pinebuds/platform/hal/hal_gpadc.c
Ben V. Brown 75381150fd Formatting
Formatting Pass 1

Lots of fixups to adding stdint and stdbool all over the place

Formatting Pass 2
Formatting Pass 3
Formatting Pass 4

Update app_bt_stream.cpp
2023-02-02 07:56:49 +11:00

792 lines
23 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "plat_addr_map.h"
#ifndef GPADC_CHIP_SPECIFIC
#include "cmsis_nvic.h"
#include "hal_analogif.h"
#include "hal_gpadc.h"
#include "hal_trace.h"
#include "pmu.h"
#include "stddef.h"
#define HAL_GPADC_TRACE(n, s, ...) // TRACE(n, s, ##__VA_ARGS__)
#define VBAT_DIV_ALWAYS_ON
#define gpadc_reg_read(reg, val) pmu_read(reg, val)
#define gpadc_reg_write(reg, val) pmu_write(reg, val)
// Battery voltage = gpadc voltage * 4
// adc rate 0~2v(10bit)
// Battery_voltage:Adc_rate = 4:1
#define HAL_GPADC_MVOLT_A 800
#define HAL_GPADC_MVOLT_B 1050
#define HAL_GPADC_CALIB_DEFAULT_A 428
#define HAL_GPADC_CALIB_DEFAULT_B 565
#if 0
#elif defined(CHIP_BEST1400) || defined(CHIP_BEST1402) || \
defined(CHIP_BEST2000) || defined(CHIP_BEST2001) || \
defined(CHIP_BEST2300) || defined(CHIP_BEST2300A) || \
defined(CHIP_BEST2300P) || defined(CHIP_BEST3001) || \
defined(CHIP_BEST3005)
#if defined(CHIP_BEST1400) || defined(CHIP_BEST1402) || defined(CHIP_BEST2001)
enum GPADC_REG_T {
GPADC_REG_VBAT_EN = 0x02,
GPADC_REG_INTVL_EN = 0x18,
GPADC_REG_INTVL_VAL = 0x1C,
GPADC_REG_START = 0x4F,
GPADC_REG_CH_EN = 0x1D,
GPADC_REG_INT_MASK = 0x1F,
GPADC_REG_INT_EN = 0x20,
GPADC_REG_INT_RAW_STS = 0x50,
GPADC_REG_INT_MSKED_STS = 0x51,
GPADC_REG_INT_CLR = 0x51,
GPADC_REG_CH0_DATA = 0x56,
};
#else
enum GPADC_REG_T {
GPADC_REG_VBAT_EN = 0x02,
GPADC_REG_INTVL_EN = 0x1F,
GPADC_REG_INTVL_VAL = 0x23,
GPADC_REG_START = 0x4F,
GPADC_REG_CH_EN = 0x24,
GPADC_REG_INT_MASK = 0x26,
GPADC_REG_INT_EN = 0x27,
#if defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
GPADC_REG_INT_RAW_STS = 0x52,
GPADC_REG_INT_MSKED_STS = 0x53,
GPADC_REG_INT_CLR = 0x51,
#else
GPADC_REG_INT_RAW_STS = 0x50,
GPADC_REG_INT_MSKED_STS = 0x51,
GPADC_REG_INT_CLR = 0x51,
#endif
GPADC_REG_CH0_DATA = 0x56,
};
#endif
// GPADC_REG_VBAT_EN
#define REG_PU_VBAT_DIV (1 << 15)
// GPADC_REG_INTVL_EN
#define GPADC_INTERVAL_MODE (1 << 12)
// GPADC_REG_START
#define GPADC_START (1 << 5)
#define KEY_START (1 << 4)
// GPADC_REG_CH_EN
#define CHAN_EN_REG_SHIFT 0
#define CHAN_EN_REG_MASK (0xFF << CHAN_EN_REG_SHIFT)
#define CHAN_EN_REG(n) BITFIELD_VAL(CHAN_EN_REG, n)
// GPADC_REG_INT_MASK
#define KEY_ERR1_INTR_MSK (1 << 12)
#define KEY_ERR0_INTR_MSK (1 << 11)
#define KEY_PRESS_INTR_MSK (1 << 10)
#define KEY_RELEASE_INTR_MSK (1 << 9)
#define SAMPLE_DONE_INTR_MSK (1 << 8)
#define CHAN_DATA_INTR_MSK_SHIFT 0
#define CHAN_DATA_INTR_MSK_MASK (0xFF << CHAN_DATA_INTR_MSK_SHIFT)
#define CHAN_DATA_INTR_MSK(n) BITFIELD_VAL(CHAN_DATA_INTR_MSK, n)
// GPADC_REG_INT_EN
#define KEY_ERR1_INTR_EN (1 << 12)
#define KEY_ERR0_INTR_EN (1 << 11)
#define KEY_PRESS_INTR_EN (1 << 10)
#define KEY_RELEASE_INTR_EN (1 << 9)
#define SAMPLE_DONE_INTR_EN (1 << 8)
#define CHAN_DATA_INTR_EN_SHIFT 0
#define CHAN_DATA_INTR_EN_MASK (0xFF << CHAN_DATA_INTR_EN_SHIFT)
#define CHAN_DATA_INTR_EN(n) BITFIELD_VAL(CHAN_DATA_INTR_EN, n)
// GPADC_REG_INT_RAW_STS
#define KEY_ERR1_INTR (1 << 12)
#define KEY_ERR0_INTR (1 << 11)
#define KEY_PRESS_INTR (1 << 10)
#define KEY_RELEASE_INTR (1 << 9)
#define SAMPLE_PERIOD_DONE_INTR (1 << 8)
#define CHAN_DATA_VALID_INTR_SHIFT 0
#define CHAN_DATA_VALID_INTR_MASK (0xFF << CHAN_DATA_VALID_INTR_SHIFT)
#define CHAN_DATA_VALID_INTR(n) BITFIELD_VAL(CHAN_DATA_VALID_INTR, n)
// GPADC_REG_INT_MSKED_STS
#define KEY_ERR1_INTR_MSKED (1 << 12)
#define KEY_ERR0_INTR_MSKED (1 << 11)
#define KEY_PRESS_INTR_MSKED (1 << 10)
#define KEY_RELEASE_INTR_MSKED (1 << 9)
#define SAMPLE_DONE_INTR_MSKED (1 << 8)
#define CHAN_DATA_INTR_MSKED_SHIFT 0
#define CHAN_DATA_INTR_MSKED_MASK (0xFF << CHAN_DATA_INTR_MSKED_SHIFT)
#define CHAN_DATA_INTR_MSKED(n) BITFIELD_VAL(CHAN_DATA_INTR_MSKED, n)
// GPADC_REG_INT_CLR
#define KEY_ERR1_INTR_CLR (1 << 12)
#define KEY_ERR0_INTR_CLR (1 << 11)
#define KEY_PRESS_INTR_CLR (1 << 10)
#define KEY_RELEASE_INTR_CLR (1 << 9)
#define SAMPLE_DONE_INTR_CLR (1 << 8)
#define CHAN_DATA_INTR_CLR_SHIFT 0
#define CHAN_DATA_INTR_CLR_MASK (0xFF << CHAN_DATA_INTR_CLR_SHIFT)
#define CHAN_DATA_INTR_CLR(n) BITFIELD_VAL(CHAN_DATA_INTR_CLR, n)
// GPADC_REG_CH0_DATA
#define DATA_CHAN0_SHIFT 0
#define DATA_CHAN0_MASK (0x3FF << DATA_CHAN0_SHIFT)
#define DATA_CHAN0(n) BITFIELD_VAL(DATA_CHAN0, n)
#elif defined(CHIP_BEST1000)
enum GPADC_REG_T {
GPADC_REG_VBAT_EN = 0x45,
GPADC_REG_INTVL_EN = 0x60,
GPADC_REG_INTVL_VAL = 0x64,
GPADC_REG_START = 0x65,
GPADC_REG_CH_EN = 0x65,
GPADC_REG_INT_MASK = 0x67,
GPADC_REG_INT_EN = 0x68,
GPADC_REG_INT_RAW_STS = 0x69,
GPADC_REG_INT_MSKED_STS = 0x6A,
GPADC_REG_INT_CLR = 0x6A,
GPADC_REG_CH0_DATA = 0x78,
};
// GPADC_REG_VBAT_EN
#define REG_PU_VBAT_DIV (1 << 0)
// GPADC_REG_INTVL_EN
#define GPADC_INTERVAL_MODE (1 << 12)
// GPADC_REG_START
#define KEY_START (1 << 9)
#define GPADC_START (1 << 8)
// GPADC_REG_CH_EN
#define CHAN_EN_REG_SHIFT 0
#define CHAN_EN_REG_MASK (0xFF << CHAN_EN_REG_SHIFT)
#define CHAN_EN_REG(n) BITFIELD_VAL(CHAN_EN_REG, n)
// GPADC_REG_INT_MASK
#define KEY_ERR1_INTR_MSK (1 << 12)
#define KEY_ERR0_INTR_MSK (1 << 11)
#define KEY_PRESS_INTR_MSK (1 << 10)
#define KEY_RELEASE_INTR_MSK (1 << 9)
#define SAMPLE_DONE_INTR_MSK (1 << 8)
#define CHAN_DATA_INTR_MSK_SHIFT 0
#define CHAN_DATA_INTR_MSK_MASK (0xFF << CHAN_DATA_INTR_MSK_SHIFT)
#define CHAN_DATA_INTR_MSK(n) BITFIELD_VAL(CHAN_DATA_INTR_MSK, n)
// GPADC_REG_INT_EN
#define KEY_ERR1_INTR_EN (1 << 12)
#define KEY_ERR0_INTR_EN (1 << 11)
#define KEY_PRESS_INTR_EN (1 << 10)
#define KEY_RELEASE_INTR_EN (1 << 9)
#define SAMPLE_DONE_INTR_EN (1 << 8)
#define CHAN_DATA_INTR_EN_SHIFT 0
#define CHAN_DATA_INTR_EN_MASK (0xFF << CHAN_DATA_INTR_EN_SHIFT)
#define CHAN_DATA_INTR_EN(n) BITFIELD_VAL(CHAN_DATA_INTR_EN, n)
// GPADC_REG_INT_RAW_STS
#define KEY_ERR1_INTR (1 << 12)
#define KEY_ERR0_INTR (1 << 11)
#define KEY_PRESS_INTR (1 << 10)
#define KEY_RELEASE_INTR (1 << 9)
#define SAMPLE_PERIOD_DONE_INTR (1 << 8)
#define CHAN_DATA_VALID_INTR_SHIFT 0
#define CHAN_DATA_VALID_INTR_MASK (0xFF << CHAN_DATA_VALID_INTR_SHIFT)
#define CHAN_DATA_VALID_INTR(n) BITFIELD_VAL(CHAN_DATA_VALID_INTR, n)
// GPADC_REG_INT_MSKED_STS
#define KEY_ERR1_INTR_MSKED (1 << 12)
#define KEY_ERR0_INTR_MSKED (1 << 11)
#define KEY_PRESS_INTR_MSKED (1 << 10)
#define KEY_RELEASE_INTR_MSKED (1 << 9)
#define SAMPLE_DONE_INTR_MSKED (1 << 8)
#define CHAN_DATA_INTR_MSKED_SHIFT 0
#define CHAN_DATA_INTR_MSKED_MASK (0xFF << CHAN_DATA_INTR_MSKED_SHIFT)
#define CHAN_DATA_INTR_MSKED(n) BITFIELD_VAL(CHAN_DATA_INTR_MSKED, n)
// GPADC_REG_INT_CLR
#define KEY_ERR1_INTR_CLR (1 << 12)
#define KEY_ERR0_INTR_CLR (1 << 11)
#define KEY_PRESS_INTR_CLR (1 << 10)
#define KEY_RELEASE_INTR_CLR (1 << 9)
#define SAMPLE_DONE_INTR_CLR (1 << 8)
#define CHAN_DATA_INTR_CLR_SHIFT 0
#define CHAN_DATA_INTR_CLR_MASK (0xFF << CHAN_DATA_INTR_CLR_SHIFT)
#define CHAN_DATA_INTR_CLR(n) BITFIELD_VAL(CHAN_DATA_INTR_CLR, n)
// GPADC_REG_CH0_DATA
#define DATA_CHAN0_SHIFT 0
#define DATA_CHAN0_MASK (0x3FF << DATA_CHAN0_SHIFT)
#define DATA_CHAN0(n) BITFIELD_VAL(DATA_CHAN0, n)
#else
#error "Please update GPADC register definitions"
#endif
static int32_t g_adcSlope = 0;
static int32_t g_adcIntcpt = 0;
static bool gpadc_enabled = false;
static bool adckey_enabled = false;
static bool irq_enabled = false;
static bool g_adcCalibrated = false;
static HAL_GPADC_EVENT_CB_T gpadc_event_cb[HAL_GPADC_CHAN_QTY];
static enum HAL_GPADC_ATP_T gpadc_atp[HAL_GPADC_CHAN_QTY];
static enum HAL_GPADC_ATP_T hal_gpadc_get_min_atp(void) {
enum HAL_GPADC_CHAN_T ch;
enum HAL_GPADC_ATP_T atp = HAL_GPADC_ATP_NULL;
for (ch = HAL_GPADC_CHAN_0; ch < HAL_GPADC_CHAN_QTY; ch++) {
if (gpadc_atp[ch] != HAL_GPADC_ATP_NULL) {
if (atp == HAL_GPADC_ATP_NULL ||
(uint32_t)gpadc_atp[ch] < (uint32_t)atp) {
atp = gpadc_atp[ch];
}
}
}
return atp;
}
static void hal_gpadc_update_atp(void) {
enum HAL_GPADC_ATP_T atp;
uint16_t val;
atp = hal_gpadc_get_min_atp();
if (atp == HAL_GPADC_ATP_NULL || atp == HAL_GPADC_ATP_ONESHOT) {
gpadc_reg_read(GPADC_REG_INTVL_EN, &val);
val &= ~GPADC_INTERVAL_MODE;
gpadc_reg_write(GPADC_REG_INTVL_EN, val);
} else {
gpadc_reg_read(GPADC_REG_INTVL_EN, &val);
val |= GPADC_INTERVAL_MODE;
gpadc_reg_write(GPADC_REG_INTVL_EN, val);
val = atp * 1000 / 1024;
gpadc_reg_write(GPADC_REG_INTVL_VAL, val);
}
}
static int hal_gpadc_adc2volt_calib(void) {
int32_t y1, y2, x1, x2;
unsigned short efuse_a = 0;
unsigned short efuse_b = 0;
if (!g_adcCalibrated) {
y1 = HAL_GPADC_MVOLT_A * 1000;
y2 = HAL_GPADC_MVOLT_B * 1000;
pmu_get_efuse(PMU_EFUSE_PAGE_BATTER_LV, &efuse_a);
x1 = efuse_a > 0 ? efuse_a : HAL_GPADC_CALIB_DEFAULT_A;
pmu_get_efuse(PMU_EFUSE_PAGE_BATTER_HV, &efuse_b);
x2 = efuse_b > 0 ? efuse_b : HAL_GPADC_CALIB_DEFAULT_B;
g_adcSlope = (y2 - y1) / (x2 - x1);
g_adcIntcpt = ((y1 * x2) - (x1 * y2)) / ((x2 - x1) * 1000);
g_adcCalibrated = true;
TRACE(7, "%s efuse:%d/%d LV=%d, HV=%d, Slope:%d Intcpt:%d", __func__,
efuse_a, efuse_b, x1, x2, g_adcSlope, g_adcIntcpt);
}
return 0;
}
static HAL_GPADC_MV_T hal_gpadc_adc2volt(uint16_t gpadcVal) {
int32_t voltage;
hal_gpadc_adc2volt_calib();
if (gpadcVal == HAL_GPADC_BAD_VALUE) {
// Bad values from the GPADC are still Bad Values
// for the voltage-speaking user.
return HAL_GPADC_BAD_VALUE;
} else {
voltage = (((g_adcSlope * gpadcVal) / 1000) + (g_adcIntcpt));
return (voltage < 0) ? 0 : voltage;
}
}
#ifdef PMU_IRQ_UNIFIED
#define GPADC_IRQ_HDLR_PARAM uint16_t irq_status
#else
#define GPADC_IRQ_HDLR_PARAM void
#endif
static void hal_gpadc_irq_handler(GPADC_IRQ_HDLR_PARAM) {
uint32_t lock;
enum HAL_GPADC_CHAN_T ch;
unsigned short read_val;
uint16_t adc_val;
HAL_GPADC_MV_T volt;
#ifndef PMU_IRQ_UNIFIED
unsigned short irq_status;
gpadc_reg_read(GPADC_REG_INT_MSKED_STS, &irq_status);
irq_status &= (CHAN_DATA_INTR_MSKED_MASK | SAMPLE_DONE_INTR_MSKED |
KEY_RELEASE_INTR_MSKED | KEY_PRESS_INTR_MSKED |
KEY_ERR0_INTR_MSKED | KEY_ERR1_INTR_MSKED);
gpadc_reg_write(GPADC_REG_INT_CLR, irq_status);
#endif
if (irq_status &
CHAN_DATA_INTR_MSKED((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) |
(1 << 4) | (1 << 5) | (1 << 6))) {
for (ch = HAL_GPADC_CHAN_0; ch < HAL_GPADC_CHAN_QTY; ch++) {
if (irq_status & CHAN_DATA_INTR_MSKED(1 << ch)) {
switch (ch) {
case HAL_GPADC_CHAN_BATTERY:
case HAL_GPADC_CHAN_0:
case HAL_GPADC_CHAN_2:
case HAL_GPADC_CHAN_3:
case HAL_GPADC_CHAN_4:
case HAL_GPADC_CHAN_5:
case HAL_GPADC_CHAN_6:
gpadc_reg_read(GPADC_REG_CH0_DATA + ch, &adc_val);
adc_val = GET_BITFIELD(adc_val, DATA_CHAN0);
volt = hal_gpadc_adc2volt(adc_val);
if (gpadc_event_cb[ch]) {
gpadc_event_cb[ch](adc_val, volt);
}
if (gpadc_atp[ch] == HAL_GPADC_ATP_NULL ||
gpadc_atp[ch] == HAL_GPADC_ATP_ONESHOT) {
lock = int_lock();
#ifndef VBAT_DIV_ALWAYS_ON
if (ch == HAL_GPADC_CHAN_BATTERY) {
gpadc_reg_read(GPADC_REG_VBAT_EN, &read_val);
read_val &= ~REG_PU_VBAT_DIV;
gpadc_reg_write(GPADC_REG_VBAT_EN, read_val);
}
#endif
// Int mask
gpadc_reg_read(GPADC_REG_INT_MASK, &read_val);
read_val &= ~CHAN_DATA_INTR_MSK(1 << ch);
gpadc_reg_write(GPADC_REG_INT_MASK, read_val);
// Int enable
gpadc_reg_read(GPADC_REG_INT_EN, &read_val);
read_val &= ~CHAN_DATA_INTR_EN(1 << ch);
gpadc_reg_write(GPADC_REG_INT_EN, read_val);
// Channel enable
gpadc_reg_read(GPADC_REG_CH_EN, &read_val);
read_val &= ~CHAN_EN_REG(1 << ch);
gpadc_reg_write(GPADC_REG_CH_EN, read_val);
int_unlock(lock);
}
break;
default:
break;
}
}
}
}
// Disable GPADC (GPADC_START will be cleared automatically unless in interval
// mode)
lock = int_lock();
gpadc_reg_read(GPADC_REG_CH_EN, &read_val);
if ((read_val & CHAN_EN_REG((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) |
(1 << 4) | (1 << 5) | (1 << 6))) == 0) {
gpadc_reg_read(GPADC_REG_START, &read_val);
read_val &= ~GPADC_START;
gpadc_reg_write(GPADC_REG_START, read_val);
}
int_unlock(lock);
if (irq_status &
(CHAN_DATA_INTR_MSKED(1 << 7) | KEY_RELEASE_INTR_MSKED |
KEY_PRESS_INTR_MSKED | KEY_ERR0_INTR_MSKED | KEY_ERR1_INTR_MSKED)) {
if (gpadc_event_cb[HAL_GPADC_CHAN_ADCKEY]) {
enum HAL_ADCKEY_IRQ_STATUS_T adckey_irq;
adckey_irq = 0;
if (irq_status & KEY_RELEASE_INTR_MSKED) {
adckey_irq |= HAL_ADCKEY_RELEASED;
}
if (irq_status & KEY_PRESS_INTR_MSKED) {
adckey_irq |= HAL_ADCKEY_PRESSED;
}
if (irq_status & KEY_ERR0_INTR_MSKED) {
adckey_irq |= HAL_ADCKEY_ERR0;
}
if (irq_status & KEY_ERR1_INTR_MSKED) {
adckey_irq |= HAL_ADCKEY_ERR1;
}
if (irq_status & CHAN_DATA_INTR_MSKED(1 << 7)) {
adckey_irq |= HAL_ADCKEY_ADC_VALID;
lock = int_lock();
// Int mask
gpadc_reg_read(GPADC_REG_INT_MASK, &read_val);
read_val &= ~CHAN_DATA_INTR_MSK(1 << 7);
gpadc_reg_write(GPADC_REG_INT_MASK, read_val);
// Int enable
gpadc_reg_read(GPADC_REG_INT_EN, &read_val);
read_val &= ~CHAN_DATA_INTR_EN(1 << 7);
gpadc_reg_write(GPADC_REG_INT_EN, read_val);
int_unlock(lock);
// No voltage conversion
gpadc_reg_read(GPADC_REG_CH0_DATA + HAL_GPADC_CHAN_ADCKEY, &adc_val);
adc_val = GET_BITFIELD(adc_val, DATA_CHAN0);
} else {
adc_val = HAL_GPADC_BAD_VALUE;
}
((HAL_ADCKEY_EVENT_CB_T)gpadc_event_cb[HAL_GPADC_CHAN_ADCKEY])(adckey_irq,
adc_val);
}
}
}
bool hal_gpadc_get_volt(enum HAL_GPADC_CHAN_T ch, HAL_GPADC_MV_T *volt) {
bool res = false;
unsigned short read_val;
if (ch >= HAL_GPADC_CHAN_QTY) {
return res;
}
gpadc_reg_read(GPADC_REG_INT_RAW_STS, &read_val);
if (read_val & CHAN_DATA_VALID_INTR(1 << ch)) {
// Clear the channel valid status
gpadc_reg_write(GPADC_REG_INT_CLR, CHAN_DATA_INTR_CLR(1 << ch));
gpadc_reg_read(GPADC_REG_CH0_DATA + ch, &read_val);
read_val = GET_BITFIELD(read_val, DATA_CHAN0);
*volt = hal_gpadc_adc2volt(read_val);
res = true;
}
return res;
}
static void hal_gpadc_irq_control(void) {
if (gpadc_enabled || adckey_enabled) {
if (!irq_enabled) {
irq_enabled = true;
#ifdef PMU_IRQ_UNIFIED
pmu_set_irq_unified_handler(PMU_IRQ_TYPE_GPADC, hal_gpadc_irq_handler);
#else
NVIC_SetVector(GPADC_IRQn, (uint32_t)hal_gpadc_irq_handler);
NVIC_SetPriority(GPADC_IRQn, IRQ_PRIORITY_NORMAL);
NVIC_ClearPendingIRQ(GPADC_IRQn);
NVIC_EnableIRQ(GPADC_IRQn);
#endif
}
} else {
if (irq_enabled) {
irq_enabled = false;
#ifdef PMU_IRQ_UNIFIED
pmu_set_irq_unified_handler(PMU_IRQ_TYPE_GPADC, NULL);
#else
NVIC_DisableIRQ(GPADC_IRQn);
#endif
}
}
}
int hal_gpadc_open(enum HAL_GPADC_CHAN_T channel, enum HAL_GPADC_ATP_T atp,
HAL_GPADC_EVENT_CB_T cb) {
uint32_t lock;
unsigned short val;
unsigned short reg_start_mask;
if (channel >= HAL_GPADC_CHAN_QTY) {
return -1;
}
// NOTE: ADCKEY callback is not set here, but in hal_adckey_set_irq_handler()
if (channel != HAL_GPADC_CHAN_ADCKEY) {
gpadc_event_cb[channel] = cb;
gpadc_atp[channel] = atp;
}
switch (channel) {
case HAL_GPADC_CHAN_BATTERY:
// Enable vbat measurement clock
// vbat div enable
lock = int_lock();
gpadc_reg_read(GPADC_REG_VBAT_EN, &val);
val |= REG_PU_VBAT_DIV;
gpadc_reg_write(GPADC_REG_VBAT_EN, val);
int_unlock(lock);
#ifndef VBAT_DIV_ALWAYS_ON
// GPADC VBAT needs 10us to be stable and consumes 13mA current
hal_sys_timer_delay_us(20);
#endif
case HAL_GPADC_CHAN_0:
case HAL_GPADC_CHAN_2:
case HAL_GPADC_CHAN_3:
case HAL_GPADC_CHAN_4:
case HAL_GPADC_CHAN_5:
case HAL_GPADC_CHAN_6:
case HAL_GPADC_CHAN_ADCKEY:
lock = int_lock();
#if defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
if (channel == HAL_GPADC_CHAN_3) {
pmu_led_set_hiz(HAL_GPIO_PIN_LED2);
}
#endif
// Int mask
if (channel == HAL_GPADC_CHAN_ADCKEY || gpadc_event_cb[channel]) {
// 1) Always enable ADCKEY mask
// 2) Enable mask if handler is not null
gpadc_reg_read(GPADC_REG_INT_MASK, &val);
val |= CHAN_DATA_INTR_MSK(1 << channel);
gpadc_reg_write(GPADC_REG_INT_MASK, val);
gpadc_enabled = true;
hal_gpadc_irq_control();
}
// Int enable
gpadc_reg_read(GPADC_REG_INT_EN, &val);
val |= CHAN_DATA_INTR_EN(1 << channel);
gpadc_reg_write(GPADC_REG_INT_EN, val);
// Clear the channel valid status
gpadc_reg_write(GPADC_REG_INT_CLR, CHAN_DATA_INTR_CLR(1 << channel));
// Channel enable
if (channel == HAL_GPADC_CHAN_ADCKEY) {
reg_start_mask = KEY_START;
} else {
hal_gpadc_update_atp();
reg_start_mask = GPADC_START;
if (GPADC_REG_START == GPADC_REG_CH_EN) {
reg_start_mask |= CHAN_EN_REG(1 << channel);
} else {
gpadc_reg_read(GPADC_REG_CH_EN, &val);
val |= CHAN_EN_REG(1 << channel);
gpadc_reg_write(GPADC_REG_CH_EN, val);
}
}
// GPADC enable
gpadc_reg_read(GPADC_REG_START, &val);
val |= reg_start_mask;
gpadc_reg_write(GPADC_REG_START, val);
int_unlock(lock);
break;
default:
break;
}
return 0;
}
int hal_gpadc_close(enum HAL_GPADC_CHAN_T channel) {
uint32_t lock;
unsigned short val;
unsigned short chan_int_en;
unsigned short reg_start;
if (channel >= HAL_GPADC_CHAN_QTY) {
return -1;
}
if (channel != HAL_GPADC_CHAN_ADCKEY) {
gpadc_atp[channel] = HAL_GPADC_ATP_NULL;
}
switch (channel) {
case HAL_GPADC_CHAN_BATTERY:
#ifndef VBAT_DIV_ALWAYS_ON
// disable vbat measurement clock
// vbat div disable
lock = int_lock();
gpadc_reg_read(GPADC_REG_VBAT_EN, &val);
val &= ~REG_PU_VBAT_DIV;
gpadc_reg_write(GPADC_REG_VBAT_EN, val);
int_unlock(lock);
#endif
case HAL_GPADC_CHAN_0:
case HAL_GPADC_CHAN_2:
case HAL_GPADC_CHAN_3:
case HAL_GPADC_CHAN_4:
case HAL_GPADC_CHAN_5:
case HAL_GPADC_CHAN_6:
case HAL_GPADC_CHAN_ADCKEY:
lock = int_lock();
// Int mask
gpadc_reg_read(GPADC_REG_INT_MASK, &val);
val &= ~CHAN_DATA_INTR_MSK(1 << channel);
gpadc_reg_write(GPADC_REG_INT_MASK, val);
// Int enable
gpadc_reg_read(GPADC_REG_INT_EN, &chan_int_en);
chan_int_en &= ~CHAN_DATA_INTR_EN(1 << channel);
gpadc_reg_write(GPADC_REG_INT_EN, chan_int_en);
// Channel/GPADC enable
gpadc_reg_read(GPADC_REG_START, &reg_start);
if (channel == HAL_GPADC_CHAN_ADCKEY) {
reg_start &= ~KEY_START;
} else {
if (GPADC_REG_START == GPADC_REG_CH_EN) {
reg_start &= ~CHAN_EN_REG(1 << channel);
val = reg_start;
} else {
gpadc_reg_read(GPADC_REG_CH_EN, &val);
val &= ~CHAN_EN_REG(1 << channel);
gpadc_reg_write(GPADC_REG_CH_EN, val);
}
if (val & CHAN_EN_REG((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) |
(1 << 4) | (1 << 5) | (1 << 6))) {
hal_gpadc_update_atp();
} else {
reg_start &= ~GPADC_START;
}
}
gpadc_reg_write(GPADC_REG_START, reg_start);
if ((chan_int_en &
CHAN_DATA_INTR_EN((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) |
(1 << 4) | (1 << 5) | (1 << 6) | (1 << 7))) == 0) {
gpadc_enabled = false;
hal_gpadc_irq_control();
}
int_unlock(lock);
break;
default:
break;
}
return 0;
}
void hal_gpadc_sleep(void) {
unsigned short val;
#if defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
return;
#endif
gpadc_reg_read(GPADC_REG_START, &val);
if (val & GPADC_START) {
val &= ~GPADC_START;
gpadc_reg_write(GPADC_REG_START, val);
}
}
void hal_gpadc_wakeup(void) {
unsigned short val;
#if defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
return;
#endif
gpadc_reg_read(GPADC_REG_CH_EN, &val);
if (val & CHAN_EN_REG((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4) |
(1 << 5) | (1 << 6))) {
if (GPADC_REG_START != GPADC_REG_CH_EN) {
gpadc_reg_read(GPADC_REG_START, &val);
}
val |= GPADC_START;
gpadc_reg_write(GPADC_REG_START, val);
}
}
void hal_adckey_set_irq_handler(HAL_ADCKEY_EVENT_CB_T cb) {
gpadc_event_cb[HAL_GPADC_CHAN_ADCKEY] = (HAL_GPADC_EVENT_CB_T)cb;
}
int hal_adckey_set_irq(enum HAL_ADCKEY_IRQ_T type) {
uint32_t lock;
uint16_t val;
uint16_t set_mask;
uint16_t clr_mask;
uint16_t set_en;
uint16_t clr_en;
set_mask = 0;
clr_mask = 0;
set_en = 0;
clr_en = 0;
if (type == HAL_ADCKEY_IRQ_NONE) {
clr_mask = KEY_RELEASE_INTR_MSK | KEY_PRESS_INTR_MSK | KEY_ERR0_INTR_MSK |
KEY_ERR1_INTR_MSK;
clr_en = KEY_RELEASE_INTR_EN | KEY_PRESS_INTR_EN | KEY_ERR0_INTR_EN |
KEY_ERR1_INTR_EN;
adckey_enabled = false;
} else if (type == HAL_ADCKEY_IRQ_PRESSED) {
set_mask = KEY_PRESS_INTR_MSK | KEY_ERR0_INTR_MSK | KEY_ERR1_INTR_MSK;
clr_mask = KEY_RELEASE_INTR_MSK;
set_en = KEY_PRESS_INTR_EN | KEY_ERR0_INTR_EN | KEY_ERR1_INTR_EN;
clr_en = KEY_RELEASE_INTR_EN;
adckey_enabled = true;
} else if (type == HAL_ADCKEY_IRQ_RELEASED) {
set_mask = KEY_RELEASE_INTR_MSK | KEY_ERR0_INTR_MSK | KEY_ERR1_INTR_MSK;
clr_mask = KEY_PRESS_INTR_MSK;
set_en = KEY_RELEASE_INTR_EN | KEY_ERR0_INTR_EN | KEY_ERR1_INTR_EN;
clr_en = KEY_PRESS_INTR_EN;
adckey_enabled = true;
} else if (type == HAL_ADCKEY_IRQ_BOTH) {
set_mask = KEY_RELEASE_INTR_MSK | KEY_PRESS_INTR_MSK | KEY_ERR0_INTR_MSK |
KEY_ERR1_INTR_MSK;
set_en = KEY_RELEASE_INTR_EN | KEY_PRESS_INTR_EN | KEY_ERR0_INTR_EN |
KEY_ERR1_INTR_EN;
adckey_enabled = true;
} else {
return 1;
}
lock = int_lock();
gpadc_reg_read(GPADC_REG_INT_MASK, &val);
val &= ~clr_mask;
val |= set_mask;
gpadc_reg_write(GPADC_REG_INT_MASK, val);
gpadc_reg_read(GPADC_REG_INT_EN, &val);
val &= ~clr_en;
val |= set_en;
gpadc_reg_write(GPADC_REG_INT_EN, val);
hal_gpadc_irq_control();
int_unlock(lock);
return 0;
}
#endif // !GPADC_CHIP_SPECIFIC