pinebuds/platform/cmsis/DSP_Lib/StatisticsFunctions/arm_power_q15.c
Ben V. Brown 75381150fd Formatting
Formatting Pass 1

Lots of fixups to adding stdint and stdbool all over the place

Formatting Pass 2
Formatting Pass 3
Formatting Pass 4

Update app_bt_stream.cpp
2023-02-02 07:56:49 +11:00

126 lines
3.6 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_power_q15.c
* Description: Sum of the squares of the elements of a Q15 vector
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupStats
*/
/**
@addtogroup power
@{
*/
/**
@brief Sum of the squares of the elements of a Q15 vector.
@param[in] pSrc points to the input vector
@param[in] blockSize number of samples in input vector
@param[out] pResult sum of the squares value returned here
@return none
@par Scaling and Overflow Behavior
The function is implemented using a 64-bit internal
accumulator. The input is represented in 1.15 format. Intermediate
multiplication yields a 2.30 format, and this result is added without
saturation to a 64-bit accumulator in 34.30 format. With 33 guard bits in the
accumulator, there is no risk of overflow, and the full precision of the
intermediate multiplication is preserved. Finally, the return result is
in 34.30 format.
*/
void arm_power_q15(const q15_t *pSrc, uint32_t blockSize, q63_t *pResult) {
uint32_t blkCnt; /* Loop counter */
q63_t sum = 0; /* Temporary result storage */
q15_t in; /* Temporary variable to store input value */
#if defined(ARM_MATH_LOOPUNROLL) && defined(ARM_MATH_DSP)
q31_t in32; /* Temporary variable to store packed input value */
#endif
#if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U;
while (blkCnt > 0U) {
/* C = A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1] */
/* Compute Power and store result in a temporary variable, sum. */
#if defined(ARM_MATH_DSP)
in32 = read_q15x2_ia((q15_t **)&pSrc);
sum = __SMLALD(in32, in32, sum);
in32 = read_q15x2_ia((q15_t **)&pSrc);
sum = __SMLALD(in32, in32, sum);
#else
in = *pSrc++;
sum += ((q31_t)in * in);
in = *pSrc++;
sum += ((q31_t)in * in);
in = *pSrc++;
sum += ((q31_t)in * in);
in = *pSrc++;
sum += ((q31_t)in * in);
#endif /* #if defined (ARM_MATH_DSP) */
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = blockSize % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) {
/* C = A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1] */
/* Compute Power and store result in a temporary variable, sum. */
in = *pSrc++;
sum += ((q31_t)in * in);
/* Decrement loop counter */
blkCnt--;
}
/* Store result in 34.30 format */
*pResult = sum;
}
/**
@} end of power group
*/