pinebuds/platform/hal/hal_psram_v2.c
Ben V. Brown 75381150fd Formatting
Formatting Pass 1

Lots of fixups to adding stdint and stdbool all over the place

Formatting Pass 2
Formatting Pass 3
Formatting Pass 4

Update app_bt_stream.cpp
2023-02-02 07:56:49 +11:00

810 lines
23 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#if defined(CHIP_HAS_PSRAM) && (CHIP_PSRAM_CTRL_VER >= 2)
#include "hal_cache.h"
#include "hal_location.h"
#include "hal_psram.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "plat_addr_map.h"
#include "plat_types.h"
#include "pmu.h"
#include "reg_psram_mc_v2.h"
#include "reg_psram_phy_v2.h"
#include "string.h"
#define PSRAM_RESET
//#define PSRAM_DUAL_8BIT
//#define PSRAM_WRAP_ENABLE
//#define PSRAM_DEBUG
#ifdef PSRAM_DEBUG
#define PSRAM_TRACE TRACE_IMM
#else
#define PSRAM_TRACE(...)
#endif
#ifdef PSRAM_DEBUG
#define PSRAM_TRACENOCRLF_NOTS REL_TRACE_NOCRLF_NOTS
#else
#define PSRAM_TRACENOCRLF_NOTS(...)
#endif
#define TX_FIFO_DEPTH 8
#define RX_FIFO_DEPTH 8
// MR0
#define MR0_DRIVE_STR_SHIFT 0
#define MR0_DRIVE_STR_MASK (0x3 << MR0_DRIVE_STR_SHIFT)
#define MR0_DRIVE_STR(n) BITFIELD_VAL(MR0_DRIVE_STR, n)
#define MR0_READ_LATENCY_SHIFT 2
#define MR0_READ_LATENCY_MASK (0x7 << MR0_READ_LATENCY_SHIFT)
#define MR0_READ_LATENCY(n) BITFIELD_VAL(MR0_READ_LATENCY, n)
#define MR0_LT (1 << 5)
#define MR0_FIXED_00_SHIFT 6
#define MR0_FIXED_00_MASK (0x3 << MR0_FIXED_00_SHIFT)
#define MR0_FIXED_00(n) BITFIELD_VAL(MR0_FIXED_00, n)
// MR1
#define MR1_VENDOR_ID_SHIFT 0
#define MR1_VENDOR_ID_MASK (0x1F << MR1_VENDOR_ID_SHIFT)
#define MR1_VENDOR_ID(n) BITFIELD_VAL(MR1_VENDOR_ID, n)
#define MR1_DENSITY_SHIFT 5
#define MR1_DENSITY_MASK (0x3 << MR1_DENSITY_SHIFT)
#define MR1_DENSITY(n) BITFIELD_VAL(MR1_DENSITY, n)
#define MR1_ULP (1 << 7)
// MR2
#define MR2_VENDOR_ID_SHIFT 0
#define MR2_VENDOR_ID_MASK (0x7 << MR2_VENDOR_ID_SHIFT)
#define MR2_VENDOR_ID(n) BITFIELD_VAL(MR2_VENDOR_ID, n)
#define MR2_DEV_ID_SHIFT 3
#define MR2_DEV_ID_MASK (0x3 << MR2_DEV_ID_SHIFT)
#define MR2_DEV_ID(n) BITFIELD_VAL(MR2_DEV_ID, n)
#define MR2_RSVD (1 << 5)
#define MR2_FIXED_1 (1 << 6)
#define MR2_GB (1 << 7)
// MR4
#define MR4_PASR_SHIFT 0
#define MR4_PASR_MASK (0x7 << MR4_PASR_SHIFT)
#define MR4_PASR(n) BITFIELD_VAL(MR4_PASR, n)
#define MR4_RF (1 << 3)
#define MR4_FIXED_0 (1 << 4)
#define MR4_WRITE_LATENCY_SHIFT 5
#define MR4_WRITE_LATENCY_MASK (0x7 << MR4_WRITE_LATENCY_SHIFT)
#define MR4_WRITE_LATENCY(n) BITFIELD_VAL(MR4_WRITE_LATENCY, n)
// MR6
#define MR6_RSVD_SHIFT 0
#define MR6_RSVD_MASK (0xF << MR6_RSVD_SHIFT)
#define MR6_RSVD(n) BITFIELD_VAL(MR6_RSVD, n)
#define MR6_HALF_SLEEP_SHIFT 4
#define MR6_HALF_SLEEP_MASK (0xF << MR6_HALF_SLEEP_SHIFT)
#define MR6_HALF_SLEEP(n) BITFIELD_VAL(MR6_HALF_SLEEP, n)
// MR8
#define MR8_BL_SHIFT 0
#define MR8_BL_MASK (0x3 << MR8_BL_SHIFT)
#define MR8_BL(n) BITFIELD_VAL(MR8_BL, n)
#define MR8_BT (1 << 2)
#define MR8_FIXED_0 (1 << 3)
#define MR8_RSVD_SHIFT 4
#define MR8_RSVD_MASK (0x7 << MR8_RSVD_SHIFT)
#define MR8_RSVD(n) BITFIELD_VAL(MR8_RSVD, n)
#define MR8_FIXED_00 (1 << 7)
enum PSRAM_CMD_T {
PSRAM_CMD_SYNC_READ = 0x00,
PSRAM_CMD_SYNC_WRITE = 0x80,
PSRAM_CMD_4BYTE_READ = 0x3F,
PSRAM_CMD_4BYTE_WRITE = 0xBF,
PSRAM_CMD_REG_READ = 0x40,
PSRAM_CMD_REG_WRITE = 0xC0,
PSRAM_CMD_GLOBAL_RESET = 0xFF,
};
enum CP_FSM_STATE_T {
CP_FSM_STATE_SELF_REFRESH = 1,
CP_FSM_STATE_PD = 2,
CP_FSM_STATE_READY = 4,
};
enum MEMIF_CMD_T {
MEMIF_NO_CMD = 0x00,
MEMIF_WRITE = 0x01,
MEMIF_READ = 0x02,
MEMIF_MRS = 0x05,
MEMIF_MRR = 0x06,
MEMIF_REF = 0x08,
MEMIF_SREF = 0x09,
MEMIF_PD = 0x10,
MEMIF_NOP = 0x20,
MEMIF_RST = 0xFF,
MEMIF_ZQCL = 0x85,
MEMIF_ZQCS = 0x45,
MEMIF_ZQCRST = 0x25,
MEMIF_START_CLOCK = 0x40,
MEMIF_STOP_CLOCK = 0x80,
MEMIF_NEW_CMD = 0x7F,
};
static struct PSRAM_MC_T *const psram_mc = (struct PSRAM_MC_T *)PSRAM_CTRL_BASE;
static struct PSRAM_PHY_T *const psram_phy =
(struct PSRAM_PHY_T *)(PSRAM_CTRL_BASE + 0x8000);
static const uint32_t psram_cfg_clk = 48 * 1000 * 1000;
#if (PSRAM_SPEED != 0)
static const uint32_t psram_run_clk = PSRAM_SPEED * 1000 * 1000;
#else
#error "invalid PSRAMUHS_SPEED"
#endif
static void psram_chip_timing_config(uint32_t clk, bool psram_first);
int hal_psramip_mc_busy(void) {
return !!(psram_mc->REG_404 & PSRAM_ULP_MC_BUSY);
}
static int hal_psramip_wb_busy(void) {
return !!(psram_mc->REG_404 & PSRAM_ULP_MC_WB_FILL_LEVEL_MASK);
}
int hal_psramip_mc_in_sleep(void) {
return GET_BITFIELD(psram_mc->REG_404, PSRAM_ULP_MC_CP_FSM_STATE) ==
CP_FSM_STATE_PD;
}
int hal_psramip_rx_fifo_empty(void) {
return !!(psram_mc->REG_404 & PSRAM_ULP_MC_MGR_RXFIFO_R_EMPTY);
}
int hal_psramip_tx_fifo_full(void) {
return !!(psram_mc->REG_404 & PSRAM_ULP_MC_MGR_TXFIFO_W_FULL);
}
uint32_t hal_psramip_get_rx_fifo_len(void) {
return GET_BITFIELD(psram_mc->REG_404, PSRAM_ULP_MC_MGR_RXFIFO_FULL_CNT);
}
uint32_t hal_psramip_get_tx_fifo_free_len(void) {
return GET_BITFIELD(psram_mc->REG_404, PSRAM_ULP_MC_MGR_TXFIFO_EMPTY_CNT);
}
void hal_psramip_mc_busy_wait(void) {
while (hal_psramip_mc_busy())
;
}
void hal_psramip_wb_busy_wait(void) {
while (hal_psramip_wb_busy())
;
}
void hal_psramip_flush_tx_fifo(void) {
hal_psramip_mc_busy_wait();
psram_mc->REG_01C = PSRAM_ULP_MC_MGR_TX_FIFO_CLR;
hal_psramip_mc_busy_wait();
}
void hal_psramip_flush_rx_fifo(void) {
hal_psramip_mc_busy_wait();
psram_mc->REG_01C = PSRAM_ULP_MC_MGR_RX_FIFO_CLR;
hal_psramip_mc_busy_wait();
}
void hal_psramip_flush_all_fifo(void) {
hal_psramip_mc_busy_wait();
psram_mc->REG_01C =
PSRAM_ULP_MC_MGR_TX_FIFO_CLR | PSRAM_ULP_MC_MGR_RX_FIFO_CLR;
hal_psramip_mc_busy_wait();
}
void hal_psramip_xfer_addr_len(uint32_t addr, uint32_t len) {
psram_mc->REG_008 = addr;
psram_mc->REG_00C = len;
}
void hal_psramip_write_fifo(uint32_t *data, uint32_t len) {
for (int i = 0; i < len; i++) {
psram_mc->REG_014 = *data++;
}
}
void hal_psramip_read_fifo(uint32_t *data, uint32_t len) {
for (int i = 0; i < len; i++) {
*data++ = psram_mc->REG_018;
}
}
void hal_psramip_set_reg_data_mask(void) {
#ifdef PSRAM_DUAL_8BIT
psram_mc->REG_010 = 0xFC;
#else
psram_mc->REG_010 = 0xFE;
#endif
}
void hal_psramip_set_mem_data_mask(void) { psram_mc->REG_010 = 0; }
void hal_psramip_set_cmd(enum MEMIF_CMD_T cmd) { psram_mc->REG_004 = cmd; }
POSSIBLY_UNUSED void psram_read_reg(uint32_t reg, uint32_t *val) {
hal_psramip_flush_all_fifo();
hal_psramip_xfer_addr_len(reg, 1);
hal_psramip_set_cmd(MEMIF_MRR);
while (hal_psramip_rx_fifo_empty())
;
hal_psramip_read_fifo(val, 1);
}
static void psram_send_cmd_reg(enum MEMIF_CMD_T cmd, uint32_t reg,
uint32_t val) {
#ifdef PSRAM_DUAL_8BIT
val &= 0xFF;
val |= (val << 8);
#endif
hal_psramip_flush_all_fifo();
// hal_psramip_set_reg_data_mask();
hal_psramip_write_fifo(&val, 1);
hal_psramip_xfer_addr_len(reg, 1);
hal_psramip_set_cmd(cmd);
while (hal_psramip_get_tx_fifo_free_len() != TX_FIFO_DEPTH)
;
hal_psramip_mc_busy_wait();
// hal_psramip_set_mem_data_mask();
}
static void psram_write_reg(uint32_t reg, uint32_t val) {
psram_send_cmd_reg(MEMIF_MRS, reg, val);
}
static void psram_single_cmd(enum MEMIF_CMD_T cmd) {
hal_psramip_flush_all_fifo();
hal_psramip_set_cmd(cmd);
hal_psramip_mc_busy_wait();
}
static POSSIBLY_UNUSED void psram_reset(void) { psram_single_cmd(MEMIF_RST); }
static void psram_set_timing(uint32_t clk) {
uint32_t reg;
uint32_t val;
#if PSRAMSIZE == 0x800000
reg = 8;
#ifdef PSRAM_WRAP_ENABLE
// Wrap 32
val = MR8_BL(1);
#else
// Wrap 1k
val = MR8_BL(0x3);
#endif
psram_write_reg(reg, val);
#endif
reg = 0;
if (clk <= 66000000) {
val = 2;
} else if (clk <= 109000000) {
val = 3;
} else if (clk <= 133000000) {
val = 4;
} else if (clk <= 166000000) {
val = 5;
} else {
val = 6;
}
// Latency type: Variable
val = MR0_DRIVE_STR(3) | MR0_READ_LATENCY(val);
psram_write_reg(reg, val);
reg = 4;
if (clk <= 166000000) {
val = 0;
} else {
val = 4;
}
// Fast Refresh,
val = MR4_PASR(0) | MR4_WRITE_LATENCY(val);
psram_write_reg(reg, val);
}
static void hal_psram_phy_dll_config(uint32_t clk) {
uint32_t phy_clk;
uint32_t range;
uint32_t val;
val = psram_phy->REG_050;
val &= ~PSRAM_ULP_PHY_REG_DLL_RESETB | PSRAM_ULP_PHY_REG_DLL_CK_RDY;
psram_phy->REG_050 = val;
phy_clk = clk;
if (phy_clk <= 100000000 / 2) {
range = 3;
} else if (phy_clk <= 150000000 / 2) {
range = 2;
} else if (phy_clk <= 300000000 / 2) {
range = 1;
} else {
range = 0;
}
val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_DLL_RANGE, range);
psram_phy->REG_050 = val;
val |= PSRAM_ULP_PHY_REG_DLL_RESETB | PSRAM_ULP_PHY_REG_DLL_CK_RDY;
psram_phy->REG_050 = val;
}
static void hal_psram_phy_init(uint32_t clk) {
uint32_t val;
val = psram_phy->REG_048;
val |= PSRAM_ULP_PHY_REG_LDO_PU | PSRAM_ULP_PHY_REG_LDO_PRECHARGE;
psram_phy->REG_048 = val;
hal_sys_timer_delay_us(10);
val &= ~PSRAM_ULP_PHY_REG_LDO_PRECHARGE;
val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_LDO_IEN1, 0xc);
val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_LDO_IEN2, 0x5);
val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_LDO_VTUNE, 0x0);
psram_phy->REG_048 = val;
val = psram_phy->REG_04C;
val |= PSRAM_ULP_PHY_REG_PSRAM_PU;
val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_PSRAM_SWRC, 0x3);
val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_PSRAM_TXDRV, 0x3);
psram_phy->REG_04C = val;
val = psram_phy->REG_050;
val |= PSRAM_ULP_PHY_REG_DLL_PU;
// val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_DLL_SWRC, 0x3);
psram_phy->REG_050 = val;
hal_sys_timer_delay_us(2);
val |= PSRAM_ULP_PHY_REG_DLL_RESETB;
psram_phy->REG_050 = val;
hal_sys_timer_delay_us(20);
hal_psram_phy_dll_config(clk);
}
static void hal_psram_mc_set_timing(uint32_t clk) {
uint32_t val;
if (clk <= 166000000) {
val = PSRAM_ULP_MC_WRITE_LATENCY(0);
} else {
val = PSRAM_ULP_MC_WRITE_LATENCY(2);
}
psram_mc->REG_028 = val;
#if (CHIP_PSRAM_CTRL_VER == 2)
if (clk <= 66000000) {
val = PSRAM_ULP_MC_READ_LATENCY(2);
} else if (clk <= 109000000) {
val = PSRAM_ULP_MC_READ_LATENCY(3);
} else if (clk <= 133000000) {
val = PSRAM_ULP_MC_READ_LATENCY(4);
} else if (clk <= 166000000) {
val = PSRAM_ULP_MC_READ_LATENCY(5);
} else {
val = PSRAM_ULP_MC_READ_LATENCY(6);
}
psram_mc->REG_02C = val;
#else
// Min latency: 2 cycles
psram_mc->REG_02C = PSRAM_ULP_MC_READ_LATENCY(2);
#endif
// tRC >= 55 ns
val = (clk / 1000000 * 55 + (1000 - 1)) / 1000;
psram_mc->REG_050 = PSRAM_ULP_MC_T_RC(val);
val = 2;
psram_mc->REG_058 = PSRAM_ULP_MC_T_CPHR(val);
psram_mc->REG_068 = PSRAM_ULP_MC_T_MRR(val);
val = 6;
psram_mc->REG_060 = PSRAM_ULP_MC_T_CPHW(val);
#ifdef CHIP_BEST2001
val += 1;
#endif
psram_mc->REG_06C = PSRAM_ULP_MC_T_MRS(val);
// tCEM <= 2.5 us
val = clk / 1000000 * 25 / 10;
psram_mc->REG_070 = PSRAM_ULP_MC_T_CEM(val);
// tRST >= 2 us
val = clk / 1000000 * 2 + 1;
psram_mc->REG_074 = PSRAM_ULP_MC_T_RST(val);
// tHS >= 4 us
val = clk / 1000000 * 4 + 1;
psram_mc->REG_080 = PSRAM_ULP_MC_T_HS(val);
// tXPHS in [60 ns, 4 us]
val = (clk / 1000000 * 60 + (1000 - 1)) / 1000;
psram_mc->REG_084 = PSRAM_ULP_MC_T_XPHS(val);
// tXHS >= 70 us
val = clk / 1000000 * 70 + 1;
psram_mc->REG_088 = PSRAM_ULP_MC_T_XHS(val);
psram_mc->REG_09C = PSRAM_ULP_MC_WR_DMY_CYC(1);
// NOP dummy cycles, same as tXPHS in [60 ns, 4 us]
val = (clk / 1000000 * 60 + (1000 - 1)) / 1000;
psram_mc->REG_0A0 =
PSRAM_ULP_MC_STOP_CLK_IN_NOP | PSRAM_ULP_MC_NOP_DMY_CYC(val);
psram_mc->REG_0A4 = PSRAM_ULP_MC_QUEUE_IDLE_CYCLE(5000);
}
static void hal_psram_init_calib(void) {
uint32_t delay;
while ((psram_phy->REG_058 & PSRAM_ULP_PHY_DLL_LOCK) == 0)
;
delay = GET_BITFIELD(psram_phy->REG_058, PSRAM_ULP_PHY_DLL_DLY_IN);
// ASSERT(delay < (PSRAM_ULP_PHY_DLL_DLY_IN_MASK >>
// PSRAM_ULP_PHY_DLL_DLY_IN_SHIFT),
// "%s: Bad DLL_DLY_IN=0x%X reg=0x%08X", __func__, delay,
// psram_phy->REG_058);
delay /= 2;
psram_phy->REG_054 = PSRAM_ULP_PHY_REG_PSRAM_TX_CEB_DLY(delay) |
PSRAM_ULP_PHY_REG_PSRAM_TX_CLK_DLY(delay) |
PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY(delay) |
PSRAM_ULP_PHY_REG_PSRAM_RX_DQS_DLY(delay);
}
static void hal_psram_mc_init(uint32_t clk) {
#ifdef PSRAM_DUAL_8BIT
psram_mc->REG_000 = PSRAM_ULP_MC_CHIP_BIT;
#else
psram_mc->REG_000 = 0;
#endif
psram_mc->REG_020 = 0;
psram_mc->REG_024 =
#ifndef CHIP_BEST2001
PSRAM_ULP_MC_ENTRY_SLEEP_IDLE |
#endif
PSRAM_ULP_MC_AUTOWAKEUP_EN | PSRAM_ULP_MC_PD_MR(6) |
PSRAM_ULP_MC_PD_CMD(0xF0);
#ifdef PSRAM_WRAP_ENABLE
// Burst len: 32 bytes, page: 1K
psram_mc->REG_034 =
PSRAM_ULP_MC_BURST_LENGTH(1) | PSRAM_ULP_MC_PAGE_BOUNDARY(0);
#else
// 8MB psram
// Burst len: 1K, page: 1K
psram_mc->REG_034 =
PSRAM_ULP_MC_BURST_LENGTH(4) | PSRAM_ULP_MC_PAGE_BOUNDARY(0);
#endif
// AHB bus width: 32 bits
psram_mc->REG_038 = 0;
// Write buffer level with high priority: 0~7
psram_mc->REG_03C = PSRAM_ULP_MC_HIGH_PRI_LEVEL(4);
#ifdef PSRAM_WRAP_ENABLE
psram_mc->REG_040 = PSRAM_ULP_MC_CP_WRAP_EN;
#else
psram_mc->REG_040 = PSRAM_ULP_MC_WRAP_CRT_RET_EN;
#endif
psram_mc->REG_044 = 0;
psram_mc->REG_048 = 0;
hal_psramip_set_reg_data_mask();
hal_psram_mc_set_timing(clk);
psram_mc->REG_400 = PSRAM_ULP_MC_INIT_COMPLETE;
hal_psram_init_calib();
}
void hal_psram_sleep(void) {
hal_psramip_mc_busy_wait();
if (!hal_psramip_mc_in_sleep()) {
#ifndef CHIP_BEST2001
psram_mc->REG_024 &= ~PSRAM_ULP_MC_ENTRY_SLEEP_IDLE;
#endif
hal_psramip_mc_busy_wait();
hal_psramip_set_cmd(MEMIF_PD);
hal_psramip_mc_busy_wait();
}
}
void hal_psram_wakeup(void) {
hal_psramip_mc_busy_wait();
#ifndef CHIP_BEST2001
psram_mc->REG_024 |= PSRAM_ULP_MC_ENTRY_SLEEP_IDLE;
#endif
}
static void psram_chip_timing_config(uint32_t clk, bool update_psram_first) {
enum HAL_CMU_FREQ_T freq;
if (clk <= 52000000) {
freq = HAL_CMU_FREQ_104M;
} else if (clk <= 104000000) {
freq = HAL_CMU_FREQ_208M;
} else {
#ifdef HAL_CMU_FREQ_T
freq = HAL_CMU_FREQ_390M;
#else
freq = HAL_CMU_FREQ_208M;
#endif
}
if (update_psram_first) {
psram_set_timing(clk);
}
hal_cmu_mem_set_freq(freq);
hal_sys_timer_delay_us(3);
hal_psram_phy_dll_config(clk);
hal_psram_init_calib();
hal_psram_mc_set_timing(clk);
if (!update_psram_first) {
psram_set_timing(clk);
}
}
static bool psramphy_check_write_valid() {
int i;
volatile uint32_t *psram_base = (volatile uint32_t *)PSRAM_NC_BASE;
for (i = 0; i < 0x8; ++i) {
*(psram_base + i) = 0xffffffff;
}
for (i = 0; i < 0x8; ++i) {
*(psram_base + i) = ((i << 0) | (i << 8) | (i << 16) | (i << 24));
}
hal_psramip_wb_busy_wait();
hal_psramip_mc_busy_wait();
for (i = 0; i < 0x8; ++i) {
uint32_t check_val = *(psram_base + i);
if (check_val != ((i << 0) | (i << 8) | (i << 16) | (i << 24))) {
// PSRAM_TRACE(2,"write fail, %p = 0x%x", (uint32_t)(psram_base+i),
// check_val);
return false;
}
}
return true;
}
static void hal_psram_calib_range(uint32_t range) {
uint32_t val;
uint32_t delay;
uint8_t tx_dqs, rx_dqs;
uint8_t inc_delay, volume;
uint8_t cali_valid[0x20][0x20];
uint8_t cali_value[0x20][0x20];
ASSERT(range <=
(PSRAM_ULP_PHY_DLL_DLY_IN_MASK >> PSRAM_ULP_PHY_DLL_DLY_IN_SHIFT),
"ERROR, bad ana phy range:%d", range);
val = psram_phy->REG_050;
val &= ~(PSRAM_ULP_PHY_REG_DLL_RESETB | PSRAM_ULP_PHY_REG_DLL_CK_RDY);
psram_phy->REG_050 = val;
val = SET_BITFIELD(val, PSRAM_ULP_PHY_REG_DLL_RANGE, range);
psram_phy->REG_050 = val;
val |= (PSRAM_ULP_PHY_REG_DLL_RESETB | PSRAM_ULP_PHY_REG_DLL_CK_RDY);
psram_phy->REG_050 = val;
hal_sys_timer_delay_us(100);
while ((psram_phy->REG_058 & PSRAM_ULP_PHY_DLL_LOCK) == 0)
;
val = psram_phy->REG_058;
if ((val & PSRAM_ULP_PHY_DLL_ALL_ONE)) {
PSRAM_TRACE(2, "%s: all one, increase range=%d", __func__, range + 1);
return hal_psram_calib_range(range + 1);
}
delay = GET_BITFIELD(val, PSRAM_ULP_PHY_DLL_DLY_IN);
PSRAM_TRACE(4, "%s, range:%d, T/4 = 0x%x(psram_phy->REG_058:0x%x)", __func__,
range, delay / 2, val);
if (delay > (PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY_MASK >>
PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY_SHIFT) &&
range < 3) {
PSRAM_TRACE("%s: bad delay (T/2 > 0x1f). increase range=%d", __func__,
range + 1);
return hal_psram_calib_range(range + 1);
}
inc_delay = delay / 8;
if (inc_delay == 0)
inc_delay = 1;
// volume =
// (PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY_MASK>>PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY_SHIFT)
// / inc_delay;
volume = MIN(delay, (PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY_MASK >>
PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY_SHIFT)) /
inc_delay;
PSRAM_TRACE(2, "volume:%d, inc_delay:%d", volume, inc_delay);
uint8_t all_valid = 1;
memset(cali_valid, 0, sizeof(cali_valid));
for (tx_dqs = 0; tx_dqs <= volume; tx_dqs++) {
for (rx_dqs = 0; rx_dqs <= volume; rx_dqs++) {
psram_phy->REG_054 =
PSRAM_ULP_PHY_REG_PSRAM_TX_CEB_DLY(delay / 2) |
PSRAM_ULP_PHY_REG_PSRAM_TX_CLK_DLY(delay / 2) |
PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY(tx_dqs * inc_delay) |
PSRAM_ULP_PHY_REG_PSRAM_RX_DQS_DLY(rx_dqs * inc_delay);
cali_valid[tx_dqs][rx_dqs] = psramphy_check_write_valid();
if (cali_valid[tx_dqs][rx_dqs] == 0)
all_valid = 0;
}
}
if (all_valid && range < (PSRAM_ULP_PHY_DLL_DLY_IN_MASK >>
PSRAM_ULP_PHY_DLL_DLY_IN_SHIFT)) {
PSRAM_TRACE(2, "%s: all valid increase range=%d", __func__, range + 1);
// return hal_psram_calib_range(range+1);
}
memset(cali_value, 0, sizeof(cali_value));
PSRAM_TRACENOCRLF_NOTS("\r\n\r\n "
"-----------------------------------------------------"
"----------------- \r\n");
PSRAM_TRACENOCRLF_NOTS(" rx_dqs");
for (tx_dqs = 0; tx_dqs <= volume; tx_dqs++) {
PSRAM_TRACENOCRLF_NOTS(" %2d ", tx_dqs * inc_delay);
}
PSRAM_TRACENOCRLF_NOTS("\r\n");
for (tx_dqs = 0; tx_dqs <= volume; tx_dqs++) {
PSRAM_TRACENOCRLF_NOTS("tx_dqs:%2d ", tx_dqs * inc_delay);
for (rx_dqs = 0; rx_dqs <= volume; rx_dqs++) {
PSRAM_TRACENOCRLF_NOTS(" %d ", cali_valid[tx_dqs][rx_dqs]);
if (cali_valid[tx_dqs][rx_dqs]) {
uint8_t len_from_zero;
int8_t p;
p = tx_dqs;
while (p >= 0) {
if (cali_valid[p][rx_dqs] == 0)
break;
p--;
}
len_from_zero = tx_dqs - p;
cali_value[tx_dqs][rx_dqs] = len_from_zero;
p = tx_dqs;
while (p <= volume) {
if (cali_valid[p][rx_dqs] == 0)
break;
p++;
}
len_from_zero = p - tx_dqs;
cali_value[tx_dqs][rx_dqs] =
MIN(cali_value[tx_dqs][rx_dqs], len_from_zero);
p = rx_dqs;
while (p >= 0) {
if (cali_valid[tx_dqs][p] == 0)
break;
p--;
}
len_from_zero = rx_dqs - p;
cali_value[tx_dqs][rx_dqs] =
MIN(cali_value[tx_dqs][rx_dqs], len_from_zero);
p = rx_dqs;
while (p <= volume) {
if (cali_valid[tx_dqs][p] == 0)
break;
p++;
}
len_from_zero = p - rx_dqs;
cali_value[tx_dqs][rx_dqs] =
MIN(cali_value[tx_dqs][rx_dqs], len_from_zero);
}
}
PSRAM_TRACENOCRLF_NOTS("\r\n");
}
PSRAM_TRACENOCRLF_NOTS(" ----------------------------------------------------"
"---------------------- \r\n");
#if 0
PSRAM_TRACENOCRLF_NOTS("\r\n\r\n ---------------------------------------------------------------------- \r\n");
PSRAM_TRACENOCRLF_NOTS(" rx_dqs");
for (tx_dqs=0; tx_dqs<=volume; tx_dqs++) {
PSRAM_TRACENOCRLF_NOTS(" %2d ", tx_dqs*inc_delay);
}
PSRAM_TRACENOCRLF_NOTS("\r\n");
for (tx_dqs=0; tx_dqs<=volume; tx_dqs++) {
PSRAM_TRACENOCRLF_NOTS("tx_dqs:%2d ", tx_dqs*inc_delay);
for (rx_dqs=0; rx_dqs<=volume; rx_dqs++) {
PSRAM_TRACENOCRLF_NOTS(" %d ", cali_value[tx_dqs][rx_dqs]);
}
PSRAM_TRACENOCRLF_NOTS("\r\n");
}
PSRAM_TRACENOCRLF_NOTS(" -------------------------------------------------------------------------- \r\n");
#endif
uint32_t position = 0;
uint8_t max_value = 0;
for (tx_dqs = 0; tx_dqs <= volume; tx_dqs++) {
for (rx_dqs = 0; rx_dqs <= volume; rx_dqs++) {
if (cali_value[tx_dqs][rx_dqs] > max_value) {
max_value = cali_value[tx_dqs][rx_dqs];
position = tx_dqs * (volume + 1) + rx_dqs;
}
}
}
PSRAM_TRACENOCRLF_NOTS("position:%d\r\n", position);
tx_dqs = position / (volume + 1) * inc_delay;
rx_dqs = (position % (volume + 1)) * inc_delay;
PSRAM_TRACENOCRLF_NOTS("most optimal position. tx_dqs:%d, rx_dqs:%d\r\n",
tx_dqs, rx_dqs);
psram_phy->REG_054 = PSRAM_ULP_PHY_REG_PSRAM_TX_CEB_DLY(delay / 2) |
PSRAM_ULP_PHY_REG_PSRAM_TX_CLK_DLY(delay / 2) |
PSRAM_ULP_PHY_REG_PSRAM_TX_DQS_DLY(tx_dqs) |
PSRAM_ULP_PHY_REG_PSRAM_RX_DQS_DLY(rx_dqs);
}
static void hal_psram_calib(uint32_t clk) {
uint32_t phy_clk;
uint32_t range;
PSRAM_TRACE("%s, speed:%d", __func__, clk);
phy_clk = clk;
if (phy_clk <= 100000000 / 2) {
range = 3;
} else if (phy_clk <= 150000000 / 2) {
range = 2;
} else if (phy_clk <= 300000000 / 2) {
range = 1;
} else {
range = 0;
}
hal_psram_calib_range(range);
}
void hal_psram_snoop_enable() {
psram_mc->REG_044 &= ~PSRAM_ULP_MC_SNP_DISABLE;
}
void hal_psram_snoop_disable() {
psram_mc->REG_044 |= PSRAM_ULP_MC_SNP_DISABLE;
}
void hal_psram_init(void) {
hal_cache_wrap_enable(HAL_CACHE_ID_I_CACHE);
hal_cache_wrap_enable(HAL_CACHE_ID_D_CACHE);
hal_cmu_mem_set_freq(HAL_CMU_FREQ_104M);
hal_cmu_clock_enable(HAL_CMU_MOD_O_PSRAM);
hal_cmu_clock_enable(HAL_CMU_MOD_H_PSRAM);
hal_cmu_reset_clear(HAL_CMU_MOD_O_PSRAM);
hal_cmu_reset_clear(HAL_CMU_MOD_H_PSRAM);
hal_psram_phy_init(psram_cfg_clk);
hal_sys_timer_delay_us(30);
hal_psram_mc_init(psram_cfg_clk);
#ifdef PSRAM_RESET
psram_reset();
psram_chip_timing_config(psram_run_clk, true);
#else
uint32_t reg;
uint32_t val;
reg = 4;
psram_read_reg(reg, &val);
if (val & MR4_WL) {
psram_chip_timing_config(psram_run_clk, false);
} else {
psram_chip_timing_config(psram_run_clk, true);
}
#endif
hal_psram_snoop_disable();
hal_psram_calib(psram_run_clk);
hal_psram_snoop_enable();
}
#endif