/* * Copyright (c) 2013-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ----------------------------------------------------------------------------- * * Project: CMSIS-RTOS RTX * Title: Cortex-A Core definitions * * ----------------------------------------------------------------------------- */ #ifndef RTX_CORE_CA_H_ #define RTX_CORE_CA_H_ #ifndef RTX_CORE_C_H_ #include "RTE_Components.h" #include CMSIS_device_header #endif #include typedef bool bool_t; #define FALSE ((bool_t)0) #define TRUE ((bool_t)1) #define DOMAIN_NS 0 #define EXCLUSIVE_ACCESS 1 #define OS_TICK_HANDLER osRtxTick_Handler // CPSR bit definitions #define CPSR_T_BIT 0x20U #define CPSR_I_BIT 0x80U #define CPSR_F_BIT 0x40U // CPSR mode bitmasks #define CPSR_MODE_USER 0x10U #define CPSR_MODE_SYSTEM 0x1FU /// xPSR_Initialization Value /// \param[in] privileged true=privileged, false=unprivileged /// \param[in] thumb true=Thumb, false=Arm /// \return xPSR Init Value __STATIC_INLINE uint32_t xPSR_InitVal (bool_t privileged, bool_t thumb) { uint32_t psr; if (privileged) { if (thumb) { psr = CPSR_MODE_SYSTEM | CPSR_T_BIT; } else { psr = CPSR_MODE_SYSTEM; } } else { if (thumb) { psr = CPSR_MODE_USER | CPSR_T_BIT; } else { psr = CPSR_MODE_USER; } } return psr; } // Stack Frame: // - VFP-D32: D16-31, D0-D15, FPSCR, Reserved, R4-R11, R0-R3, R12, LR, PC, CPSR // - VFP-D16: D0-D15, FPSCR, Reserved, R4-R11, R0-R3, R12, LR, PC, CPSR // - Basic: R4-R11, R0-R3, R12, LR, PC, CPSR /// Stack Frame Initialization Value #define STACK_FRAME_INIT_VAL 0x00U /// Stack Offset of Register R0 /// \param[in] stack_frame Stack Frame /// \return R0 Offset __STATIC_INLINE uint32_t StackOffsetR0 (uint8_t stack_frame) { uint32_t offset; if ((stack_frame & 0x04U) != 0U) { offset = (32U*8U) + (2U*4U) + (8U*4U); } else if ((stack_frame & 0x02U) != 0U) { offset = (16U*8U) + (2U*4U) + (8U*4U); } else { offset = (8U*4U); } return offset; } // ==== Emulated Cortex-M functions ==== /// Get xPSR Register - emulate M profile: SP_usr - (8*4) /// \return xPSR Register value #if defined(__CC_ARM) #pragma push #pragma arm static __asm uint32_t __get_PSP (void) { sub sp, sp, #4 stm sp, {sp}^ pop {r0} sub r0, r0, #32 bx lr } #pragma pop #else #ifdef __ICCARM__ __arm #else __attribute__((target("arm"))) #endif __STATIC_INLINE uint32_t __get_PSP (void) { register uint32_t ret; __ASM volatile ( "sub sp,sp,#4\n\t" "stm sp,{sp}^\n\t" "pop {%[ret]}\n\t" "sub %[ret],%[ret],#32\n\t" : [ret] "=&l" (ret) : : "memory" ); return ret; } #endif /// Set Control Register - not needed for A profile /// \param[in] control Control Register value to set __STATIC_INLINE void __set_CONTROL(uint32_t control) { (void)control; } // ==== Core functions ==== /// Check if running Privileged /// \return true=privileged, false=unprivileged __STATIC_INLINE bool_t IsPrivileged (void) { return (__get_mode() != CPSR_MODE_USER); } /// Check if in IRQ Mode /// \return true=IRQ, false=thread __STATIC_INLINE bool_t IsIrqMode (void) { return ((__get_mode() != CPSR_MODE_USER) && (__get_mode() != CPSR_MODE_SYSTEM)); } /// Check if IRQ is Masked /// \return true=masked, false=not masked __STATIC_INLINE bool_t IsIrqMasked (void) { return FALSE; } // ==== Core Peripherals functions ==== extern uint8_t IRQ_PendSV; /// Setup SVC and PendSV System Service Calls (not needed on Cortex-A) __STATIC_INLINE void SVC_Setup (void) { } /// Get Pending SV (Service Call) Flag /// \return Pending SV Flag __STATIC_INLINE uint8_t GetPendSV (void) { return (IRQ_PendSV); } /// Clear Pending SV (Service Call) Flag __STATIC_INLINE void ClrPendSV (void) { IRQ_PendSV = 0U; } /// Set Pending SV (Service Call) Flag __STATIC_INLINE void SetPendSV (void) { IRQ_PendSV = 1U; } // ==== Service Calls definitions ==== #if defined(__CC_ARM) #define __SVC_INDIRECT(n) __svc_indirect(n) #define SVC0_0N(f,t) \ __SVC_INDIRECT(0) t svc##f (t(*)()); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (void) { \ svc##f(svcRtx##f); \ } #define SVC0_0(f,t) \ __SVC_INDIRECT(0) t svc##f (t(*)()); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (void) { \ return svc##f(svcRtx##f); \ } #define SVC0_1N(f,t,t1) \ __SVC_INDIRECT(0) t svc##f (t(*)(t1),t1); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1) { \ svc##f(svcRtx##f,a1); \ } #define SVC0_1(f,t,t1) \ __SVC_INDIRECT(0) t svc##f (t(*)(t1),t1); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1) { \ return svc##f(svcRtx##f,a1); \ } #define SVC0_2(f,t,t1,t2) \ __SVC_INDIRECT(0) t svc##f (t(*)(t1,t2),t1,t2); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \ return svc##f(svcRtx##f,a1,a2); \ } #define SVC0_3(f,t,t1,t2,t3) \ __SVC_INDIRECT(0) t svc##f (t(*)(t1,t2,t3),t1,t2,t3); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \ return svc##f(svcRtx##f,a1,a2,a3); \ } #define SVC0_4(f,t,t1,t2,t3,t4) \ __SVC_INDIRECT(0) t svc##f (t(*)(t1,t2,t3,t4),t1,t2,t3,t4); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \ return svc##f(svcRtx##f,a1,a2,a3,a4); \ } #elif defined(__ICCARM__) #define SVC_ArgF(f) \ __asm( \ "mov r12,%0\n" \ :: "r"(&f): "r12" \ ); #define STRINGIFY(a) #a #define __SVC_INDIRECT(n) _Pragma(STRINGIFY(swi_number = n)) __swi #define SVC0_0N(f,t) \ __SVC_INDIRECT(0) t svc##f (); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (void) { \ SVC_ArgF(svcRtx##f); \ svc##f(); \ } #define SVC0_0(f,t) \ __SVC_INDIRECT(0) t svc##f (); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (void) { \ SVC_ArgF(svcRtx##f); \ return svc##f(); \ } #define SVC0_1N(f,t,t1) \ __SVC_INDIRECT(0) t svc##f (t1 a1); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1) { \ SVC_ArgF(svcRtx##f); \ svc##f(a1); \ } #define SVC0_1(f,t,t1) \ __SVC_INDIRECT(0) t svc##f (t1 a1); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1) { \ SVC_ArgF(svcRtx##f); \ return svc##f(a1); \ } #define SVC0_2(f,t,t1,t2) \ __SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \ SVC_ArgF(svcRtx##f); \ return svc##f(a1,a2); \ } #define SVC0_3(f,t,t1,t2,t3) \ __SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2, t3 a3); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \ SVC_ArgF(svcRtx##f); \ return svc##f(a1,a2,a3); \ } #define SVC0_4(f,t,t1,t2,t3,t4) \ __SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2, t3 a3, t4 a4); \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \ SVC_ArgF(svcRtx##f); \ return svc##f(a1,a2,a3,a4); \ } #else // !(defined(__CC_ARM) || defined(__ICCARM__)) #define SVC_RegF "r12" #define SVC_ArgN(n) \ register uint32_t __r##n __ASM("r"#n) #define SVC_ArgR(n,a) \ register uint32_t __r##n __ASM("r"#n) = (uint32_t)a #define SVC_ArgF(f) \ register uint32_t __rf __ASM(SVC_RegF) = (uint32_t)f #define SVC_In0 "r"(__rf) #define SVC_In1 "r"(__rf),"r"(__r0) #define SVC_In2 "r"(__rf),"r"(__r0),"r"(__r1) #define SVC_In3 "r"(__rf),"r"(__r0),"r"(__r1),"r"(__r2) #define SVC_In4 "r"(__rf),"r"(__r0),"r"(__r1),"r"(__r2),"r"(__r3) #define SVC_Out0 #define SVC_Out1 "=r"(__r0) #define SVC_CL0 #define SVC_CL1 "r1" #define SVC_CL2 "r0","r1" #define SVC_Call0(in, out, cl) \ __ASM volatile ("svc 0" : out : in : cl) #define SVC0_0N(f,t) \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (void) { \ SVC_ArgF(svcRtx##f); \ SVC_Call0(SVC_In0, SVC_Out0, SVC_CL2); \ } #define SVC0_0(f,t) \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (void) { \ SVC_ArgN(0); \ SVC_ArgF(svcRtx##f); \ SVC_Call0(SVC_In0, SVC_Out1, SVC_CL1); \ return (t) __r0; \ } #define SVC0_1N(f,t,t1) \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1) { \ SVC_ArgR(0,a1); \ SVC_ArgF(svcRtx##f); \ SVC_Call0(SVC_In1, SVC_Out0, SVC_CL1); \ } #define SVC0_1(f,t,t1) \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1) { \ SVC_ArgR(0,a1); \ SVC_ArgF(svcRtx##f); \ SVC_Call0(SVC_In1, SVC_Out1, SVC_CL1); \ return (t) __r0; \ } #define SVC0_2(f,t,t1,t2) \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \ SVC_ArgR(0,a1); \ SVC_ArgR(1,a2); \ SVC_ArgF(svcRtx##f); \ SVC_Call0(SVC_In2, SVC_Out1, SVC_CL0); \ return (t) __r0; \ } #define SVC0_3(f,t,t1,t2,t3) \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \ SVC_ArgR(0,a1); \ SVC_ArgR(1,a2); \ SVC_ArgR(2,a3); \ SVC_ArgF(svcRtx##f); \ SVC_Call0(SVC_In3, SVC_Out1, SVC_CL0); \ return (t) __r0; \ } #define SVC0_4(f,t,t1,t2,t3,t4) \ __attribute__((always_inline)) \ __STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \ SVC_ArgR(0,a1); \ SVC_ArgR(1,a2); \ SVC_ArgR(2,a3); \ SVC_ArgR(3,a4); \ SVC_ArgF(svcRtx##f); \ SVC_Call0(SVC_In4, SVC_Out1, SVC_CL0); \ return (t) __r0; \ } #endif // ==== Exclusive Access Operation ==== #if (EXCLUSIVE_ACCESS == 1) /// Atomic Access Operation: Write (8-bit) /// \param[in] mem Memory address /// \param[in] val Value to write /// \return Previous value #if defined(__CC_ARM) static __asm uint8_t atomic_wr8 (uint8_t *mem, uint8_t val) { mov r2,r0 1 ldrexb r0,[r2] strexb r3,r1,[r2] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE uint8_t atomic_wr8 (uint8_t *mem, uint8_t val) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint8_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrexb %[ret],[%[mem]]\n\t" "strexb %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n\t" : [ret] "=&l" (ret), [res] "=&l" (res) : [mem] "l" (mem), [val] "l" (val) : "memory" ); return ret; } #endif /// Atomic Access Operation: Set bits (32-bit) /// \param[in] mem Memory address /// \param[in] bits Bit mask /// \return New value #if defined(__CC_ARM) static __asm uint32_t atomic_set32 (uint32_t *mem, uint32_t bits) { mov r2,r0 1 ldrex r0,[r2] orr r0,r0,r1 strex r3,r0,[r2] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE uint32_t atomic_set32 (uint32_t *mem, uint32_t bits) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint32_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[val],[%[mem]]\n\t" "orr %[ret],%[val],%[bits]\n\t" "strex %[res],%[ret],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem), [bits] "l" (bits) : "memory" ); return ret; } #endif /// Atomic Access Operation: Clear bits (32-bit) /// \param[in] mem Memory address /// \param[in] bits Bit mask /// \return Previous value #if defined(__CC_ARM) static __asm uint32_t atomic_clr32 (uint32_t *mem, uint32_t bits) { push {r4,lr} mov r2,r0 1 ldrex r0,[r2] bic r4,r0,r1 strex r3,r4,[r2] cmp r3,#0 bne %B1 pop {r4,pc} } #else __STATIC_INLINE uint32_t atomic_clr32 (uint32_t *mem, uint32_t bits) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint32_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[ret],[%[mem]]\n\t" "bic %[val],%[ret],%[bits]\n\t" "strex %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem), [bits] "l" (bits) : "memory" ); return ret; } #endif /// Atomic Access Operation: Check if all specified bits (32-bit) are active and clear them /// \param[in] mem Memory address /// \param[in] bits Bit mask /// \return Active bits before clearing or 0 if not active #if defined(__CC_ARM) static __asm uint32_t atomic_chk32_all (uint32_t *mem, uint32_t bits) { push {r4,lr} mov r2,r0 1 ldrex r0,[r2] and r4,r0,r1 cmp r4,r1 beq %F2 clrex movs r0,#0 pop {r4,pc} 2 bic r4,r0,r1 strex r3,r4,[r2] cmp r3,#0 bne %B1 pop {r4,pc} } #else __STATIC_INLINE uint32_t atomic_chk32_all (uint32_t *mem, uint32_t bits) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint32_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[ret],[%[mem]]\n\t" "and %[val],%[ret],%[bits]\n\t" "cmp %[val],%[bits]\n\t" "beq 2f\n\t" "clrex\n\t" "movs %[ret],#0\n\t" "b 3f\n" "2:\n\t" "bic %[val],%[ret],%[bits]\n\t" "strex %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" "3:" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem), [bits] "l" (bits) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Check if any specified bits (32-bit) are active and clear them /// \param[in] mem Memory address /// \param[in] bits Bit mask /// \return Active bits before clearing or 0 if not active #if defined(__CC_ARM) static __asm uint32_t atomic_chk32_any (uint32_t *mem, uint32_t bits) { push {r4,lr} mov r2,r0 1 ldrex r0,[r2] tst r0,r1 bne %F2 clrex movs r0,#0 pop {r4,pc} 2 bic r4,r0,r1 strex r3,r4,[r2] cmp r3,#0 bne %B1 pop {r4,pc} } #else __STATIC_INLINE uint32_t atomic_chk32_any (uint32_t *mem, uint32_t bits) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint32_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[ret],[%[mem]]\n\t" "tst %[ret],%[bits]\n\t" "bne 2f\n\t" "clrex\n\t" "movs %[ret],#0\n\t" "b 3f\n" "2:\n\t" "bic %[val],%[ret],%[bits]\n\t" "strex %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" "3:" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem), [bits] "l" (bits) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Increment (32-bit) /// \param[in] mem Memory address /// \return Previous value #if defined(__CC_ARM) static __asm uint32_t atomic_inc32 (uint32_t *mem) { mov r2,r0 1 ldrex r0,[r2] adds r1,r0,#1 strex r3,r1,[r2] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE uint32_t atomic_inc32 (uint32_t *mem) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint32_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[ret],[%[mem]]\n\t" "adds %[val],%[ret],#1\n\t" "strex %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Increment (16-bit) if Less Than /// \param[in] mem Memory address /// \param[in] max Maximum value /// \return Previous value #if defined(__CC_ARM) static __asm uint16_t atomic_inc16_lt (uint16_t *mem, uint16_t max) { push {r4,lr} mov r2,r0 1 ldrexh r0,[r2] cmp r1,r0 bhi %F2 clrex pop {r4,pc} 2 adds r4,r0,#1 strexh r3,r4,[r2] cmp r3,#0 bne %B1 pop {r4,pc} } #else __STATIC_INLINE uint16_t atomic_inc16_lt (uint16_t *mem, uint16_t max) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint16_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrexh %[ret],[%[mem]]\n\t" "cmp %[max],%[ret]\n\t" "bhi 2f\n\t" "clrex\n\t" "b 3f\n" "2:\n\t" "adds %[val],%[ret],#1\n\t" "strexh %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" "3:" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem), [max] "l" (max) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Increment (16-bit) and clear on Limit /// \param[in] mem Memory address /// \param[in] max Maximum value /// \return Previous value #if defined(__CC_ARM) static __asm uint16_t atomic_inc16_lim (uint16_t *mem, uint16_t lim) { push {r4,lr} mov r2,r0 1 ldrexh r0,[r2] adds r4,r0,#1 cmp r1,r4 bhi %F2 movs r4,#0 2 strexh r3,r4,[r2] cmp r3,#0 bne %B1 pop {r4,pc} } #else __STATIC_INLINE uint16_t atomic_inc16_lim (uint16_t *mem, uint16_t lim) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint16_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrexh %[ret],[%[mem]]\n\t" "adds %[val],%[ret],#1\n\t" "cmp %[lim],%[val]\n\t" "bhi 2f\n\t" "movs %[val],#0\n" "2:\n\t" "strexh %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem), [lim] "l" (lim) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Decrement (32-bit) /// \param[in] mem Memory address /// \return Previous value #if defined(__CC_ARM) static __asm uint32_t atomic_dec32 (uint32_t *mem) { mov r2,r0 1 ldrex r0,[r2] subs r1,r0,#1 strex r3,r1,[r2] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE uint32_t atomic_dec32 (uint32_t *mem) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint32_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[ret],[%[mem]]\n\t" "subs %[val],%[ret],#1\n\t" "strex %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Decrement (32-bit) if Not Zero /// \param[in] mem Memory address /// \return Previous value #if defined(__CC_ARM) static __asm uint32_t atomic_dec32_nz (uint32_t *mem) { mov r2,r0 1 ldrex r0,[r2] cmp r0,#0 bne %F2 clrex bx lr 2 subs r1,r0,#1 strex r3,r1,[r2] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE uint32_t atomic_dec32_nz (uint32_t *mem) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint32_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[ret],[%[mem]]\n\t" "cmp %[ret],#0\n\t" "bne 2f\n" "clrex\n\t" "b 3f\n" "2:\n\t" "subs %[val],%[ret],#1\n\t" "strex %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" "3:" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Decrement (16-bit) if Not Zero /// \param[in] mem Memory address /// \return Previous value #if defined(__CC_ARM) static __asm uint16_t atomic_dec16_nz (uint16_t *mem) { mov r2,r0 1 ldrexh r0,[r2] cmp r0,#0 bne %F2 clrex bx lr 2 subs r1,r0,#1 strexh r3,r1,[r2] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE uint16_t atomic_dec16_nz (uint16_t *mem) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register uint16_t ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrexh %[ret],[%[mem]]\n\t" "cmp %[ret],#0\n\t" "bne 2f\n\t" "clrex\n\t" "b 3f\n" "2:\n\t" "subs %[val],%[ret],#1\n\t" "strexh %[res],%[val],[%[mem]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" "3:" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [mem] "l" (mem) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Link Get /// \param[in] root Root address /// \return Link #if defined(__CC_ARM) static __asm void *atomic_link_get (void **root) { mov r2,r0 1 ldrex r0,[r2] cmp r0,#0 bne %F2 clrex bx lr 2 ldr r1,[r0] strex r3,r1,[r2] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE void *atomic_link_get (void **root) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif register void *ret; __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldrex %[ret],[%[root]]\n\t" "cmp %[ret],#0\n\t" "bne 2f\n\t" "clrex\n\t" "b 3f\n" "2:\n\t" "ldr %[val],[%[ret]]\n\t" "strex %[res],%[val],[%[root]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" "3:" : [ret] "=&l" (ret), [val] "=&l" (val), [res] "=&l" (res) : [root] "l" (root) : "cc", "memory" ); return ret; } #endif /// Atomic Access Operation: Link Put /// \param[in] root Root address /// \param[in] lnk Link #if defined(__CC_ARM) static __asm void atomic_link_put (void **root, void *link) { 1 ldr r2,[r0] str r2,[r1] dmb ldrex r2,[r0] ldr r3,[r1] cmp r3,r2 bne %B1 strex r3,r1,[r0] cmp r3,#0 bne %B1 bx lr } #else __STATIC_INLINE void atomic_link_put (void **root, void *link) { #ifdef __ICCARM__ #pragma diag_suppress=Pe550 #endif register uint32_t val1, val2, res; #ifdef __ICCARM__ #pragma diag_default=Pe550 #endif __ASM volatile ( #ifndef __ICCARM__ ".syntax unified\n\t" #endif "1:\n\t" "ldr %[val1],[%[root]]\n\t" "str %[val1],[%[link]]\n\t" "dmb\n\t" "ldrex %[val1],[%[root]]\n\t" "ldr %[val2],[%[link]]\n\t" "cmp %[val2],%[val1]\n\t" "bne 1b\n\t" "strex %[res],%[link],[%[root]]\n\t" "cmp %[res],#0\n\t" "bne 1b\n" : [val1] "=&l" (val1), [val2] "=&l" (val2), [res] "=&l" (res) : [root] "l" (root), [link] "l" (link) : "cc", "memory" ); } #endif #endif // (EXCLUSIVE_ACCESS == 1) #endif // RTX_CORE_CA_H_