/** **************************************************************************************** * @addtogroup CSCPSTASK * @{ **************************************************************************************** */ /* * INCLUDE FILES **************************************************************************************** */ #include "rwip_config.h" #if (BLE_CSC_SENSOR) #include "gapc.h" #include "gattc_task.h" #include "cscps.h" #include "cscps_task.h" #include "prf_utils.h" #include "co_math.h" #include "ke_mem.h" #include "co_utils.h" /* * LOCAL FUNCTIONS DEFINITIONS **************************************************************************************** */ /** **************************************************************************************** * @brief Handles reception of the @ref CSCPS_ENABLE_REQ message. * @param[in] msgid Id of the message received * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscps_enable_req_handler(ke_msg_id_t const msgid, struct cscps_enable_req *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); // Status uint8_t status = PRF_ERR_REQ_DISALLOWED; if(ke_state_get(dest_id) == CSCPS_IDLE) { status = GAP_ERR_NO_ERROR; if (!CSCPS_IS_PRESENT(cscps_env->prfl_ntf_ind_cfg[param->conidx], CSCP_PRF_CFG_PERFORMED_OK)) { // Check the provided value if (param->csc_meas_ntf_cfg == PRF_CLI_START_NTF) { // Store the status CSCPS_ENABLE_NTFIND(param->conidx, CSCP_PRF_CFG_FLAG_CSC_MEAS_NTF); } if (CSCPS_IS_FEATURE_SUPPORTED(cscps_env->prfl_cfg, CSCPS_SC_CTNL_PT_MASK)) { // Check the provided value if (param->sc_ctnl_pt_ntf_cfg == PRF_CLI_START_IND) { // Store the status CSCPS_ENABLE_NTFIND(param->conidx, CSCP_PRF_CFG_FLAG_SC_CTNL_PT_IND); } } // Enable Bonded Data CSCPS_ENABLE_NTFIND(param->conidx, CSCP_PRF_CFG_PERFORMED_OK); } } // send completed information to APP task that contains error status struct cscps_enable_rsp *cmp_evt = KE_MSG_ALLOC(CSCPS_ENABLE_RSP, src_id, dest_id, cscps_enable_rsp); cmp_evt->status = status; cmp_evt->conidx = param->conidx; ke_msg_send(cmp_evt); return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the read request from peer device * * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_read_req_ind_handler(ke_msg_id_t const msgid, struct gattc_read_req_ind const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { if(ke_state_get(dest_id) == CSCPS_IDLE) { // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); uint8_t conidx = KE_IDX_GET(src_id); uint8_t att_idx = CSCPS_IDX(param->handle); // Send data to peer device struct gattc_read_cfm* cfm = NULL; uint8_t status = ATT_ERR_NO_ERROR; switch(att_idx) { case CSCS_IDX_CSC_MEAS_NTF_CFG: { // Fill data cfm = KE_MSG_ALLOC_DYN(GATTC_READ_CFM, src_id, dest_id, gattc_read_cfm, sizeof(uint16_t)); cfm->length = sizeof(uint16_t); co_write16p(cfm->value, (cscps_env->prfl_ntf_ind_cfg[conidx] & CSCP_PRF_CFG_FLAG_CSC_MEAS_NTF) ? PRF_CLI_START_NTF : PRF_CLI_STOP_NTFIND); } break; case CSCS_IDX_CSC_FEAT_VAL: { // Fill data cfm = KE_MSG_ALLOC_DYN(GATTC_READ_CFM, src_id, dest_id, gattc_read_cfm, sizeof(uint16_t)); cfm->length = sizeof(uint16_t); co_write16p(cfm->value, cscps_env->features); } break; case CSCS_IDX_SENSOR_LOC_VAL: { // Fill data cfm = KE_MSG_ALLOC_DYN(GATTC_READ_CFM, src_id, dest_id, gattc_read_cfm, sizeof(uint8_t)); cfm->length = sizeof(uint8_t); cfm->value[0] = cscps_env->sensor_loc; } break; case CSCS_IDX_SC_CTNL_PT_NTF_CFG: { // Fill data cfm = KE_MSG_ALLOC_DYN(GATTC_READ_CFM, src_id, dest_id, gattc_read_cfm, sizeof(uint16_t)); cfm->length = sizeof(uint16_t); co_write16p(cfm->value, (cscps_env->prfl_ntf_ind_cfg[conidx] & CSCP_PRF_CFG_FLAG_SC_CTNL_PT_IND) ? PRF_CLI_START_IND : PRF_CLI_STOP_NTFIND); } break; default: { cfm = KE_MSG_ALLOC(GATTC_READ_CFM, src_id, dest_id, gattc_read_cfm); cfm->length = 0; status = ATT_ERR_REQUEST_NOT_SUPPORTED; } break; } cfm->handle = param->handle; cfm->status = status; // Send value to peer device. ke_msg_send(cfm); } return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the attribute info request message. * * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_att_info_req_ind_handler(ke_msg_id_t const msgid, struct gattc_att_info_req_ind *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { if(ke_state_get(dest_id) == CSCPS_IDLE) { // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); uint8_t att_idx = CSCPS_IDX(param->handle); struct gattc_att_info_cfm * cfm; //Send write response cfm = KE_MSG_ALLOC(GATTC_ATT_INFO_CFM, src_id, dest_id, gattc_att_info_cfm); cfm->handle = param->handle; // check if it's a client configuration char if((att_idx == CSCS_IDX_CSC_MEAS_NTF_CFG) || (att_idx == CSCS_IDX_SC_CTNL_PT_NTF_CFG)) { // CCC attribute length = 2 cfm->length = 2; cfm->status = GAP_ERR_NO_ERROR; } else if (att_idx == CSCS_IDX_SC_CTNL_PT_VAL) { // force length to zero to reject any write starting from something != 0 cfm->length = 0; cfm->status = GAP_ERR_NO_ERROR; } // not expected request else { cfm->length = 0; cfm->status = ATT_ERR_WRITE_NOT_PERMITTED; } ke_msg_send(cfm); } return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref CSCPS_NTF_CSC_MEAS_REQ message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscps_ntf_csc_meas_req_handler(ke_msg_id_t const msgid, struct cscps_ntf_csc_meas_req *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Message status uint8_t msg_status = KE_MSG_CONSUMED; // State shall be Connected or Busy if (ke_state_get(dest_id) == CSCPS_IDLE) { // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); // allocate and prepare data to notify cscps_env->ntf = (struct cscps_ntf*) ke_malloc(sizeof(struct cscps_ntf), KE_MEM_KE_MSG); // pack measured value in database cscps_env->ntf->length = CSCP_CSC_MEAS_MIN_LEN; // Check the provided flags value if (!CSCPS_IS_FEATURE_SUPPORTED(cscps_env->prfl_cfg, CSCP_FEAT_WHEEL_REV_DATA_SUPP) && CSCPS_IS_PRESENT(param->flags, CSCP_MEAS_WHEEL_REV_DATA_PRESENT)) { // Force Wheel Revolution Data to No (Not supported) param->flags &= ~CSCP_MEAS_WHEEL_REV_DATA_PRESENT; } if (!CSCPS_IS_FEATURE_SUPPORTED(cscps_env->prfl_cfg, CSCP_FEAT_CRANK_REV_DATA_SUPP) && CSCPS_IS_PRESENT(param->flags, CSCP_MEAS_CRANK_REV_DATA_PRESENT)) { // Force Crank Revolution Data Present to No (Not supported) param->flags &= ~CSCP_MEAS_CRANK_REV_DATA_PRESENT; } // Force the unused bits of the flag value to 0 cscps_env->ntf->value[0] = param->flags & CSCP_MEAS_ALL_PRESENT; // Cumulative Wheel Resolutions // Last Wheel Event Time if (CSCPS_IS_PRESENT(param->flags, CSCP_MEAS_WHEEL_REV_DATA_PRESENT)) { // Update the cumulative wheel revolutions value stored in the environment if (param->wheel_rev < 0) { // The value shall not decrement below zero if (co_abs(param->wheel_rev) > cscps_env->tot_wheel_rev) { cscps_env->tot_wheel_rev = 0; } else { cscps_env->tot_wheel_rev += param->wheel_rev; } } else { cscps_env->tot_wheel_rev += param->wheel_rev; } // Cumulative Wheel Resolutions co_write32p(&cscps_env->ntf->value[cscps_env->ntf->length], cscps_env->tot_wheel_rev); cscps_env->ntf->length += 4; // Last Wheel Event Time co_write16p(&cscps_env->ntf->value[cscps_env->ntf->length], param->last_wheel_evt_time); cscps_env->ntf->length += 2; } // Cumulative Crank Revolutions // Last Crank Event Time if (CSCPS_IS_PRESENT(param->flags, CSCP_MEAS_CRANK_REV_DATA_PRESENT)) { // Cumulative Crank Revolutions co_write32p(&cscps_env->ntf->value[cscps_env->ntf->length], param->cumul_crank_rev); cscps_env->ntf->length += 2; // Last Crank Event Time co_write16p(&cscps_env->ntf->value[cscps_env->ntf->length], param->last_crank_evt_time); cscps_env->ntf->length += 2; } // Configure the environment cscps_env->operation = CSCPS_SEND_CSC_MEAS_OP_CODE; cscps_env->ntf->cursor = 0; // Go to busy state ke_state_set(dest_id, CSCPS_BUSY); // start operation execution cscps_exe_operation(); } else { // Save it for later msg_status = KE_MSG_SAVED; } return (int)msg_status; } /** **************************************************************************************** * @brief Handles reception of the @ref CSCPS_SC_CTNL_PT_CFM message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cscps_sc_ctnl_pt_cfm_handler(ke_msg_id_t const msgid, struct cscps_sc_ctnl_pt_cfm *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); uint8_t conidx = KE_IDX_GET(src_id); // Status uint8_t status = PRF_ERR_REQ_DISALLOWED; if (ke_state_get(dest_id) == CSCPS_BUSY) { do { // check if op code valid if((param->op_code < CSCPS_CTNL_PT_CUMUL_VAL_OP_CODE) || (param->op_code > CSCPS_CTNL_ERR_IND_OP_CODE)) { //Wrong op code status = PRF_ERR_INVALID_PARAM; break; } // Check the current operation if ((cscps_env->operation < CSCPS_CTNL_PT_CUMUL_VAL_OP_CODE) || (param->op_code != cscps_env->operation)) { // The confirmation has been sent without request indication, ignore status = PRF_ERR_REQ_DISALLOWED; break; } // The CP Control Point Characteristic must be supported if we are here if (CSCPS_IS_FEATURE_SUPPORTED(cscps_env->prfl_cfg, CSCPS_SC_CTNL_PT_MASK)) { // Allocate the GATT notification message struct gattc_send_evt_cmd *ctl_pt_rsp = KE_MSG_ALLOC_DYN(GATTC_SEND_EVT_CMD, KE_BUILD_ID(TASK_GATTC, param->conidx), dest_id, gattc_send_evt_cmd, CSCP_SC_CNTL_PT_RSP_MAX_LEN); // Fill in the parameter structure ctl_pt_rsp->operation = GATTC_INDICATE; ctl_pt_rsp->handle = CSCPS_HANDLE(CSCS_IDX_SC_CTNL_PT_VAL); // Pack Control Point confirmation ctl_pt_rsp->length = CSCP_SC_CNTL_PT_RSP_MIN_LEN; // Set the operation code (Response Code) ctl_pt_rsp->value[0] = CSCP_CTNL_PT_RSP_CODE; // Set the response value ctl_pt_rsp->value[2] = (param->status > CSCP_CTNL_PT_RESP_FAILED) ? CSCP_CTNL_PT_RESP_FAILED : param->status; switch (cscps_env->operation) { // Set cumulative value case (CSCPS_CTNL_PT_CUMUL_VAL_OP_CODE): { // Set the request operation code ctl_pt_rsp->value[1] = CSCP_CTNL_PT_OP_SET_CUMUL_VAL; // Store the new value in the environment cscps_env->tot_wheel_rev = param->value.cumul_wheel_rev; status = GAP_ERR_NO_ERROR; } break; // Update Sensor Location case (CSCPS_CTNL_PT_UPD_LOC_OP_CODE): { // Set the request operation code ctl_pt_rsp->value[1] = CSCP_CTNL_PT_OP_UPD_LOC; if (param->status == CSCP_CTNL_PT_RESP_SUCCESS) { // The CP Control Point Characteristic must be supported if we are here if (CSCPS_IS_FEATURE_SUPPORTED(cscps_env->prfl_cfg, CSCPS_SENSOR_LOC_MASK)) { cscps_env->sensor_loc = param->value.sensor_loc; status = GAP_ERR_NO_ERROR; } } } break; case (CSCPS_CTNL_PT_SUPP_LOC_OP_CODE): { // Set the request operation code ctl_pt_rsp->value[1] = CSCP_CTNL_PT_OP_REQ_SUPP_LOC; if (param->status == CSCP_CTNL_PT_RESP_SUCCESS) { // Counter uint8_t counter; // Set the list of supported location for (counter = 0; counter < CSCP_LOC_MAX; counter++) { if (((param->value.supp_sensor_loc >> counter) & 0x0001) == 0x0001) { ctl_pt_rsp->value[ctl_pt_rsp->length] = counter; ctl_pt_rsp->length++; } } status = GAP_ERR_NO_ERROR; } } break; default: { ASSERT_ERR(0); } break; } // Send the event ke_msg_send(ctl_pt_rsp); } } while (0); if (status != GAP_ERR_NO_ERROR) { // Inform the application that a procedure has been completed cscps_send_cmp_evt(conidx, prf_src_task_get(&cscps_env->prf_env, conidx), prf_dst_task_get(&cscps_env->prf_env, conidx), cscps_env->operation, param->status); } } return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_WRITE_REQ_IND message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_write_req_ind_handler(ke_msg_id_t const msgid, struct gattc_write_req_ind const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); uint8_t conidx = KE_IDX_GET(src_id); // Message status uint8_t msg_status = KE_MSG_CONSUMED; // Check the connection handle if (cscps_env != NULL) { // CSC Measurement Characteristic, Client Characteristic Configuration Descriptor if (param->handle == (CSCPS_HANDLE(CSCS_IDX_CSC_MEAS_NTF_CFG))) { uint16_t ntf_cfg; // Status uint8_t status = PRF_ERR_INVALID_PARAM; // Get the value co_write16p(&ntf_cfg, param->value[0]); // Check if the value is correct if (ntf_cfg <= PRF_CLI_START_NTF) { status = GAP_ERR_NO_ERROR; // Save the new configuration in the environment if (ntf_cfg == PRF_CLI_STOP_NTFIND) { CSCPS_DISABLE_NTFIND(conidx, CSCP_PRF_CFG_FLAG_CSC_MEAS_NTF); } else // ntf_cfg == PRF_CLI_START_NTF { CSCPS_ENABLE_NTFIND(conidx, CSCP_PRF_CFG_FLAG_CSC_MEAS_NTF); } // Inform the HL about the new configuration struct cscps_cfg_ntfind_ind *ind = KE_MSG_ALLOC(CSCPS_CFG_NTFIND_IND, prf_dst_task_get(&cscps_env->prf_env, conidx), prf_src_task_get(&cscps_env->prf_env, conidx), cscps_cfg_ntfind_ind); ind->char_code = CSCP_CSCS_CSC_MEAS_CHAR; ind->ntf_cfg = ntf_cfg; ke_msg_send(ind); // Enable Bonded Data CSCPS_ENABLE_NTFIND(conidx, CSCP_PRF_CFG_PERFORMED_OK); } // else status is PRF_ERR_INVALID_PARAM // Send the write response to the peer device struct gattc_write_cfm *cfm = KE_MSG_ALLOC( GATTC_WRITE_CFM, src_id, dest_id, gattc_write_cfm); cfm->handle = param->handle; cfm->status = status; ke_msg_send(cfm); } else // Should be the SC Control Point Characteristic { if (CSCPS_IS_FEATURE_SUPPORTED(cscps_env->prfl_cfg, CSCPS_SC_CTNL_PT_MASK)) { // SC Control Point, Client Characteristic Configuration Descriptor if (param->handle == (CSCPS_HANDLE(CSCS_IDX_SC_CTNL_PT_NTF_CFG))) { uint16_t ntf_cfg; // Status uint8_t status = PRF_ERR_INVALID_PARAM; // Get the value co_write16p(&ntf_cfg, param->value[0]); // Check if the value is correct if ((ntf_cfg == PRF_CLI_STOP_NTFIND) || (ntf_cfg == PRF_CLI_START_IND)) { status = GAP_ERR_NO_ERROR; // Save the new configuration in the environment if (ntf_cfg == PRF_CLI_STOP_NTFIND) { CSCPS_DISABLE_NTFIND(conidx, CSCP_PRF_CFG_FLAG_SC_CTNL_PT_IND); } else // ntf_cfg == PRF_CLI_START_IND { CSCPS_ENABLE_NTFIND(conidx, CSCP_PRF_CFG_FLAG_SC_CTNL_PT_IND); } // Inform the HL about the new configuration struct cscps_cfg_ntfind_ind *ind = KE_MSG_ALLOC(CSCPS_CFG_NTFIND_IND, prf_dst_task_get(&cscps_env->prf_env, conidx), prf_src_task_get(&cscps_env->prf_env, conidx), cscps_cfg_ntfind_ind); ind->char_code = CSCP_CSCS_SC_CTNL_PT_CHAR; ind->ntf_cfg = ntf_cfg; ke_msg_send(ind); // Enable Bonded Data CSCPS_ENABLE_NTFIND(conidx, CSCP_PRF_CFG_PERFORMED_OK); } // else status is PRF_ERR_INVALID_PARAM // Send the write response to the peer device struct gattc_write_cfm *cfm = KE_MSG_ALLOC( GATTC_WRITE_CFM, src_id, dest_id, gattc_write_cfm); cfm->handle = param->handle; cfm->status = status; ke_msg_send(cfm); } // SC Control Point Characteristic else if (param->handle == (CSCPS_HANDLE(CSCS_IDX_SC_CTNL_PT_VAL))) { // Write Response Status uint8_t wr_status = ATT_ERR_NO_ERROR; // Indication Status uint8_t ind_status = CSCP_CTNL_PT_RESP_NOT_SUPP; do { // Check if sending of indications has been enabled if (!CSCPS_IS_NTFIND_ENABLED(conidx, CSCP_PRF_CFG_FLAG_SC_CTNL_PT_IND)) { // CCC improperly configured wr_status = CSCP_ERROR_CCC_INVALID_PARAM; ind_status = CSCP_CTNL_PT_RESP_FAILED; break; } if (cscps_env->operation >= CSCPS_CTNL_PT_CUMUL_VAL_OP_CODE) { // A procedure is already in progress wr_status = CSCP_ERROR_PROC_IN_PROGRESS; ind_status = CSCP_CTNL_PT_RESP_FAILED; break; } if (cscps_env->operation == CSCPS_SEND_CSC_MEAS_OP_CODE) { // Keep the message until the end of the current procedure msg_status = KE_MSG_NO_FREE; break; } // Allocate a request indication message for the application struct cscps_sc_ctnl_pt_req_ind *req_ind = KE_MSG_ALLOC(CSCPS_SC_CTNL_PT_REQ_IND, prf_dst_task_get(&cscps_env->prf_env, conidx), prf_src_task_get(&cscps_env->prf_env, conidx), cscps_sc_ctnl_pt_req_ind); // Operation Code req_ind->op_code = param->value[0]; // Connection index req_ind->conidx = conidx; // Operation Code switch(param->value[0]) { // Set Cumulative value case (CSCP_CTNL_PT_OP_SET_CUMUL_VAL): { // Check if the Wheel Revolution Data feature is supported if (CSCPS_IS_FEATURE_SUPPORTED(cscps_env->features, CSCP_FEAT_WHEEL_REV_DATA_SUPP)) { // The request can be handled ind_status = CSCP_CTNL_PT_RESP_SUCCESS; cscps_env->operation = CSCPS_CTNL_PT_CUMUL_VAL_OP_CODE; // Cumulative value req_ind->value.cumul_value = co_read32p(¶m->value[1]); } } break; // Update sensor location case (CSCP_CTNL_PT_OP_UPD_LOC): { // Check if the Multiple Sensor Location feature is supported if (CSCPS_IS_FEATURE_SUPPORTED(cscps_env->features, CSCP_FEAT_MULT_SENSOR_LOC_SUPP)) { // Check the sensor location value if (param->value[1] < CSCP_LOC_MAX) { // The request can be handled ind_status = CSCP_CTNL_PT_RESP_SUCCESS; cscps_env->operation = CSCPS_CTNL_PT_UPD_LOC_OP_CODE; // Sensor Location req_ind->value.sensor_loc = param->value[1]; } else { // The request can be handled ind_status = CSCP_CTNL_PT_RESP_INV_PARAM; } } } break; // Request supported sensor locations case (CSCP_CTNL_PT_OP_REQ_SUPP_LOC): { // Check if the Multiple Sensor Location feature is supported if (CSCPS_IS_FEATURE_SUPPORTED(cscps_env->features, CSCP_FEAT_MULT_SENSOR_LOC_SUPP)) { // The request can be handled ind_status = CSCP_CTNL_PT_RESP_SUCCESS; cscps_env->operation = CSCPS_CTNL_PT_SUPP_LOC_OP_CODE; } } break; default: { // Operation Code is invalid, status is already CSCP_CTNL_PT_RESP_NOT_SUPP } break; } // If no error raised, inform the application about the request if (ind_status == CSCP_CTNL_PT_RESP_SUCCESS) { // Send the request indication to the application ke_msg_send(req_ind); // Go to the Busy status ke_state_set(dest_id, CSCPS_BUSY); // Align error code wr_status = GAP_ERR_NO_ERROR; } else { // Free the allocated message ke_msg_free(ke_param2msg(req_ind)); } } while (0); // Send the write response to the peer device struct gattc_write_cfm *cfm = KE_MSG_ALLOC( GATTC_WRITE_CFM, src_id, dest_id, gattc_write_cfm); cfm->handle = param->handle; cfm->status = wr_status; ke_msg_send(cfm); // If error raised in control point, inform the peer if ((ind_status != CSCP_CTNL_PT_RESP_SUCCESS) && (param->handle == (CSCPS_HANDLE(CSCS_IDX_SC_CTNL_PT_VAL)))) { cscps_send_rsp_ind(conidx, param->value[0], ind_status); } } } else { ASSERT_ERR(0); } } } // else drop the message return (int)msg_status; } /** **************************************************************************************** * @brief Handles @ref GATT_NOTIFY_CMP_EVT message meaning that a notification or an indication * has been correctly sent to peer device (but not confirmed by peer device). * * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_cmp_evt_handler(ke_msg_id_t const msgid, struct gattc_cmp_evt const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t conidx = KE_IDX_GET(src_id); // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); // Check if a connection exists if (ke_state_get(dest_id) == CSCPS_BUSY) { switch (param->operation) { case (GATTC_NOTIFY): { ASSERT_ERR(cscps_env->operation == CSCPS_SEND_CSC_MEAS_OP_CODE); // continuer operation execution cscps_exe_operation(); } break; case (GATTC_INDICATE): { ASSERT_ERR(cscps_env->operation >= CSCPS_CTNL_PT_CUMUL_VAL_OP_CODE); // Inform the application that a procedure has been completed cscps_send_cmp_evt(conidx, prf_src_task_get(&cscps_env->prf_env, conidx), prf_dst_task_get(&cscps_env->prf_env, conidx), cscps_env->operation, param->status); // else ignore the message } break; default: { ASSERT_ERR(0); } break; } } return (KE_MSG_CONSUMED); } /* * GLOBAL VARIABLE DEFINITIONS **************************************************************************************** */ /// Specifies the default message handlers KE_MSG_HANDLER_TAB(cscps) { {CSCPS_ENABLE_REQ, (ke_msg_func_t) cscps_enable_req_handler}, {GATTC_READ_REQ_IND, (ke_msg_func_t) gattc_read_req_ind_handler}, {GATTC_ATT_INFO_REQ_IND, (ke_msg_func_t) gattc_att_info_req_ind_handler}, {CSCPS_NTF_CSC_MEAS_REQ, (ke_msg_func_t) cscps_ntf_csc_meas_req_handler}, {CSCPS_SC_CTNL_PT_CFM, (ke_msg_func_t) cscps_sc_ctnl_pt_cfm_handler}, {GATTC_WRITE_REQ_IND, (ke_msg_func_t) gattc_write_req_ind_handler}, {GATTC_CMP_EVT, (ke_msg_func_t) gattc_cmp_evt_handler}, }; void cscps_task_init(struct ke_task_desc *task_desc) { // Get the address of the environment struct cscps_env_tag *cscps_env = PRF_ENV_GET(CSCPS, cscps); task_desc->msg_handler_tab = cscps_msg_handler_tab; task_desc->msg_cnt = ARRAY_LEN(cscps_msg_handler_tab); task_desc->state = cscps_env->state; task_desc->idx_max = CSCPS_IDX_MAX; } #endif //(BLE_CSC_SENSOR) /// @} CSCPSTASK