pinebuds/platform/hal/best2300p/hal_analogif_best2300p.c
Ben V. Brown 75381150fd Formatting
Formatting Pass 1

Lots of fixups to adding stdint and stdbool all over the place

Formatting Pass 2
Formatting Pass 3
Formatting Pass 4

Update app_bt_stream.cpp
2023-02-02 07:56:49 +11:00

212 lines
5.1 KiB
C

/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "cmsis.h"
#include "hal_analogif.h"
#include "hal_location.h"
#include "hal_spi.h"
#include "plat_types.h"
#define ANA_REG_CHIP_ID 0x00
#define ANA_CHIP_ID_SHIFT (4)
#define ANA_CHIP_ID_MASK (0xFFF << ANA_CHIP_ID_SHIFT)
#define ANA_CHIP_ID(n) BITFIELD_VAL(ANA_CHIP_ID, n)
#define ANA_VAL_CHIP_ID 0x18E
// ISPI_ARBITRATOR_ENABLE should be defined when:
// 1) BT and MCU will access RF register at the same time; or
// 2) BT can access PMU/ANA, and BT will access RF register at the same time
// when MCU is accessing PMU/ANA register
#ifdef ISPI_ARBITRATOR_ENABLE
// Min padding OSC cycles needed: BT=0 MCU=6
// When OSC=26M and SPI=6.5M, min padding SPI cycles is BT=0 MCU=2
#define PADDING_CYCLES 2
#else
#define PADDING_CYCLES 0
#endif
#define ANA_READ_CMD(r) (((1 << 24) | (((r)&0xFF) << 16)) << PADDING_CYCLES)
#define ANA_WRITE_CMD(r, v) \
(((((r)&0xFF) << 16) | ((v)&0xFFFF)) << PADDING_CYCLES)
#define ANA_READ_VAL(v) (((v) >> PADDING_CYCLES) & 0xFFFF)
#define ANA_PAGE_1 0xA010
#define ANA_PAGE_0 0xA000
static const BOOT_RODATA_SRAM_LOC uint8_t page_reg[3] = {
0x00,
0x60,
0x80,
};
static const BOOT_RODATA_FLASH_LOC struct HAL_SPI_CFG_T spi_cfg = {
.clk_delay_half = false,
.clk_polarity = false,
.slave = false,
.dma_rx = false,
.dma_tx = false,
.rx_sep_line = false,
.cs = 0,
.rate = 6500000,
.tx_bits = 25 + PADDING_CYCLES,
.rx_bits = 25 + PADDING_CYCLES,
.rx_frame_bits = 0,
};
static bool BOOT_BSS_LOC analogif_inited = false;
static int BOOT_TEXT_SRAM_LOC hal_analogif_rawread(unsigned short reg,
unsigned short *val) {
int ret;
unsigned int data;
unsigned int cmd;
data = 0;
cmd = ANA_READ_CMD(reg);
ret = hal_ispi_recv(&cmd, &data, 4);
if (ret) {
return ret;
}
*val = ANA_READ_VAL(data);
return 0;
}
static int BOOT_TEXT_SRAM_LOC hal_analogif_rawwrite(unsigned short reg,
unsigned short val) {
int ret;
unsigned int cmd;
cmd = ANA_WRITE_CMD(reg, val);
ret = hal_ispi_send(&cmd, 4);
if (ret) {
return ret;
}
return 0;
}
int BOOT_TEXT_SRAM_LOC hal_analogif_reg_read(unsigned short reg,
unsigned short *val) {
uint32_t lock;
uint32_t idx;
int ret;
#if defined(USE_CYBERON)
extern int cyb_efuse_check_status(void);
if (cyb_efuse_check_status()) {
if (reg == 0x5e) {
*val = 49185;
return 0;
}
if (reg == 0x00) {
*val = 0x20e0;
return 0;
}
}
#endif
if (reg < 0x100) {
lock = int_lock();
ret = hal_analogif_rawread(reg, val);
int_unlock(lock);
return ret;
} else if (reg >= 0x100 && reg <= 0x15F) {
idx = 0;
} else if (reg >= 0x160 && reg <= 0x17F) {
idx = 1;
} else if (reg >= 0x180 && reg <= 0x1FF) {
idx = 2;
} else {
return -1;
}
reg &= 0xFF;
lock = int_lock();
hal_analogif_rawwrite(page_reg[idx], ANA_PAGE_1);
ret = hal_analogif_rawread(reg, val);
hal_analogif_rawwrite(page_reg[idx], ANA_PAGE_0);
int_unlock(lock);
return ret;
}
int BOOT_TEXT_SRAM_LOC hal_analogif_reg_write(unsigned short reg,
unsigned short val) {
uint32_t lock;
uint32_t idx;
int ret;
if (reg < 0x100) {
lock = int_lock();
ret = hal_analogif_rawwrite(reg, val);
int_unlock(lock);
return ret;
} else if (reg >= 0x100 && reg <= 0x15F) {
idx = 0;
} else if (reg >= 0x160 && reg <= 0x17F) {
idx = 1;
} else if (reg >= 0x180 && reg <= 0x1FF) {
idx = 2;
} else {
return -1;
}
reg &= 0xFF;
lock = int_lock();
hal_analogif_rawwrite(page_reg[idx], ANA_PAGE_1);
ret = hal_analogif_rawwrite(reg, val);
hal_analogif_rawwrite(page_reg[idx], ANA_PAGE_0);
int_unlock(lock);
return ret;
}
int BOOT_TEXT_FLASH_LOC hal_analogif_open(void) {
int ret;
unsigned short chip_id;
const struct HAL_SPI_CFG_T *cfg_ptr;
struct HAL_SPI_CFG_T cfg;
if (analogif_inited) {
// Restore the nominal rate
cfg_ptr = &spi_cfg;
} else {
analogif_inited = true;
// Crystal freq is unknown yet. Let SPI run on half of the nominal rate
cfg = spi_cfg;
cfg.rate /= 2;
cfg_ptr = &cfg;
}
ret = hal_ispi_open(cfg_ptr);
if (ret) {
return ret;
}
ret = hal_analogif_rawread(ANA_REG_CHIP_ID, &chip_id);
if (ret) {
return ret;
}
if (GET_BITFIELD(chip_id, ANA_CHIP_ID) != ANA_VAL_CHIP_ID) {
return -1;
}
return 0;
}