pinebuds/rtos/rtx/TARGET_CORTEX_M/rt_CMSIS.c
2022-08-15 17:20:27 +08:00

1985 lines
60 KiB
C

/*----------------------------------------------------------------------------
* RL-ARM - RTX
*----------------------------------------------------------------------------
* Name: rt_CMSIS.c
* Purpose: CMSIS RTOS API
* Rev.: V4.60
*----------------------------------------------------------------------------
*
* Copyright (c) 1999-2009 KEIL, 2009-2012 ARM Germany GmbH
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*---------------------------------------------------------------------------*/
#define __CMSIS_GENERIC
#include "cmsis.h"
#include "rt_TypeDef.h"
#include "RTX_Conf.h"
#include "rt_System.h"
#include "rt_Task.h"
#include "rt_Event.h"
#include "rt_List.h"
#include "rt_Time.h"
#include "rt_Mutex.h"
#include "rt_Semaphore.h"
#include "rt_Mailbox.h"
#include "rt_MemBox.h"
#include "rt_HAL_CM.h"
#define os_thread_cb OS_TCB
#include "cmsis_os.h"
#if (osFeature_Signals != 16)
#error Invalid "osFeature_Signals" value!
#endif
#if (osFeature_Semaphore > 65535)
#error Invalid "osFeature_Semaphore" value!
#endif
#if (osFeature_Wait != 0)
#error osWait not supported!
#endif
// OS_API_IN_INTLOCK can be enabled in target.mk by:
// export OS_API_IN_INTLOCK ?= 1
#ifdef OS_API_IN_INTLOCK
// CAUTION:
// It will be treated as in ISR when calling OS APIs in intlock(), but
// the stack might still be using PSP instead of MSP.
#define IN_ISR() (__get_IPSR() != 0 || __get_PRIMASK() != 0)
#else
#define IN_ISR() (__get_IPSR() != 0)
#endif
// ==== Enumeration, structures, defines ====
// Service Calls defines
#if defined (__CC_ARM) /* ARM Compiler */
#define __NO_RETURN __declspec(noreturn)
#define osEvent_type osEvent
#define osEvent_ret_status ret
#define osEvent_ret_value ret
#define osEvent_ret_msg ret
#define osEvent_ret_mail ret
#define osCallback_type osCallback
#define osCallback_ret ret
#define SVC_0_1(f,t,...) \
__svc_indirect(0) t _##f (t(*)()); \
t f (void); \
__attribute__((always_inline)) \
static __inline t __##f (void) { \
return _##f(f); \
}
#define SVC_1_1(f,t,t1,...) \
__svc_indirect(0) t _##f (t(*)(t1),t1); \
t f (t1 a1); \
__attribute__((always_inline)) \
static __inline t __##f (t1 a1) { \
return _##f(f,a1); \
}
#define SVC_2_1(f,t,t1,t2,...) \
__svc_indirect(0) t _##f (t(*)(t1,t2),t1,t2); \
t f (t1 a1, t2 a2); \
__attribute__((always_inline)) \
static __inline t __##f (t1 a1, t2 a2) { \
return _##f(f,a1,a2); \
}
#define SVC_3_1(f,t,t1,t2,t3,...) \
__svc_indirect(0) t _##f (t(*)(t1,t2,t3),t1,t2,t3); \
t f (t1 a1, t2 a2, t3 a3); \
__attribute__((always_inline)) \
static __inline t __##f (t1 a1, t2 a2, t3 a3) { \
return _##f(f,a1,a2,a3); \
}
#define SVC_4_1(f,t,t1,t2,t3,t4,...) \
__svc_indirect(0) t _##f (t(*)(t1,t2,t3,t4),t1,t2,t3,t4); \
t f (t1 a1, t2 a2, t3 a3, t4 a4); \
__attribute__((always_inline)) \
static __inline t __##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
return _##f(f,a1,a2,a3,a4); \
}
#define SVC_1_2 SVC_1_1
#define SVC_1_3 SVC_1_1
#define SVC_2_3 SVC_2_1
#elif defined (__GNUC__) /* GNU Compiler */
//#define __NO_RETURN __attribute__((noreturn))
typedef uint32_t __attribute__((vector_size(8))) ret64;
typedef uint32_t __attribute__((vector_size(16))) ret128;
#define RET_pointer __r0
#define RET_int32_t __r0
#define RET_osStatus __r0
#define RET_osPriority __r0
#define RET_osEvent {(osStatus)__r0, {(uint32_t)__r1}, {(void *)__r2}}
#define RET_osCallback {(void *)__r0, (void *)__r1}
#define osEvent_type __attribute__((pcs("aapcs"))) ret128
#define osEvent_ret_status (ret128){ret.status}
#define osEvent_ret_value (ret128){ret.status, ret.value.v}
#define osEvent_ret_msg (ret128){ret.status, ret.value.v, (uint32_t)ret.def.message_id}
#define osEvent_ret_mail (ret128){ret.status, ret.value.v, (uint32_t)ret.def.mail_id}
#define osCallback_type __attribute__((pcs("aapcs"))) ret64
#define osCallback_ret (ret64) {(uint32_t)ret.fp, (uint32_t)ret.arg}
#define SVC_ArgN(n) \
register int __r##n __asm("r"#n);
#define SVC_ArgR(n,t,a) \
register t __r##n __asm("r"#n) = a;
#define SVC_Arg0() \
SVC_ArgN(0) \
SVC_ArgN(1) \
SVC_ArgN(2) \
SVC_ArgN(3)
#define SVC_Arg1(t1) \
SVC_ArgR(0,t1,a1) \
SVC_ArgN(1) \
SVC_ArgN(2) \
SVC_ArgN(3)
#define SVC_Arg2(t1,t2) \
SVC_ArgR(0,t1,a1) \
SVC_ArgR(1,t2,a2) \
SVC_ArgN(2) \
SVC_ArgN(3)
#define SVC_Arg3(t1,t2,t3) \
SVC_ArgR(0,t1,a1) \
SVC_ArgR(1,t2,a2) \
SVC_ArgR(2,t3,a3) \
SVC_ArgN(3)
#define SVC_Arg4(t1,t2,t3,t4) \
SVC_ArgR(0,t1,a1) \
SVC_ArgR(1,t2,a2) \
SVC_ArgR(2,t3,a3) \
SVC_ArgR(3,t4,a4)
#if (defined (__CORTEX_M0)) || defined (__CORTEX_M0PLUS)
#define SVC_Call(f) \
__asm volatile \
( \
"ldr r7,="#f"\n\t" \
"mov r12,r7\n\t" \
"svc 0" \
: "=r" (__r0), "=r" (__r1), "=r" (__r2), "=r" (__r3) \
: "r" (__r0), "r" (__r1), "r" (__r2), "r" (__r3) \
: "r7", "r12", "lr", "cc" \
);
#else
#define SVC_Call(f) \
__asm volatile \
( \
"ldr r12,="#f"\n\t" \
"svc 0" \
: "=r" (__r0), "=r" (__r1), "=r" (__r2), "=r" (__r3) \
: "r" (__r0), "r" (__r1), "r" (__r2), "r" (__r3) \
: "r12", "lr", "cc" \
);
#endif
#define SVC_0_1(f,t,rv) \
__attribute__((always_inline)) \
static inline t __##f (void) { \
SVC_Arg0(); \
SVC_Call(f); \
return (t) rv; \
}
#define SVC_1_1(f,t,t1,rv) \
__attribute__((always_inline)) \
static inline t __##f (t1 a1) { \
SVC_Arg1(t1); \
SVC_Call(f); \
return (t) rv; \
}
#define SVC_2_1(f,t,t1,t2,rv) \
__attribute__((always_inline)) \
static inline t __##f (t1 a1, t2 a2) { \
SVC_Arg2(t1,t2); \
SVC_Call(f); \
return (t) rv; \
}
#define SVC_3_1(f,t,t1,t2,t3,rv) \
__attribute__((always_inline)) \
static inline t __##f (t1 a1, t2 a2, t3 a3) { \
SVC_Arg3(t1,t2,t3); \
SVC_Call(f); \
return (t) rv; \
}
#define SVC_4_1(f,t,t1,t2,t3,t4,rv) \
__attribute__((always_inline)) \
static inline t __##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
SVC_Arg4(t1,t2,t3,t4); \
SVC_Call(f); \
return (t) rv; \
}
#define SVC_1_2 SVC_1_1
#define SVC_1_3 SVC_1_1
#define SVC_2_3 SVC_2_1
#elif defined (__ICCARM__) /* IAR Compiler */
#define __NO_RETURN __noreturn
#define osEvent_type osEvent
#define osEvent_ret_status ret
#define osEvent_ret_value ret
#define osEvent_ret_msg ret
#define osEvent_ret_mail ret
#define osCallback_type osCallback
#define osCallback_ret ret
#define RET_osEvent osEvent
#define RET_osCallback osCallback
#define SVC_Setup(f) \
__asm( \
"mov r12,%0\n" \
:: "r"(&f): "r12" \
);
#define SVC_0_1(f,t,...) \
t f (void); \
_Pragma("swi_number=0") __swi t _##f (void); \
static inline t __##f (void) { \
SVC_Setup(f); \
return _##f(); \
}
#define SVC_1_1(f,t,t1,...) \
t f (t1 a1); \
_Pragma("swi_number=0") __swi t _##f (t1 a1); \
static inline t __##f (t1 a1) { \
SVC_Setup(f); \
return _##f(a1); \
}
#define SVC_2_1(f,t,t1,t2,...) \
t f (t1 a1, t2 a2); \
_Pragma("swi_number=0") __swi t _##f (t1 a1, t2 a2); \
static inline t __##f (t1 a1, t2 a2) { \
SVC_Setup(f); \
return _##f(a1,a2); \
}
#define SVC_3_1(f,t,t1,t2,t3,...) \
t f (t1 a1, t2 a2, t3 a3); \
_Pragma("swi_number=0") __swi t _##f (t1 a1, t2 a2, t3 a3); \
static inline t __##f (t1 a1, t2 a2, t3 a3) { \
SVC_Setup(f); \
return _##f(a1,a2,a3); \
}
#define SVC_4_1(f,t,t1,t2,t3,t4,...) \
t f (t1 a1, t2 a2, t3 a3, t4 a4); \
_Pragma("swi_number=0") __swi t _##f (t1 a1, t2 a2, t3 a3, t4 a4); \
static inline t __##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
SVC_Setup(f); \
return _##f(a1,a2,a3,a4); \
}
#define SVC_1_2 SVC_1_1
#define SVC_1_3 SVC_1_1
#define SVC_2_3 SVC_2_1
#endif
// Callback structure
typedef struct {
void *fp; // Function pointer
void *arg; // Function argument
} osCallback;
// OS Section definitions
#ifdef OS_SECTIONS_LINK_INFO
extern const uint32_t os_section_id$$Base;
extern const uint32_t os_section_id$$Limit;
#endif
// OS Timers external resources
extern osThreadDef_t os_thread_def_osTimerThread;
extern osThreadId osThreadId_osTimerThread;
extern osMessageQDef_t os_messageQ_def_osTimerMessageQ;
extern osMessageQId osMessageQId_osTimerMessageQ;
// ==== Helper Functions ====
/// Convert timeout in millisec to system ticks
static uint32_t rt_ms2tick (uint32_t millisec) {
uint32_t tick;
if (millisec == osWaitForever) return 0xFFFF; // Indefinite timeout
if (millisec > 4000000) return 0xFFFE; // Max ticks supported
tick = ((1000 * millisec) + os_clockrate - 1) / os_clockrate;
if (tick > 0xFFFE) return 0xFFFE;
return tick;
}
/// Convert Thread ID to TCB pointer
static P_TCB rt_tid2ptcb (osThreadId thread_id) {
P_TCB ptcb;
if (thread_id == NULL) return NULL;
if ((uint32_t)thread_id & 3) return NULL;
#ifdef OS_SECTIONS_LINK_INFO
if ((os_section_id$$Base != 0) && (os_section_id$$Limit != 0)) {
if (thread_id < (osThreadId)os_section_id$$Base) return NULL;
if (thread_id >= (osThreadId)os_section_id$$Limit) return NULL;
}
#endif
ptcb = thread_id;
if (ptcb->cb_type != TCB) return NULL;
return ptcb;
}
/// Convert ID pointer to Object pointer
static void *rt_id2obj (void *id) {
if ((uint32_t)id & 3) return NULL;
#ifdef OS_SECTIONS_LINK_INFO
if ((os_section_id$$Base != 0) && (os_section_id$$Limit != 0)) {
if (id < (void *)os_section_id$$Base) return NULL;
if (id >= (void *)os_section_id$$Limit) return NULL;
}
#endif
return id;
}
// ==== Kernel Control ====
uint8_t os_initialized; // Kernel Initialized flag
uint8_t os_running; // Kernel Running flag
// Kernel Control Service Calls declarations
SVC_0_1(svcKernelInitialize, osStatus, RET_osStatus)
SVC_0_1(svcKernelStart, osStatus, RET_osStatus)
SVC_0_1(svcKernelRunning, int32_t, RET_int32_t)
extern void sysThreadError (osStatus status);
osThreadId svcThreadCreate (osThreadDef_t *thread_def, void *argument);
osMessageQId svcMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id);
// Kernel Control Service Calls
/// Initialize the RTOS Kernel for creating objects
osStatus svcKernelInitialize (void) {
if (os_initialized) return osOK;
rt_sys_init(); // RTX System Initialization
os_tsk.run->prio = 255; // Highest priority
sysThreadError(osOK);
os_initialized = 1;
return osOK;
}
/// Start the RTOS Kernel
osStatus svcKernelStart (void) {
if (os_running) return osOK;
// Create OS Timers resources (Message Queue & Thread)
osMessageQId_osTimerMessageQ = svcMessageCreate (&os_messageQ_def_osTimerMessageQ, NULL);
osThreadId_osTimerThread = svcThreadCreate(&os_thread_def_osTimerThread, NULL);
rt_tsk_prio(0, 0); // Lowest priority
#ifdef __ARM_ARCH_8M_MAIN__
__set_PSPLIM((uint32_t)os_tsk.run->stack);
#endif
__set_PSP(os_tsk.run->tsk_stack + 8*4); // New context
os_tsk.run = NULL; // Force context switch
rt_sys_start();
os_running = 1;
return osOK;
}
/// Check if the RTOS kernel is already started
int32_t svcKernelRunning(void) {
return os_running;
}
// Kernel Control Public API
/// Initialize the RTOS Kernel for creating objects
osStatus osKernelInitialize (void) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
if ((__get_CONTROL() & 1) == 0) { // Privileged mode
return svcKernelInitialize();
} else {
return __svcKernelInitialize();
}
}
/// Start the RTOS Kernel
osStatus osKernelStart (void) {
uint32_t stack[8];
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
switch (__get_CONTROL() & 0x03) {
case 0x00: // Privileged Thread mode & MSP
#ifdef __ARM_ARCH_8M_MAIN__
__set_PSPLIM(__get_MSPLIM());
#endif
__set_PSP((uint32_t)(stack + 8)); // Initial PSP
if (os_flags & 1) {
__set_CONTROL(0x02); // Set Privileged Thread mode & PSP
} else {
__set_CONTROL(0x03); // Set Unprivileged Thread mode & PSP
}
__DSB();
__ISB();
break;
case 0x01: // Unprivileged Thread mode & MSP
return osErrorOS;
case 0x02: // Privileged Thread mode & PSP
if ((os_flags & 1) == 0) { // Unprivileged Thread mode requested
__set_CONTROL(0x03); // Set Unprivileged Thread mode & PSP
__DSB();
__ISB();
}
break;
case 0x03: // Unprivileged Thread mode & PSP
if (os_flags & 1) return osErrorOS; // Privileged Thread mode requested
break;
}
return __svcKernelStart();
}
/// Check if the RTOS kernel is already started
int32_t osKernelRunning(void) {
if ((IN_ISR()) || ((__get_CONTROL() & 1) == 0)) {
// in ISR or Privileged
return os_running;
} else {
return __svcKernelRunning();
}
}
// ==== Thread Management ====
__NO_RETURN void osThreadExit (void);
// Thread Service Calls declarations
SVC_2_1(svcThreadCreate, osThreadId, osThreadDef_t *, void *, RET_pointer)
SVC_0_1(svcThreadGetId, osThreadId, RET_pointer)
SVC_1_1(svcThreadTerminate, osStatus, osThreadId, RET_osStatus)
SVC_0_1(svcThreadYield, osStatus, RET_osStatus)
SVC_2_1(svcThreadSetPriority, osStatus, osThreadId, osPriority, RET_osStatus)
SVC_1_1(svcThreadGetPriority, osPriority, osThreadId, RET_osPriority)
SVC_1_1(svcThreadShow, osStatus, osThreadId, RET_osStatus)
SVC_3_1(svcThreadSetHungCheck,osStatus, osThreadId, int32_t, uint32_t, RET_osStatus)
// Thread Service Calls
extern OS_TID rt_get_TID (void);
extern void rt_init_context (P_TCB p_TCB, U8 priority, FUNCP task_body);
/// Create a thread and add it to Active Threads and set it to state READY
osThreadId svcThreadCreate (osThreadDef_t *thread_def, void *argument) {
P_TCB ptcb;
if ((thread_def == NULL) ||
(thread_def->pthread == NULL) ||
(thread_def->tpriority < osPriorityIdle) ||
(thread_def->tpriority > osPriorityRealtime) ||
(thread_def->stacksize == 0) ||
(thread_def->stack_pointer == NULL) ) {
sysThreadError(osErrorParameter);
return NULL;
}
U8 priority = thread_def->tpriority - osPriorityIdle + 1;
P_TCB task_context = &thread_def->tcb;
/* Utilize the user provided stack. */
task_context->stack = (U32*)thread_def->stack_pointer;
task_context->priv_stack = thread_def->stacksize;
/* Find a free entry in 'os_active_TCB' table. */
OS_TID tsk = rt_get_TID ();
if (tsk == 0) {
sysThreadError(osErrorResource);
return NULL;
}
os_active_TCB[tsk-1] = task_context;
task_context->task_id = tsk;
/* Pass parameter 'argv' to 'rt_init_context' */
task_context->msg = argument;
#if __RTX_CPU_STATISTICS__
task_context->name = (U8 *)thread_def->name_str;
#endif
/* Initialize thread context structure, including the thread's stack. */
rt_init_context (task_context, priority, (FUNCP)thread_def->pthread);
/* Dispatch this task to the scheduler for execution. */
DBG_TASK_NOTIFY(task_context, __TRUE);
rt_dispatch (task_context);
ptcb = (P_TCB)os_active_TCB[tsk - 1]; // TCB pointer
*((uint32_t *)ptcb->tsk_stack + 13) = (uint32_t)osThreadExit;
return ptcb;
}
/// Return the thread ID of the current running thread
osThreadId svcThreadGetId (void) {
OS_TID tsk;
tsk = rt_tsk_self();
if (tsk == 0) return NULL;
return (P_TCB)os_active_TCB[tsk - 1];
}
/// Terminate execution of a thread and remove it from ActiveThreads
osStatus svcThreadTerminate (osThreadId thread_id) {
OS_RESULT res;
P_TCB ptcb;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return osErrorParameter;
res = rt_tsk_delete(ptcb->task_id); // Delete task
if (res == OS_R_NOK) return osErrorResource; // Delete task failed
return osOK;
}
/// Pass control to next thread that is in state READY
osStatus svcThreadYield (void) {
rt_tsk_pass(); // Pass control to next task
return osOK;
}
/// Change priority of an active thread
osStatus svcThreadSetPriority (osThreadId thread_id, osPriority priority) {
OS_RESULT res;
P_TCB ptcb;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return osErrorParameter;
if ((priority < osPriorityIdle) || (priority > osPriorityRealtime)) {
return osErrorValue;
}
res = rt_tsk_prio( // Change task priority
ptcb->task_id, // Task ID
priority - osPriorityIdle + 1 // New task priority
);
if (res == OS_R_NOK) return osErrorResource; // Change task priority failed
return osOK;
}
/// Get current priority of an active thread
osPriority svcThreadGetPriority (osThreadId thread_id) {
P_TCB ptcb;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return osPriorityError;
return (osPriority)(ptcb->prio - 1 + osPriorityIdle);
}
/// Show a thread
osStatus svcThreadShow (osThreadId thread_id) {
P_TCB ptcb;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return osErrorParameter;
rt_tsk_show(ptcb);
return osOK;
}
// Thread Public API
/// Create a thread and add it to Active Threads and set it to state READY
osThreadId osThreadCreate (osThreadDef_t *thread_def, void *argument) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
// Privileged and not running
return svcThreadCreate(thread_def, argument);
} else {
return __svcThreadCreate(thread_def, argument);
}
}
/// Return the thread ID of the current running thread
osThreadId osThreadGetId (void) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
return __svcThreadGetId();
}
int osGetThreadIntId (void) {
OS_TID tid;
uint32_t lock;
if (__get_IPSR() != 0) return 0;
lock = int_lock();
tid = rt_tsk_self();
int_unlock(lock);
return tid;
}
/// Terminate execution of a thread and remove it from ActiveThreads
osStatus osThreadTerminate (osThreadId thread_id) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcThreadTerminate(thread_id);
}
/// Pass control to next thread that is in state READY
osStatus osThreadYield (void) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcThreadYield();
}
/// Change priority of an active thread
osStatus osThreadSetPriority (osThreadId thread_id, osPriority priority) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcThreadSetPriority(thread_id, priority);
}
/// Get current priority of an active thread
osPriority osThreadGetPriority (osThreadId thread_id) {
if (__get_IPSR() != 0) return osPriorityError;// Not allowed in ISR
return __svcThreadGetPriority(thread_id);
}
/// Dump a thread
osStatus osThreadShow (osThreadId thread_id) {
if (__get_IPSR() != 0) return osPriorityError;// Not allowed in ISR
return __svcThreadShow(thread_id);
}
/// INTERNAL - Not Public
/// Auto Terminate Thread on exit (used implicitly when thread exists)
__NO_RETURN void osThreadExit (void) {
__svcThreadTerminate(__svcThreadGetId());
for (;;); // Should never come here
}
// ==== Generic Wait Functions ====
// Generic Wait Service Calls declarations
SVC_1_1(svcDelay, osStatus, uint32_t, RET_osStatus)
#if osFeature_Wait != 0
SVC_1_3(svcWait, os_InRegs osEvent, uint32_t, RET_osEvent)
#endif
// Generic Wait Service Calls
/// Wait for Timeout (Time Delay)
osStatus svcDelay (uint32_t millisec) {
if (millisec == 0) return osOK;
rt_dly_wait(rt_ms2tick(millisec));
return osEventTimeout;
}
/// Wait for Signal, Message, Mail, or Timeout
#if osFeature_Wait != 0
os_InRegs osEvent_type svcWait (uint32_t millisec) {
osEvent ret;
if (millisec == 0) {
ret.status = osOK;
return osEvent_ret_status;
}
/* To Do: osEventSignal, osEventMessage, osEventMail */
rt_dly_wait(rt_ms2tick(millisec));
ret.status = osEventTimeout;
return osEvent_ret_status;
}
#endif
// Generic Wait API
/// Wait for Timeout (Time Delay)
osStatus osDelay (uint32_t millisec) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcDelay(millisec);
}
/// Wait for Signal, Message, Mail, or Timeout
os_InRegs osEvent osWait (uint32_t millisec) {
osEvent ret;
#if osFeature_Wait == 0
ret.status = osErrorOS;
return ret;
#else
if (__get_IPSR() != 0) { // Not allowed in ISR
ret.status = osErrorISR;
return ret;
}
return __svcWait(millisec);
#endif
}
// ==== Timer Management ====
// Timer definitions
#define osTimerInvalid 0
#define osTimerStopped 1
#define osTimerRunning 2
// Timer structures
typedef struct os_timer_cb_ { // Timer Control Block
struct os_timer_cb_ *next; // Pointer to next active Timer
uint8_t state; // Timer State
uint8_t type; // Timer Type (Periodic/One-shot)
uint16_t reserved; // Reserved
uint16_t tcnt; // Timer Delay Count
uint16_t icnt; // Timer Initial Count
void *arg; // Timer Function Argument
const osTimerDef_t *timer; // Pointer to Timer definition
} os_timer_cb;
// Timer variables
os_timer_cb *os_timer_head; // Pointer to first active Timer
// Timer Helper Functions
// Insert Timer into the list sorted by time
static void rt_timer_insert (os_timer_cb *pt, uint32_t tcnt) {
os_timer_cb *p, *prev;
prev = NULL;
p = os_timer_head;
while (p != NULL) {
if (tcnt < p->tcnt) break;
tcnt -= p->tcnt;
prev = p;
p = p->next;
}
pt->next = p;
pt->tcnt = (uint16_t)tcnt;
if (p != NULL) {
p->tcnt -= pt->tcnt;
}
if (prev != NULL) {
prev->next = pt;
} else {
os_timer_head = pt;
}
}
// Remove Timer from the list
static int32_t rt_timer_remove (os_timer_cb *pt) {
os_timer_cb *p, *prev;
prev = NULL;
p = os_timer_head;
while (p != NULL) {
if (p == pt) break;
prev = p;
p = p->next;
}
if (p == NULL) return -1;
if (prev != NULL) {
prev->next = pt->next;
} else {
os_timer_head = pt->next;
}
if (pt->next != NULL) {
pt->next->tcnt += pt->tcnt;
}
return 0;
}
// Timer Service Calls declarations
SVC_3_1(svcTimerCreate, osTimerId, const osTimerDef_t *, os_timer_type, void *, RET_pointer)
SVC_2_1(svcTimerStart, osStatus, osTimerId, uint32_t, RET_osStatus)
SVC_1_1(svcTimerStop, osStatus, osTimerId, RET_osStatus)
SVC_1_1(svcTimerDelete, osStatus, osTimerId, RET_osStatus)
SVC_1_2(svcTimerCall, os_InRegs osCallback, osTimerId, RET_osCallback)
// Timer Management Service Calls
/// Create timer
osTimerId svcTimerCreate (const osTimerDef_t *timer_def, os_timer_type type, void *argument) {
os_timer_cb *pt;
if ((timer_def == NULL) || (timer_def->ptimer == NULL)) {
sysThreadError(osErrorParameter);
return NULL;
}
pt = timer_def->timer;
if (pt == NULL) {
sysThreadError(osErrorParameter);
return NULL;
}
if ((type != osTimerOnce) && (type != osTimerPeriodic)) {
sysThreadError(osErrorValue);
return NULL;
}
if (osThreadId_osTimerThread == NULL) {
sysThreadError(osErrorResource);
return NULL;
}
if (pt->state != osTimerInvalid){
sysThreadError(osErrorResource);
return NULL;
}
pt->next = NULL;
pt->state = osTimerStopped;
pt->type = (uint8_t)type;
pt->arg = argument;
pt->timer = timer_def;
return (osTimerId)pt;
}
/// Start or restart timer
osStatus svcTimerStart (osTimerId timer_id, uint32_t millisec) {
os_timer_cb *pt;
uint32_t tcnt;
pt = rt_id2obj(timer_id);
if (pt == NULL) return osErrorParameter;
tcnt = rt_ms2tick(millisec);
if (tcnt == 0) return osErrorValue;
switch (pt->state) {
case osTimerRunning:
if (rt_timer_remove(pt) != 0) {
return osErrorResource;
}
break;
case osTimerStopped:
pt->state = osTimerRunning;
pt->icnt = (uint16_t)tcnt;
break;
default:
return osErrorResource;
}
rt_timer_insert(pt, tcnt);
return osOK;
}
/// Stop timer
osStatus svcTimerStop (osTimerId timer_id) {
os_timer_cb *pt;
pt = rt_id2obj(timer_id);
if (pt == NULL) return osErrorParameter;
if (pt->state != osTimerRunning) return osErrorResource;
pt->state = osTimerStopped;
if (rt_timer_remove(pt) != 0) {
return osErrorResource;
}
return osOK;
}
/// Delete timer
osStatus svcTimerDelete (osTimerId timer_id) {
os_timer_cb *pt;
pt = rt_id2obj(timer_id);
if (pt == NULL) return osErrorParameter;
switch (pt->state) {
case osTimerRunning:
rt_timer_remove(pt);
break;
case osTimerStopped:
break;
default:
return osErrorResource;
}
pt->state = osTimerInvalid;
return osOK;
}
/// Get timer callback parameters
os_InRegs osCallback_type svcTimerCall (osTimerId timer_id) {
os_timer_cb *pt;
osCallback ret;
pt = rt_id2obj(timer_id);
if (pt == NULL) {
ret.fp = NULL;
ret.arg = NULL;
return osCallback_ret;
}
ret.fp = (void *)pt->timer->ptimer;
ret.arg = pt->arg;
return osCallback_ret;
}
static __INLINE osStatus isrMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec);
/// Timer Tick (called each SysTick)
void sysTimerTick (void) {
os_timer_cb *pt, *p;
osStatus status;
p = os_timer_head;
if (p == NULL) return;
p->tcnt--;
while ((p != NULL) && (p->tcnt == 0)) {
pt = p;
p = p->next;
os_timer_head = p;
status = isrMessagePut(osMessageQId_osTimerMessageQ, (uint32_t)pt, 0U);
if (status != osOK) {
os_error(OS_ERR_TIMER_OVF);
}
if (pt->type == (uint8_t)osTimerPeriodic) {
rt_timer_insert(pt, pt->icnt);
} else {
pt->state = osTimerStopped;
}
}
}
uint32_t rt_timer_delay_count(void)
{
if (os_timer_head) {
return os_timer_head->tcnt;
}
return 0;
}
// Timer Management Public API
/// Create timer
osTimerId osTimerCreate (const osTimerDef_t *timer_def, os_timer_type type, void *argument) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
// Privileged and not running
return svcTimerCreate(timer_def, type, argument);
} else {
return __svcTimerCreate(timer_def, type, argument);
}
}
/// Start or restart timer
osStatus osTimerStart (osTimerId timer_id, uint32_t millisec) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcTimerStart(timer_id, millisec);
}
/// Stop timer
osStatus osTimerStop (osTimerId timer_id) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcTimerStop(timer_id);
}
/// Delete timer
osStatus osTimerDelete (osTimerId timer_id) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcTimerDelete(timer_id);
}
/// INTERNAL - Not Public
/// Get timer callback parameters (used by OS Timer Thread)
os_InRegs osCallback osTimerCall (osTimerId timer_id) {
return __svcTimerCall(timer_id);
}
// Timer Thread
__NO_RETURN void osTimerThread (void const *argument) {
osCallback cb;
osEvent evt;
for (;;) {
evt = osMessageGet(osMessageQId_osTimerMessageQ, osWaitForever);
if (evt.status == osEventMessage) {
cb = osTimerCall(evt.value.p);
if (cb.fp != NULL) {
(*(os_ptimer)cb.fp)(cb.arg);
}
}
}
}
// ==== Signal Management ====
// Signal Service Calls declarations
SVC_2_1(svcSignalSet, int32_t, osThreadId, int32_t, RET_int32_t)
SVC_2_1(svcSignalClear, int32_t, osThreadId, int32_t, RET_int32_t)
SVC_1_1(svcSignalGet, int32_t, osThreadId, RET_int32_t)
SVC_2_3(svcSignalWait, os_InRegs osEvent, int32_t, uint32_t, RET_osEvent)
// Signal Service Calls
/// Set the specified Signal Flags of an active thread
int32_t svcSignalSet (osThreadId thread_id, int32_t signals) {
P_TCB ptcb;
int32_t sig;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return 0x80000000;
if (signals & (0xFFFFFFFF << osFeature_Signals)) return 0x80000000;
sig = ptcb->events; // Previous signal flags
rt_evt_set(signals, ptcb->task_id); // Set event flags
return sig;
}
/// Clear the specified Signal Flags of an active thread
int32_t svcSignalClear (osThreadId thread_id, int32_t signals) {
P_TCB ptcb;
int32_t sig;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return 0x80000000;
if (signals & (0xFFFFFFFF << osFeature_Signals)) return 0x80000000;
sig = ptcb->events; // Previous signal flags
rt_evt_clr(signals, ptcb->task_id); // Clear event flags
return sig;
}
/// Get Signal Flags status of an active thread
int32_t svcSignalGet (osThreadId thread_id) {
P_TCB ptcb;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return 0x80000000;
return ptcb->events; // Return event flags
}
/// Wait for one or more Signal Flags to become signaled for the current RUNNING thread
os_InRegs osEvent_type svcSignalWait (int32_t signals, uint32_t millisec) {
OS_RESULT res;
osEvent ret;
if (signals & (0xFFFFFFFF << osFeature_Signals)) {
ret.status = osErrorValue;
return osEvent_ret_status;
}
if (signals != 0) { // Wait for all specified signals
res = rt_evt_wait(signals, rt_ms2tick(millisec), __TRUE);
} else { // Wait for any signal
res = rt_evt_wait(0xFFFF, rt_ms2tick(millisec), __FALSE);
}
if (res == OS_R_EVT) {
ret.status = osEventSignal;
ret.value.signals = signals ? signals : os_tsk.run->waits;
} else {
ret.status = millisec ? osEventTimeout : osOK;
ret.value.signals = 0;
}
return osEvent_ret_value;
}
// Signal ISR Calls
/// Set the specified Signal Flags of an active thread
static __INLINE int32_t isrSignalSet (osThreadId thread_id, int32_t signals) {
P_TCB ptcb;
int32_t sig;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return 0x80000000;
if (signals & (0xFFFFFFFF << osFeature_Signals)) return 0x80000000;
sig = ptcb->events; // Previous signal flags
isr_evt_set(signals, ptcb->task_id); // Set event flags
return sig;
}
// Signal Public API
/// Set the specified Signal Flags of an active thread
int32_t osSignalSet (osThreadId thread_id, int32_t signals) {
if (IN_ISR()) { // in ISR
return isrSignalSet(thread_id, signals);
} else { // in Thread
return __svcSignalSet(thread_id, signals);
}
}
/// Clear the specified Signal Flags of an active thread
int32_t osSignalClear (osThreadId thread_id, int32_t signals) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcSignalClear(thread_id, signals);
}
/// Get Signal Flags status of an active thread
int32_t osSignalGet (osThreadId thread_id) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcSignalGet(thread_id);
}
/// Wait for one or more Signal Flags to become signaled for the current RUNNING thread
os_InRegs osEvent osSignalWait (int32_t signals, uint32_t millisec) {
osEvent ret;
if (__get_IPSR() != 0) { // Not allowed in ISR
ret.status = osErrorISR;
return ret;
}
return __svcSignalWait(signals, millisec);
}
// ==== Mutex Management ====
// Mutex Service Calls declarations
SVC_1_1(svcMutexCreate, osMutexId, const osMutexDef_t *, RET_pointer)
SVC_2_1(svcMutexWait, osStatus, osMutexId, uint32_t, RET_osStatus)
SVC_1_1(svcMutexRelease, osStatus, osMutexId, RET_osStatus)
SVC_1_1(svcMutexDelete, osStatus, osMutexId, RET_osStatus)
SVC_1_1(svcMutexGetOwner, osThreadId, osMutexId, RET_pointer)
// Mutex Service Calls
/// Create and Initialize a Mutex object
osMutexId svcMutexCreate (const osMutexDef_t *mutex_def) {
OS_ID mut;
if (mutex_def == NULL) {
sysThreadError(osErrorParameter);
return NULL;
}
mut = mutex_def->mutex;
if (mut == NULL) {
sysThreadError(osErrorParameter);
return NULL;
}
if (((P_MUCB)mut)->cb_type != 0) {
sysThreadError(osErrorParameter);
return NULL;
}
rt_mut_init(mut); // Initialize Mutex
return mut;
}
/// Wait until a Mutex becomes available
osStatus svcMutexWait (osMutexId mutex_id, uint32_t millisec) {
OS_ID mut;
OS_RESULT res;
mut = rt_id2obj(mutex_id);
if (mut == NULL) return osErrorParameter;
if (((P_MUCB)mut)->cb_type != MUCB) return osErrorParameter;
res = rt_mut_wait(mut, rt_ms2tick(millisec)); // Wait for Mutex
if (res == OS_R_TMO) {
return (millisec ? osErrorTimeoutResource : osErrorResource);
}
if (res == OS_R_NOK) {
return osErrorResource;
}
return osOK;
}
/// Release a Mutex that was obtained with osMutexWait
osStatus svcMutexRelease (osMutexId mutex_id) {
OS_ID mut;
OS_RESULT res;
mut = rt_id2obj(mutex_id);
if (mut == NULL) return osErrorParameter;
if (((P_MUCB)mut)->cb_type != MUCB) return osErrorParameter;
res = rt_mut_release(mut); // Release Mutex
if (res == OS_R_NOK) return osErrorResource; // Thread not owner or Zero Counter
return osOK;
}
/// Delete a Mutex that was created by osMutexCreate
osStatus svcMutexDelete (osMutexId mutex_id) {
OS_ID mut;
mut = rt_id2obj(mutex_id);
if (mut == NULL) return osErrorParameter;
if (((P_MUCB)mut)->cb_type != MUCB) return osErrorParameter;
rt_mut_delete(mut); // Release Mutex
return osOK;
}
/// Get owner thread of a Mutex object.
osThreadId svcMutexGetOwner (osMutexId mutex_id) {
OS_ID mut;
mut = rt_id2obj(mutex_id);
if (mut == NULL) return NULL;
if (((P_MUCB)mut)->cb_type != MUCB) return NULL;
return (osThreadId)(((P_MUCB)mut)->owner);
}
// Mutex Public API
/// Create and Initialize a Mutex object
osMutexId osMutexCreate (const osMutexDef_t *mutex_def) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
// Privileged and not running
return svcMutexCreate(mutex_def);
} else {
return __svcMutexCreate(mutex_def);
}
}
/// Wait until a Mutex becomes available
osStatus osMutexWait (osMutexId mutex_id, uint32_t millisec) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcMutexWait(mutex_id, millisec);
}
/// Release a Mutex that was obtained with osMutexWait
osStatus osMutexRelease (osMutexId mutex_id) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcMutexRelease(mutex_id);
}
/// Delete a Mutex that was created by osMutexCreate
osStatus osMutexDelete (osMutexId mutex_id) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcMutexDelete(mutex_id);
}
/// Get owner thread of a Mutex object.
osThreadId osMutexGetOwner (osMutexId mutex_id) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
return __svcMutexGetOwner(mutex_id);
}
// ==== Semaphore Management ====
// Semaphore Service Calls declarations
SVC_2_1(svcSemaphoreCreate, osSemaphoreId, const osSemaphoreDef_t *, int32_t, RET_pointer)
SVC_2_1(svcSemaphoreWait, int32_t, osSemaphoreId, uint32_t, RET_int32_t)
SVC_1_1(svcSemaphoreRelease, osStatus, osSemaphoreId, RET_osStatus)
SVC_1_1(svcSemaphoreDelete, osStatus, osSemaphoreId, RET_osStatus)
// Semaphore Service Calls
/// Create and Initialize a Semaphore object
osSemaphoreId svcSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count) {
OS_ID sem;
if (semaphore_def == NULL) {
sysThreadError(osErrorParameter);
return NULL;
}
sem = semaphore_def->semaphore;
if (sem == NULL) {
sysThreadError(osErrorParameter);
return NULL;
}
if (((P_SCB)sem)->cb_type != 0) {
sysThreadError(osErrorParameter);
return NULL;
}
if (count > osFeature_Semaphore) {
sysThreadError(osErrorValue);
return NULL;
}
rt_sem_init(sem, count); // Initialize Semaphore
return sem;
}
/// Wait until a Semaphore becomes available
int32_t svcSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec) {
OS_ID sem;
OS_RESULT res;
sem = rt_id2obj(semaphore_id);
if (sem == NULL) return -1;
if (((P_SCB)sem)->cb_type != SCB) return -1;
res = rt_sem_wait(sem, rt_ms2tick(millisec)); // Wait for Semaphore
if (res == OS_R_TMO) return 0; // Timeout
return (((P_SCB)sem)->tokens + 1);
}
/// Release a Semaphore
osStatus svcSemaphoreRelease (osSemaphoreId semaphore_id) {
OS_ID sem;
sem = rt_id2obj(semaphore_id);
if (sem == NULL) return osErrorParameter;
if (((P_SCB)sem)->cb_type != SCB) return osErrorParameter;
if (((P_SCB)sem)->tokens == osFeature_Semaphore) return osErrorResource;
rt_sem_send(sem); // Release Semaphore
return osOK;
}
/// Delete a Semaphore that was created by osSemaphoreCreate
osStatus svcSemaphoreDelete (osSemaphoreId semaphore_id) {
OS_ID sem;
sem = rt_id2obj(semaphore_id);
if (sem == NULL) return osErrorParameter;
if (((P_SCB)sem)->cb_type != SCB) return osErrorParameter;
rt_sem_delete(sem); // Delete Semaphore
return osOK;
}
// Semaphore ISR Calls
/// Release a Semaphore
static __INLINE osStatus isrSemaphoreRelease (osSemaphoreId semaphore_id) {
OS_ID sem;
sem = rt_id2obj(semaphore_id);
if (sem == NULL) return osErrorParameter;
if (((P_SCB)sem)->cb_type != SCB) return osErrorParameter;
if (((P_SCB)sem)->tokens == osFeature_Semaphore) return osErrorResource;
isr_sem_send(sem); // Release Semaphore
return osOK;
}
// Semaphore Public API
/// Create and Initialize a Semaphore object
osSemaphoreId osSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
// Privileged and not running
return svcSemaphoreCreate(semaphore_def, count);
} else {
return __svcSemaphoreCreate(semaphore_def, count);
}
}
/// Wait until a Semaphore becomes available
int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec) {
if (__get_IPSR() != 0) return -1; // Not allowed in ISR
return __svcSemaphoreWait(semaphore_id, millisec);
}
/// Release a Semaphore
osStatus osSemaphoreRelease (osSemaphoreId semaphore_id) {
if (IN_ISR()) { // in ISR
return isrSemaphoreRelease(semaphore_id);
} else { // in Thread
return __svcSemaphoreRelease(semaphore_id);
}
}
/// Delete a Semaphore that was created by osSemaphoreCreate
osStatus osSemaphoreDelete (osSemaphoreId semaphore_id) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcSemaphoreDelete(semaphore_id);
}
// ==== Memory Management Functions ====
// Memory Management Helper Functions
// Clear Memory Box (Zero init)
static void rt_clr_box (void *box_mem, void *box) {
uint32_t *p, n;
if ((box_mem != NULL) && (box != NULL)) {
p = box;
for (n = ((P_BM)box_mem)->blk_size; n; n -= 4) {
*p++ = 0;
}
}
}
// Memory Management Service Calls declarations
SVC_1_1(svcPoolCreate, osPoolId, const osPoolDef_t *, RET_pointer)
SVC_2_1(sysPoolAlloc, void *, osPoolId, uint32_t, RET_pointer)
SVC_2_1(sysPoolFree, osStatus, osPoolId, void *, RET_osStatus)
// Memory Management Service & ISR Calls
/// Create and Initialize memory pool
osPoolId svcPoolCreate (const osPoolDef_t *pool_def) {
uint32_t blk_sz;
if ((pool_def == NULL) ||
(pool_def->pool_sz == 0) ||
(pool_def->item_sz == 0) ||
(pool_def->pool == NULL)) {
sysThreadError(osErrorParameter);
return NULL;
}
blk_sz = (pool_def->item_sz + 3) & ~3;
_init_box(pool_def->pool, sizeof(struct OS_BM) + pool_def->pool_sz * blk_sz, blk_sz);
return pool_def->pool;
}
/// Allocate a memory block from a memory pool
void *sysPoolAlloc (osPoolId pool_id, uint32_t clr) {
void *ptr;
if (pool_id == NULL) return NULL;
ptr = rt_alloc_box(pool_id);
if (clr) {
rt_clr_box(pool_id, ptr);
}
return ptr;
}
/// Return an allocated memory block back to a specific memory pool
osStatus sysPoolFree (osPoolId pool_id, void *block) {
int32_t res;
if (pool_id == NULL) return osErrorParameter;
res = rt_free_box(pool_id, block);
if (res != 0) return osErrorValue;
return osOK;
}
// Memory Management Public API
/// Create and Initialize memory pool
osPoolId osPoolCreate (const osPoolDef_t *pool_def) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
// Privileged and not running
return svcPoolCreate(pool_def);
} else {
return __svcPoolCreate(pool_def);
}
}
/// Allocate a memory block from a memory pool
void *osPoolAlloc (osPoolId pool_id) {
if ((__get_IPSR() != 0) || ((__get_CONTROL() & 1) == 0)) { // in ISR or Privileged
return sysPoolAlloc(pool_id, 0);
} else { // in Thread
return __sysPoolAlloc(pool_id, 0);
}
}
/// Allocate a memory block from a memory pool and set memory block to zero
void *osPoolCAlloc (osPoolId pool_id) {
if ((IN_ISR()) || ((__get_CONTROL() & 1) == 0)) { // in ISR or Privileged
return sysPoolAlloc(pool_id, 1);
} else { // in Thread
return __sysPoolAlloc(pool_id, 1);
}
}
/// Return an allocated memory block back to a specific memory pool
osStatus osPoolFree (osPoolId pool_id, void *block) {
if ((IN_ISR()) || ((__get_CONTROL() & 1) == 0)) { // in ISR or Privileged
return sysPoolFree(pool_id, block);
} else { // in Thread
return __sysPoolFree(pool_id, block);
}
}
// ==== Message Queue Management Functions ====
// Message Queue Management Service Calls declarations
SVC_2_1(svcMessageCreate, osMessageQId, const osMessageQDef_t *, osThreadId, RET_pointer)
SVC_3_1(svcMessagePut, osStatus, osMessageQId, uint32_t, uint32_t, RET_osStatus)
SVC_2_3(svcMessageGet, os_InRegs osEvent, osMessageQId, uint32_t, RET_osEvent)
// Message Queue Service Calls
/// Create and Initialize Message Queue
osMessageQId svcMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id) {
if ((queue_def == NULL) ||
(queue_def->queue_sz == 0) ||
(queue_def->pool == NULL)) {
sysThreadError(osErrorParameter);
return NULL;
}
if (((P_MCB)queue_def->pool)->cb_type != 0) {
sysThreadError(osErrorParameter);
return NULL;
}
rt_mbx_init(queue_def->pool, 4*(queue_def->queue_sz + 4));
return queue_def->pool;
}
/// Put a Message to a Queue
osStatus svcMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec) {
OS_RESULT res;
if (queue_id == NULL) return osErrorParameter;
if (((P_MCB)queue_id)->cb_type != MCB) return osErrorParameter;
res = rt_mbx_send(queue_id, (void *)info, rt_ms2tick(millisec));
if (res == OS_R_TMO) {
return (millisec ? osErrorTimeoutResource : osErrorResource);
}
return osOK;
}
/// Get a Message or Wait for a Message from a Queue
os_InRegs osEvent_type svcMessageGet (osMessageQId queue_id, uint32_t millisec) {
OS_RESULT res;
osEvent ret;
if (queue_id == NULL) {
ret.status = osErrorParameter;
return osEvent_ret_status;
}
if (((P_MCB)queue_id)->cb_type != MCB) {
ret.status = osErrorParameter;
return osEvent_ret_status;
}
res = rt_mbx_wait(queue_id, &ret.value.p, rt_ms2tick(millisec));
if (res == OS_R_TMO) {
ret.status = millisec ? osEventTimeout : osOK;
return osEvent_ret_value;
}
ret.status = osEventMessage;
return osEvent_ret_value;
}
// Message Queue ISR Calls
/// Put a Message to a Queue
static __INLINE osStatus isrMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec) {
if ((queue_id == NULL) || (millisec != 0)) {
return osErrorParameter;
}
if (((P_MCB)queue_id)->cb_type != MCB) return osErrorParameter;
if (rt_mbx_check(queue_id) == 0) { // Check if Queue is full
return osErrorResource;
}
isr_mbx_send(queue_id, (void *)info);
return osOK;
}
/// Get a Message or Wait for a Message from a Queue
static __INLINE os_InRegs osEvent isrMessageGet (osMessageQId queue_id, uint32_t millisec) {
OS_RESULT res;
osEvent ret;
if ((queue_id == NULL) || (millisec != 0)) {
ret.status = osErrorParameter;
return ret;
}
if (((P_MCB)queue_id)->cb_type != MCB) {
ret.status = osErrorParameter;
return ret;
}
res = isr_mbx_receive(queue_id, &ret.value.p);
if (res != OS_R_MBX) {
ret.status = osOK;
return ret;
}
ret.status = osEventMessage;
return ret;
}
// Message Queue Management Public API
/// Create and Initialize Message Queue
osMessageQId osMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
// Privileged and not running
return svcMessageCreate(queue_def, thread_id);
} else {
return __svcMessageCreate(queue_def, thread_id);
}
}
/// Put a Message to a Queue
osStatus osMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec) {
if (IN_ISR()) { // in ISR
return isrMessagePut(queue_id, info, millisec);
} else { // in Thread
return __svcMessagePut(queue_id, info, millisec);
}
}
/// Get a Message or Wait for a Message from a Queue
os_InRegs osEvent osMessageGet (osMessageQId queue_id, uint32_t millisec) {
if (IN_ISR()) { // in ISR
return isrMessageGet(queue_id, millisec);
} else { // in Thread
return __svcMessageGet(queue_id, millisec);
}
}
uint32_t osMessageGetSpace (osMessageQId queue_id)
{
return rt_mbx_check(queue_id);
}
// ==== Mail Queue Management Functions ====
// Mail Queue Management Service Calls declarations
SVC_2_1(svcMailCreate, osMailQId, const osMailQDef_t *, osThreadId, RET_pointer)
SVC_4_1(sysMailAlloc, void *, osMailQId, uint32_t, uint32_t, uint32_t, RET_pointer)
SVC_3_1(sysMailFree, osStatus, osMailQId, void *, uint32_t, RET_osStatus)
// Mail Queue Management Service & ISR Calls
/// Create and Initialize mail queue
osMailQId svcMailCreate (const osMailQDef_t *queue_def, osThreadId thread_id) {
uint32_t blk_sz;
P_MCB pmcb;
void *pool;
if ((queue_def == NULL) ||
(queue_def->queue_sz == 0) ||
(queue_def->item_sz == 0) ||
(queue_def->pool == NULL)) {
sysThreadError(osErrorParameter);
return NULL;
}
pmcb = *(((void **)queue_def->pool) + 0);
pool = *(((void **)queue_def->pool) + 1);
if ((pool == NULL) || (pmcb == NULL) || (pmcb->cb_type != 0)) {
sysThreadError(osErrorParameter);
return NULL;
}
blk_sz = (queue_def->item_sz + 3) & ~3;
_init_box(pool, sizeof(struct OS_BM) + queue_def->queue_sz * blk_sz, blk_sz);
rt_mbx_init(pmcb, 4*(queue_def->queue_sz + 4));
return queue_def->pool;
}
/// Allocate a memory block from a mail
void *sysMailAlloc (osMailQId queue_id, uint32_t millisec, uint32_t isr, uint32_t clr) {
P_MCB pmcb;
void *pool;
void *mem;
if (queue_id == NULL) return NULL;
pmcb = *(((void **)queue_id) + 0);
pool = *(((void **)queue_id) + 1);
if ((pool == NULL) || (pmcb == NULL)) return NULL;
if (isr && (millisec != 0)) return NULL;
mem = rt_alloc_box(pool);
if (clr) {
rt_clr_box(pool, mem);
}
if ((mem == NULL) && (millisec != 0)) {
// Put Task to sleep when Memory not available
if (pmcb->p_lnk != NULL) {
rt_put_prio((P_XCB)pmcb, os_tsk.run);
} else {
pmcb->p_lnk = os_tsk.run;
os_tsk.run->p_lnk = NULL;
os_tsk.run->p_rlnk = (P_TCB)pmcb;
// Task is waiting to allocate a message
pmcb->state = 3;
}
rt_block(rt_ms2tick(millisec), WAIT_MBX);
}
return mem;
}
/// Free a memory block from a mail
osStatus sysMailFree (osMailQId queue_id, void *mail, uint32_t isr) {
P_MCB pmcb;
P_TCB ptcb;
void *pool;
void *mem;
int32_t res;
if (queue_id == NULL) return osErrorParameter;
pmcb = *(((void **)queue_id) + 0);
pool = *(((void **)queue_id) + 1);
if ((pmcb == NULL) || (pool == NULL)) return osErrorParameter;
res = rt_free_box(pool, mail);
if (res != 0) return osErrorValue;
if ((pmcb->p_lnk != NULL) && (pmcb->state == 3U)) {
// Task is waiting to allocate a message
if (isr) {
rt_psq_enq (pmcb, (U32)pool);
rt_psh_req ();
} else {
mem = rt_alloc_box(pool);
if (mem != NULL) {
ptcb = rt_get_first((P_XCB)pmcb);
rt_ret_val(ptcb, (U32)mem);
rt_rmv_dly(ptcb);
rt_dispatch(ptcb);
}
}
}
return osOK;
}
// Mail Queue Management Public API
/// Create and Initialize mail queue
osMailQId osMailCreate (const osMailQDef_t *queue_def, osThreadId thread_id) {
if (__get_IPSR() != 0) return NULL; // Not allowed in ISR
if (((__get_CONTROL() & 1) == 0) && (os_running == 0)) {
// Privileged and not running
return svcMailCreate(queue_def, thread_id);
} else {
return __svcMailCreate(queue_def, thread_id);
}
}
/// Allocate a memory block from a mail
void *osMailAlloc (osMailQId queue_id, uint32_t millisec) {
if (IN_ISR()) { // in ISR
return sysMailAlloc(queue_id, millisec, 1, 0);
} else { // in Thread
return __sysMailAlloc(queue_id, millisec, 0, 0);
}
}
/// Allocate a memory block from a mail and set memory block to zero
void *osMailCAlloc (osMailQId queue_id, uint32_t millisec) {
if (IN_ISR()) { // in ISR
return sysMailAlloc(queue_id, millisec, 1, 1);
} else { // in Thread
return __sysMailAlloc(queue_id, millisec, 0, 1);
}
}
/// Free a memory block from a mail
osStatus osMailFree (osMailQId queue_id, void *mail) {
if (IN_ISR()) { // in ISR
return sysMailFree(queue_id, mail, 1);
} else { // in Thread
return __sysMailFree(queue_id, mail, 0);
}
}
/// Put a mail to a queue
osStatus osMailPut (osMailQId queue_id, void *mail) {
if (queue_id == NULL) return osErrorParameter;
if (mail == NULL) return osErrorValue;
return osMessagePut(*((void **)queue_id), (uint32_t)mail, 0);
}
#if TASK_HUNG_CHECK_ENABLED
osStatus svcThreadSetHungCheck (osThreadId thread_id, int32_t enable, uint32_t timeout) {
P_TCB ptcb;
ptcb = rt_tid2ptcb(thread_id); // Get TCB pointer
if (ptcb == NULL) return osErrorParameter;
ptcb->hung_check = !!enable;
ptcb->hung_check_timeout = timeout;
return osOK;
}
/// enable/disable the hung check feature of an active thread
osStatus osThreadSetHungCheck (osThreadId thread_id, int32_t enable, uint32_t timeout) {
if (__get_IPSR() != 0) return osErrorISR; // Not allowed in ISR
return __svcThreadSetHungCheck(thread_id, enable, timeout);
}
#endif
#ifdef __CC_ARM
#pragma push
#pragma Ospace
#endif // __arm__
/// Get a mail from a queue
os_InRegs osEvent osMailGet (osMailQId queue_id, uint32_t millisec) {
osEvent ret;
if (queue_id == NULL) {
ret.status = osErrorParameter;
return ret;
}
ret = osMessageGet(*((void **)queue_id), millisec);
if (ret.status == osEventMessage) ret.status = osEventMail;
return ret;
}
#ifdef __CC_ARM
#pragma pop
#endif // __arm__