPQ * (PQneg - PQplus) + PIneg * (PQplus + PQneg);
tmp = tmp + PQplus * (PQneg - PQplus - 2 * PIplus);
CI = -dc_step * tmp;
tmp = P0 * (2 * (PQplus - PQneg) + PIplus - PIneg);
tmp = tmp - PIPQ * (PIneg - PIplus) + PQneg * (PIplus + PIneg);
tmp = tmp + PIplus * (PIneg - PIplus - 2 * PQplus);
CQ = -dc_step * tmp;
dc_i_base = dc_i_base + CI / tmp_D;
dc_q_base = dc_q_base + CQ / tmp_D;
// dc_step = dc_step/2;
}
*dc_i_r = dc_i_base;
*dc_q_r = dc_q_base;
}
int IQ_GAIN_Mismatch_Correction(IQMismatchPreprocessState *st,
int phase_mis_base, int fftsize,
uint32_t addr) {
uint8_t k = 0;
int phase_mis_tmp = 0;
int gain_mis_tmp = 0;
int tmp = 0;
int energy_ret0_last = 1048576;
int energy_ret0 = 0;
int energy_ret1 = 0;
int energy_ret2 = 0;
int Energy, Energy1;
int iters = 4;
int gainstep = 8;
int gain_mis_base = 0;
phase_mis_tmp = phase_mis_base;
energy_ret0_last = 1048576;
for (k = 0; k < iters + 2; k++) {
gain_mis_tmp = gain_mis_base;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0, addr);
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret0 = Energy1;
if (energy_ret0 < 50)
break;
if (k > 0) {
if (energy_ret0_last < energy_ret0) {
gain_mis_base = gain_mis_base + tmp;
gain_mis_tmp = gain_mis_base;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0, addr);
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret0 = Energy1;
}
}
// BT_DRV_TRACE(1,"IQ gain correct energy_ret0 = %d",energy_ret0);
gainstep = 4; ///////////////////
gain_mis_tmp = gain_mis_base + gainstep;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0, addr);
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret2 = Energy1;
gain_mis_tmp = gain_mis_base - gainstep;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0, addr);
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret1 = Energy1;
tmp = energy_ret2 - 2 * energy_ret0 + energy_ret1;
// BT_DRV_TRACE(1,"IQ gain correct energy_ret2 -2*energy_ret0 + energy_ret1
// = %d",tmp);
if (tmp > 0) {
tmp = (energy_ret2 - energy_ret1) * gainstep / tmp / 2;
tmp = min(tmp, 4 * gainstep);
gainstep = gainstep / 2;
} else {
tmp = 0;
iters = iters + 1;
}
if (iters > 8)
break;
if ((gain_mis_base - tmp > 60) || (gain_mis_base - tmp < -60))
tmp = 0;
// BT_DRV_TRACE(2,"IQ gain correct gain_mis = %d ,gain_adj =
// %d",gain_mis_base,tmp);
gain_mis_base = gain_mis_base - tmp;
energy_ret0_last = energy_ret0;
}
return gain_mis_base;
}
int IQ_Phase_Mismatch_Correction(IQMismatchPreprocessState *st,
int gain_mis_base, int fftsize,
uint32_t addr) {
uint8_t k = 0;
int phase_mis_tmp = 0;
int gain_mis_tmp = 0;
int tmp = 0;
int energy_ret0_last = 1048576;
int energy_ret0 = 0;
int energy_ret1 = 0;
int energy_ret2 = 0;
int Energy, Energy1;
int iters = 4;
int phasestep = 4;
int phase_mis_base = 0;
tmp = 0;
energy_ret0_last = 1048576;
gain_mis_tmp = gain_mis_base;
for (k = 0; k < iters; k++) {
phase_mis_tmp = phase_mis_base;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0,
addr); // no mismatch
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret0 = Energy1;
if (k > 0) {
if (energy_ret0_last < energy_ret0) {
phase_mis_base = phase_mis_base + tmp;
phase_mis_tmp = phase_mis_base;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0,
addr); // no mismatch
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret0 = Energy1;
}
}
if (energy_ret0 < 50)
break;
// BT_DRV_TRACE(1,"IQ phase correct energy_ret0 = %d",energy_ret0);
phasestep = 4; //////////////////////////
phase_mis_tmp = phase_mis_base + phasestep;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0,
addr); // no mismatch
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret2 = Energy1;
// BT_DRV_TRACE(1,"IQ phase correct energy_ret2 = %d",energy_ret2);
phase_mis_tmp = phase_mis_base - phasestep;
bt_iqimb_add_mismatch(0, gain_mis_tmp, phase_mis_tmp, 0, 0,
addr); // no mismatch
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
energy_ret1 = Energy1;
// BT_DRV_TRACE(1,"IQ phase correct energy_ret1 = %d",energy_ret1);
tmp = energy_ret2 - 2 * energy_ret0 + energy_ret1;
// BT_DRV_TRACE(1,"IQ phase correct energy_ret2 -2*energy_ret0 + energy_ret1
// = %d",tmp);
if (tmp > 0) {
tmp = (energy_ret2 - energy_ret1) * phasestep / tmp / 2;
tmp = min(tmp, 4 * phasestep);
phasestep = phasestep / 2;
} else {
tmp = 0;
iters = iters + 1;
}
if (iters > 8)
break;
if ((phase_mis_base - tmp > 60) || (phase_mis_base - tmp < -60))
tmp = 0;
// BT_DRV_TRACE(2,"IQ phase correct phase_mis = %d ,phase_adj =
// %d",phase_mis_base,tmp);
phase_mis_base = phase_mis_base - tmp;
energy_ret0_last = energy_ret0;
}
return phase_mis_base;
}
static BT_IQ_CALIBRATION_CONFIG_T config;
static void bt_update_local_iq_calibration_val(uint32_t freq_range,
uint16_t gain_cal_val,
uint16_t phase_cal_val) {
config.validityMagicNum = BT_IQ_VALID_MAGIC_NUM;
config.gain_cal_val[freq_range] = gain_cal_val;
config.phase_cal_val[freq_range] = phase_cal_val;
}
// do QA calibration and get the calibration value
static POSSIBLY_UNUSED void btIqCalibration(void) {
btdrv_tx_iq_cal();
BT_DRV_TRACE(0, "Acquired calibration value:");
for (uint32_t range = 0; range < BT_FREQENCY_RANGE_NUM; range++) {
BT_DRV_TRACE(3, "%d: 0x%x - 0x%x", range, config.gain_cal_val[range],
config.phase_cal_val[range]);
}
}
// get IQ calibration from NV
static bool
bt_get_iq_calibration_val_from_nv(BT_IQ_CALIBRATION_CONFIG_T *pConfig) {
if (nv_record_get_extension_entry_ptr() &&
(BT_IQ_VALID_MAGIC_NUM ==
nv_record_get_extension_entry_ptr()->btIqCalConfig.validityMagicNum)) {
*pConfig = nv_record_get_extension_entry_ptr()->btIqCalConfig;
return true;
} else {
return false;
}
}
void bt_iq_calibration_setup(void) {
if (bt_get_iq_calibration_val_from_nv(&config)) {
BT_DRV_TRACE(0, "Calibration value in NV:");
for (uint32_t range = 0; range < BT_FREQENCY_RANGE_NUM; range++) {
BT_DRV_TRACE(3, "%d: 0x%x - 0x%x", range, config.gain_cal_val[range],
config.phase_cal_val[range]);
}
uint32_t addr = 0xd0310000;
int chs = 27;
for (uint32_t range = 0; range < 3; range++) {
if (0 == range) {
addr = 0xd0310034;
chs = 27;
addr = addr - 13 * 4;
}
for (uint32_t ch = 0; ch < chs; ch++) {
bt_iqimb_add_mismatch(0, config.gain_cal_val[range],
config.phase_cal_val[range], 0, 0, addr);
addr = addr + 4;
}
}
} else {
btIqCalibration();
uint32_t lock = nv_record_pre_write_operation();
nv_record_get_extension_entry_ptr()->btIqCalConfig = config;
nv_record_post_write_operation(lock);
nv_record_extension_update();
}
}
void bt_IQ_DC_Mismatch_Correction_Release() {
int phase_mis_base;
int gain_mis_base;
int Energy, Energy1;
uint32_t time_start = hal_sys_timer_get();
int fftsize;
uint32_t addr = 0xd0310000;
int chs = 27;
IQMismatchPreprocessState *st;
syspool_init();
syspool_get_buff(&g_medMemPool, MED_MEM_POOL_SIZE);
med_heap_init(&g_medMemPool[0], MED_MEM_POOL_SIZE);
// config gpadc 26m
READ_REG(0xd0310000, 0x0);
#ifdef DCCalib
int dc_i_base, dc_q_base;
fftsize = 1024;
st = IQMismatchPreprocessState_init(fftsize);
Tblgen(st->Table0, st->Table1, st->Table2, fftsize);
DC_correction(st, &dc_i_base, &dc_q_base, fftsize);
bt_Txdc_cal_set(0, dc_i_base); // set cal DC I
bt_Txdc_cal_set(1, dc_q_base);
// val = READ_REG(0xd0350348,0x0);
// BT_DRV_TRACE(1,"0xd0350348 = 0x%08x",val);
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
// BT_DRV_TRACE(3,"dc cal done!!! dc_i = %d ,dc_q = %d,Energy1 =
// %d",dc_i_base,dc_q_base,Energy1);
if (Energy1 > 200) {
DC_correction(st, &dc_i_base, &dc_q_base, fftsize);
bt_Txdc_cal_set(0, dc_i_base); // set cal DC I
bt_Txdc_cal_set(1, dc_q_base);
// val = READ_REG(0xd0350348,0x0);
// BT_DRV_TRACE(1,"0xd0350348 = 0x%08x",val);
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
}
if (Energy1 > 200) {
DC_correction(st, &dc_i_base, &dc_q_base, fftsize);
bt_Txdc_cal_set(0, dc_i_base); // set cal DC I
bt_Txdc_cal_set(1, dc_q_base);
// val = READ_REG(0xd0350348,0x0);
// BT_DRV_TRACE(1,"0xd0350348 = 0x%08x",val);
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
}
#endif
// BT_DRV_TRACE(1,"use time: %d ticks", (hal_sys_timer_get()-time_start));
// BT_DRV_TRACE(3,"dc cal done!!! dc_i = %d ,dc_q = %d,Energy1 =
// %d",dc_i_base,dc_q_base,Energy1);
fftsize = 1024;
st = IQMismatchPreprocessState_init(fftsize);
Tblgen_iq(st->Table0, st->Table1, st->Table2, fftsize);
BT_DRV_TRACE(1, "use time: %d ms",
__TICKS_TO_MS(hal_sys_timer_get() - time_start));
for (int k = 0; k < 3; k++) {
if (k == 0) {
WRITE_REG(0x0, 0xD02201E4, 0x0);
WRITE_REG(0x000A000D, 0xD02201E4, 0x0);
// osDelay(1000);
addr = 0xd0310034;
} else if (k == 1) {
WRITE_REG(0x0, 0xD02201E4, 0x0);
WRITE_REG(0x000A0027, 0xD02201E4, 0x0);
addr = 0xd031009c;
} else {
WRITE_REG(0x0, 0xD02201E4, 0x0);
WRITE_REG(0x000A0041, 0xD02201E4, 0x0);
addr = 0xd0310104;
}
gain_mis_base = IQ_GAIN_Mismatch_Correction(st, 0, fftsize, addr);
phase_mis_base =
IQ_Phase_Mismatch_Correction(st, gain_mis_base, fftsize, addr);
bt_iqimb_add_mismatch(0, gain_mis_base, phase_mis_base, 0, 0,
addr); // no mismatch
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
// BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d ,gain_mis
// = %d,Energy = %d",addr,phase_mis_base,gain_mis_base,Energy1);
if (Energy1 > 500) {
if (ABS(gain_mis_base) > ABS(phase_mis_base)) {
gain_mis_base = IQ_GAIN_Mismatch_Correction(st, 0, fftsize, addr);
phase_mis_base =
IQ_Phase_Mismatch_Correction(st, gain_mis_base, fftsize, addr);
} else {
phase_mis_base = IQ_Phase_Mismatch_Correction(st, 0, fftsize, addr);
gain_mis_base =
IQ_GAIN_Mismatch_Correction(st, phase_mis_base, fftsize, addr);
}
bt_iqimb_add_mismatch(0, gain_mis_base, phase_mis_base, 0, 0,
addr); // no mismatch
// BT_DRV_TRACE(1,"use time: %d ticks", (hal_sys_timer_get()-time_start));
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
// BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d
// ,gain_mis = %d,Energy =
// %d",addr,phase_mis_base,gain_mis_base,Energy1);
}
if (Energy1 > 500) {
if (ABS(gain_mis_base) > ABS(phase_mis_base)) {
gain_mis_base = IQ_GAIN_Mismatch_Correction(st, 0, fftsize, addr);
phase_mis_base =
IQ_Phase_Mismatch_Correction(st, gain_mis_base, fftsize, addr);
} else {
phase_mis_base = IQ_Phase_Mismatch_Correction(st, 0, fftsize, addr);
gain_mis_base =
IQ_GAIN_Mismatch_Correction(st, phase_mis_base, fftsize, addr);
}
// BT_DRV_TRACE(1,"use time: %d ticks", (hal_sys_timer_get()-time_start));
bt_iqimb_dma_enable(st->M0data, fftsize);
while (1) {
if (iqimb_dma_status == 0)
break;
}
caculate_energy_main_test(st, &Energy, &Energy1, fftsize);
// BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d ,gain_mis
// = %d,Energy = %d",addr,phase_mis_base,gain_mis_base,Energy1);
}
if (k == 0) {
chs = 27;
addr = addr - 13 * 4;
} else if (k == 1) {
chs = 26;
addr = addr - 12 * 4;
} else {
chs = 26;
addr = addr - 12 * 4;
}
bt_update_local_iq_calibration_val(k, gain_mis_base, phase_mis_base);
for (int ch = 0; ch < chs; ch++) {
bt_iqimb_add_mismatch(0, gain_mis_base, phase_mis_base, 0, 0,
addr); // no mismatch
// osDelay(1);
// BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d ,gain_mis
// = %d,Energy = %d",addr,phase_mis_base,gain_mis_base,Energy1);
addr = addr + 4;
}
BT_DRV_TRACE(1, "use time: %d ms",
__TICKS_TO_MS(hal_sys_timer_get() - time_start));
// BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d ,gain_mis =
// %d,Energy = %d",addr-4,phase_mis_base,gain_mis_base,Energy1);
}
}
int bt_iqimb_test_ex(int mismatch_type) {
bt_IQ_DC_Mismatch_Correction_Release();
return 1;
}
#endif // TX_IQ_CAL
#endif