/** **************************************************************************************** * @addtogroup GLPS * @{ **************************************************************************************** */ /* * INCLUDE FILES **************************************************************************************** */ #include "rwip_config.h" #if (BLE_GL_SENSOR) #include "gap.h" #include "gattc_task.h" #include "attm.h" #include "glps.h" #include "glps_task.h" #include "prf_utils.h" #include "ke_mem.h" #include "co_utils.h" /* * GLOBAL VARIABLE DEFINITIONS **************************************************************************************** */ /// Full GLPS Database Description - Used to add attributes into the database static const struct attm_desc glps_att_db[GLS_IDX_NB] = { // Glucose Service Declaration [GLS_IDX_SVC] = {ATT_DECL_PRIMARY_SERVICE, PERM(RD, ENABLE), 0, 0}, // Glucose Measurement Characteristic Declaration [GLS_IDX_MEAS_CHAR] = {ATT_DECL_CHARACTERISTIC, PERM(RD, ENABLE), 0, 0}, // Glucose Measurement Characteristic Value [GLS_IDX_MEAS_VAL] = {ATT_CHAR_GLUCOSE_MEAS, PERM(NTF, ENABLE), PERM(RI, ENABLE), 0}, // Glucose Measurement Characteristic - Client Characteristic Configuration Descriptor [GLS_IDX_MEAS_NTF_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, PERM(RD, ENABLE)|PERM(WRITE_REQ, ENABLE), 0, 0}, // Glucose Measurement Context Characteristic Declaration [GLS_IDX_MEAS_CTX_CHAR] = {ATT_DECL_CHARACTERISTIC, PERM(RD, ENABLE), 0, 0}, // Glucose Measurement Context Characteristic Value [GLS_IDX_MEAS_CTX_VAL] = {ATT_CHAR_GLUCOSE_MEAS_CTX, PERM(NTF, ENABLE), PERM(RI, ENABLE), 0}, // Glucose Measurement Context Characteristic - Client Characteristic Configuration Descriptor [GLS_IDX_MEAS_CTX_NTF_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, PERM(RD, ENABLE)|PERM(WRITE_REQ, ENABLE), 0, 0}, // Glucose Features Characteristic Declaration [GLS_IDX_FEATURE_CHAR] = {ATT_DECL_CHARACTERISTIC, PERM(RD, ENABLE), 0, 0}, // Glucose Features Characteristic Value [GLS_IDX_FEATURE_VAL] = {ATT_CHAR_GLUCOSE_FEATURE, PERM(RD, ENABLE), PERM(RI, ENABLE) | sizeof(uint16_t), 0}, // Record Access Control Point characteristic Declaration [GLS_IDX_REC_ACCESS_CTRL_CHAR] = {ATT_DECL_CHARACTERISTIC, PERM(RD, ENABLE), 0, 0}, // Record Access Control Point characteristic Value [GLS_IDX_REC_ACCESS_CTRL_VAL] = {ATT_CHAR_REC_ACCESS_CTRL_PT, PERM(IND, ENABLE)|PERM(WP, UNAUTH)|PERM(WRITE_REQ, ENABLE), PERM(RI, ENABLE), GLP_REC_ACCESS_CTRL_MAX_LEN}, // Record Access Control Point characteristic - Client Characteristic Configuration Descriptor [GLS_IDX_REC_ACCESS_CTRL_IND_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, PERM(RD, ENABLE)|PERM(WRITE_REQ, ENABLE), 0, 0}, }; /* * DEFINES **************************************************************************************** */ #define GLPS_FILTER_USER_FACING_TIME_SIZE (7) /* * LOCAL FUNCTION DEFINITIONS **************************************************************************************** */ /** **************************************************************************************** * @brief Initialization of the GLPS module. * This function performs all the initializations of the Profile module. * - Creation of database (if it's a service) * - Allocation of profile required memory * - Initialization of task descriptor to register application * - Task State array * - Number of tasks * - Default task handler * * @param[out] env Collector or Service allocated environment data. * @param[in|out] start_hdl Service start handle (0 - dynamically allocated), only applies for services. * @param[in] app_task Application task number. * @param[in] sec_lvl Security level (AUTH, EKS and MI field of @see enum attm_value_perm_mask) * @param[in] param Configuration parameters of profile collector or service (32 bits aligned) * * @return status code to know if profile initialization succeed or not. **************************************************************************************** */ static uint8_t glps_init (struct prf_task_env* env, uint16_t* start_hdl, uint16_t app_task, uint8_t sec_lvl, struct glps_db_cfg* params) { //------------------ create the attribute database for the profile ------------------- uint8_t idx; // Service content flag uint32_t cfg_flag= GLPS_MANDATORY_MASK; // DB Creation Statis uint8_t status = ATT_ERR_NO_ERROR; //Set Configuration Flag Value if (params->meas_ctx_supported) { cfg_flag |= GLPS_MEAS_CTX_PRES_MASK; } // Create Glucose Database status = attm_svc_create_db(start_hdl, ATT_SVC_GLUCOSE, (uint8_t *)&cfg_flag, GLS_IDX_NB, NULL, env->task, &glps_att_db[0], (sec_lvl & (PERM_MASK_SVC_DIS | PERM_MASK_SVC_AUTH | PERM_MASK_SVC_EKS)) | PERM(SVC_MI, ENABLE)); //-------------------- allocate memory required for the profile --------------------- if (status == ATT_ERR_NO_ERROR) { // Allocate GLPS required environment variable struct glps_env_tag* glps_env = (struct glps_env_tag* ) ke_malloc(sizeof(struct glps_env_tag), KE_MEM_ATT_DB); // Initialize GLPS environment env->env = (prf_env_t*) glps_env; glps_env->start_hdl = *start_hdl; glps_env->meas_ctx_supported = params->meas_ctx_supported; glps_env->features = params->features; glps_env->prf_env.app_task = app_task | (PERM_GET(sec_lvl, SVC_MI) ? PERM(PRF_MI, ENABLE) : PERM(PRF_MI, DISABLE)); glps_env->prf_env.prf_task = env->task | PERM(PRF_MI, ENABLE); // initialize environment variable env->id = TASK_ID_GLPS; glps_task_init(&(env->desc)); for(idx = 0; idx < GLPS_IDX_MAX ; idx++) { glps_env->env[idx] = NULL; // service is ready, go into an Idle state ke_state_set(KE_BUILD_ID(env->task, idx), GLPS_FREE); } } return (status); } /** **************************************************************************************** * @brief Destruction of the GLPS module - due to a reset for instance. * This function clean-up allocated memory (attribute database is destroyed by another * procedure) * * @param[in|out] env Collector or Service allocated environment data. **************************************************************************************** */ static void glps_destroy(struct prf_task_env* env) { uint8_t idx; struct glps_env_tag* glps_env = (struct glps_env_tag*) env->env; // cleanup environment variable for each task instances for(idx = 0; idx < GLPS_IDX_MAX ; idx++) { if(glps_env->env[idx] != NULL) { ke_free(glps_env->env[idx]); } } // free profile environment variables env->env = NULL; ke_free(glps_env); } /** **************************************************************************************** * @brief Handles Connection creation * * @param[in|out] env Collector or Service allocated environment data. * @param[in] conidx Connection index **************************************************************************************** */ static void glps_create(struct prf_task_env* env, uint8_t conidx) { struct glps_env_tag* glps_env = (struct glps_env_tag*) env->env; glps_env->env[conidx] = (struct glps_cnx_env*) ke_malloc(sizeof(struct glps_cnx_env), KE_MEM_ATT_DB); memset(glps_env->env[conidx], 0, sizeof(struct glps_cnx_env)); /* Put GLS in Idle state */ ke_state_set(KE_BUILD_ID(env->task, conidx), GLPS_IDLE); } /** **************************************************************************************** * @brief Handles Disconnection * * @param[in|out] env Collector or Service allocated environment data. * @param[in] conidx Connection index * @param[in] reason Detach reason **************************************************************************************** */ static void glps_cleanup(struct prf_task_env* env, uint8_t conidx, uint8_t reason) { struct glps_env_tag* glps_env = (struct glps_env_tag*) env->env; // clean-up environment variable allocated for task instance if(glps_env->env[conidx] != NULL) { ke_free(glps_env->env[conidx]); glps_env->env[conidx] = NULL; } /* Put GLS in Free state */ ke_state_set(KE_BUILD_ID(env->task, conidx), GLPS_FREE); } /* * GLOBAL VARIABLE DEFINITIONS **************************************************************************************** */ /// GLPS Task interface required by profile manager const struct prf_task_cbs glps_itf = { (prf_init_fnct) glps_init, glps_destroy, glps_create, glps_cleanup, }; /* * EXPORTED FUNCTIONS DEFINITIONS **************************************************************************************** */ const struct prf_task_cbs* glps_prf_itf_get(void) { return &glps_itf; } uint8_t glps_pack_meas_value(uint8_t *packed_meas, const struct glp_meas* meas_val, uint16_t seq_num) { uint8_t cursor = 0; // Flags packed_meas[cursor] = meas_val->flags; cursor += 1; // Sequence Number co_write16p(packed_meas + cursor, seq_num); cursor += 2; // Base Time cursor += prf_pack_date_time(packed_meas + cursor, &(meas_val->base_time)); //Time Offset if((meas_val->flags & GLP_MEAS_TIME_OFF_PRES) != 0) { co_write16p(packed_meas + cursor, meas_val->time_offset); cursor += 2; } // Glucose Concentration, type and location if((meas_val->flags & GLP_MEAS_GL_CTR_TYPE_AND_SPL_LOC_PRES) != 0) { co_write16p(packed_meas + cursor, meas_val->concentration); cursor += 2; /* type and location are 2 nibble values */ packed_meas[cursor] = (meas_val->location << 4) | (meas_val->type); cursor += 1; } // Sensor Status Annunciation if((meas_val->flags & GLP_MEAS_SENS_STAT_ANNUN_PRES) != 0) { co_write16p(packed_meas + cursor, meas_val->status); cursor += 2; } return cursor; } uint8_t glps_pack_meas_ctx_value(uint8_t *packed_meas_ctx, const struct glp_meas_ctx* meas_ctx_val, uint16_t seq_num) { uint8_t cursor = 0; // Flags packed_meas_ctx[cursor] = meas_ctx_val->flags; cursor += 1; // Sequence Number co_write16p(packed_meas_ctx + cursor, seq_num); cursor += 2; // Extended Flags if((meas_ctx_val->flags & GLP_CTX_EXTD_F_PRES) != 0) { packed_meas_ctx[cursor] = meas_ctx_val->ext_flags; cursor += 1; } // Carbohydrate ID And Carbohydrate Present if((meas_ctx_val->flags & GLP_CTX_CRBH_ID_AND_CRBH_PRES) != 0) { // Carbohydrate ID packed_meas_ctx[cursor] = meas_ctx_val->carbo_id; cursor += 1; // Carbohydrate Present co_write16p(packed_meas_ctx + cursor, meas_ctx_val->carbo_val); cursor += 2; } // Meal Present if((meas_ctx_val->flags & GLP_CTX_MEAL_PRES) != 0) { packed_meas_ctx[cursor] = meas_ctx_val->meal; cursor += 1; } // Tester-Health Present if((meas_ctx_val->flags & GLP_CTX_TESTER_HEALTH_PRES) != 0) { // Tester and Health are 2 nibble values packed_meas_ctx[cursor] = (meas_ctx_val->health << 4) | (meas_ctx_val->tester); cursor += 1; } // Exercise Duration & Exercise Intensity Present if((meas_ctx_val->flags & GLP_CTX_EXE_DUR_AND_EXE_INTENS_PRES) != 0) { // Exercise Duration co_write16p(packed_meas_ctx + cursor, meas_ctx_val->exercise_dur); cursor += 2; // Exercise Intensity packed_meas_ctx[cursor] = meas_ctx_val->exercise_intens; cursor += 1; } // Medication ID And Medication Present if((meas_ctx_val->flags & GLP_CTX_MEDIC_ID_AND_MEDIC_PRES) != 0) { // Medication ID packed_meas_ctx[cursor] = meas_ctx_val->med_id; cursor += 1; // Medication Present co_write16p(packed_meas_ctx + cursor, meas_ctx_val->med_val); cursor += 2; } // HbA1c Present if((meas_ctx_val->flags & GLP_CTX_HBA1C_PRES) != 0) { // HbA1c co_write16p(packed_meas_ctx + cursor, meas_ctx_val->hba1c_val); cursor += 2; } return cursor; } uint8_t glps_unpack_racp_req(uint8_t *packed_val, uint16_t length, struct glp_racp_req* racp_req) { uint8_t cursor = 0; // verify that enough data present to load operation filter if(length < 2) { return PRF_APP_ERROR; } // retrieve command op code racp_req->op_code = packed_val[cursor]; cursor++; // clear filter structure memset(&(racp_req->filter), 0, sizeof(struct glp_filter)); // retrieve operator of the function racp_req->filter.operator = packed_val[cursor]; cursor++; // check if opcode is supported if((racp_req->op_code < GLP_REQ_REP_STRD_RECS) || (racp_req->op_code > GLP_REQ_REP_NUM_OF_STRD_RECS)) { return GLP_RSP_OP_CODE_NOT_SUP; } // Abort operation don't require any other parameter if(racp_req->op_code == GLP_REQ_ABORT_OP) { return GAP_ERR_NO_ERROR; } // check if operator is valid if(racp_req->filter.operator < GLP_OP_ALL_RECS) { return GLP_RSP_INVALID_OPERATOR; } // check if operator is supported else if(racp_req->filter.operator > GLP_OP_LAST_REC) { return GLP_RSP_OPERATOR_NOT_SUP; } // check if request requires operand (filter) if((racp_req->filter.operator >= GLP_OP_LT_OR_EQ) && (racp_req->filter.operator <= GLP_OP_WITHIN_RANGE_OF)) { // verify that enough data present to load operand filter if(length < cursor) { return GLP_RSP_INVALID_OPERAND; } // retrieve command filter type racp_req->filter.filter_type = packed_val[cursor]; cursor++; // filter uses sequence number if(racp_req->filter.filter_type == GLP_FILTER_SEQ_NUMBER) { // retrieve minimum value if((racp_req->filter.operator == GLP_OP_GT_OR_EQ) || (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF)) { // check sufficient data available if((length - cursor) < 2) { return GLP_RSP_INVALID_OPERAND; } // retrieve minimum value racp_req->filter.val.seq_num.min = co_read16p(packed_val + cursor); cursor +=2; } // retrieve maximum value if((racp_req->filter.operator == GLP_OP_LT_OR_EQ) || (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF)) { if((length - cursor) < 2) { return GLP_RSP_INVALID_OPERAND; } // retrieve maximum value racp_req->filter.val.seq_num.max = co_read16p(packed_val + cursor); cursor +=2; } // check that range value is valid if((racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF) && (racp_req->filter.val.seq_num.min > racp_req->filter.val.seq_num.max)) { return GLP_RSP_INVALID_OPERAND; } } // filter uses user facing time else if (racp_req->filter.filter_type == GLP_FILTER_USER_FACING_TIME) { // retrieve minimum value if((racp_req->filter.operator == GLP_OP_GT_OR_EQ) || (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF)) { // check sufficient data available if((length - cursor) < GLPS_FILTER_USER_FACING_TIME_SIZE) { return GLP_RSP_INVALID_OPERAND; } // retrieve minimum facing time cursor += prf_unpack_date_time((packed_val + cursor), &(racp_req->filter.val.time.facetime_min)); cursor +=2; } // retrieve maximum value if((racp_req->filter.operator == GLP_OP_LT_OR_EQ) || (racp_req->filter.operator == GLP_OP_WITHIN_RANGE_OF)) { if((length - cursor) < GLPS_FILTER_USER_FACING_TIME_SIZE) { return GLP_RSP_INVALID_OPERAND; } // retrieve maximum facing time cursor += prf_unpack_date_time((packed_val + cursor), &(racp_req->filter.val.time.facetime_max)); } } else { return GLP_RSP_OPERAND_NOT_SUP; } } else if ((length - cursor) != 0) { return GLP_RSP_INVALID_OPERAND; } // Check that operand is valid return GAP_ERR_NO_ERROR; } uint8_t glps_pack_racp_rsp(uint8_t *packed_val, struct glp_racp_rsp* racp_rsp) { uint8_t cursor = 0; // set response op code packed_val[cursor] = racp_rsp->op_code; cursor++; // set operator (null) packed_val[cursor] = 0; cursor++; // number of record if(racp_rsp->op_code == GLP_REQ_NUM_OF_STRD_RECS_RSP) { co_write16(packed_val+cursor, racp_rsp->operand.num_of_record); cursor += 2; } else { // requested opcode packed_val[cursor] = racp_rsp->operand.rsp.op_code_req;; cursor++; // command status packed_val[cursor] = racp_rsp->operand.rsp.status; cursor++; } return cursor; } #endif /* BLE_GL_SENSOR */ /// @} GLPS