#include #include #include "stdint.h" #include "cmsis_os.h" #include "dbglog.h" #include "umm_malloc.h" /* Use the default DBGLOG_LEVEL and DBGLOG_FUNCTION */ unsigned char umm_heap_array[UMM_MALLOC_CFG_HEAP_SIZE]; /* ------------------------------------------------------------------------- */ UMM_H_ATTPACKPRE typedef struct umm_ptr_t { unsigned short int next; unsigned short int prev; } UMM_H_ATTPACKSUF umm_ptr; UMM_H_ATTPACKPRE typedef struct umm_block_t { union { umm_ptr used; } header; union { umm_ptr free; unsigned char data[4]; } body; } UMM_H_ATTPACKSUF umm_block; #define UMM_FREELIST_MASK (0x8000) #define UMM_BLOCKNO_MASK (0x7FFF) /* ------------------------------------------------------------------------- */ umm_block *umm_heap = NULL; unsigned short int umm_numblocks = 0; #define UMM_NUMBLOCKS (umm_numblocks) /* ------------------------------------------------------------------------ */ #define UMM_BLOCK(b) (umm_heap[b]) #define UMM_NBLOCK(b) (UMM_BLOCK(b).header.used.next) #define UMM_PBLOCK(b) (UMM_BLOCK(b).header.used.prev) #define UMM_NFREE(b) (UMM_BLOCK(b).body.free.next) #define UMM_PFREE(b) (UMM_BLOCK(b).body.free.prev) #define UMM_DATA(b) (UMM_BLOCK(b).body.data) static osMutexId umm_clock_mutex_id = NULL; osMutexDef(umm_clock_mutex); /* ------------------------------------------------------------------------ */ void LOCK_UMM_CLOCK(void) { if(osMutexWait(umm_clock_mutex_id, osWaitForever) != osOK) DBGLOG_INFO(1,"%s Error", __func__); } void UNLOCK_UMM_CLOCK(void) { if(osMutexRelease(umm_clock_mutex_id) != osOK) DBGLOG_INFO(1,"%s Error", __func__); } /* ------------------------------------------------------------------------ */ static void trace_umm_blocks_info( void ) { unsigned short int blockSize = 0; unsigned short int cf = 0; cf = UMM_NFREE(0); blockSize = blockSize; DBGLOG_INFO(1, "fisrt free block %d", cf); while( cf ) { blockSize = (UMM_NBLOCK(cf) & UMM_BLOCKNO_MASK) - cf; DBGLOG_INFO(2, "Looking at block %6i size %6i\n", cf, blockSize ); cf = UMM_NFREE(cf); } } /* ------------------------------------------------------------------------ */ static unsigned short int umm_blocks( size_t size ) { /* * The calculation of the block size is not too difficult, but there are * a few little things that we need to be mindful of. * * When a block removed from the free list, the space used by the free * pointers is available for data. That's what the first calculation * of size is doing. */ if( size <= (sizeof(((umm_block *)0)->body)) ) return( 1 ); /* * If it's for more than that, then we need to figure out the number of * additional whole blocks the size of an umm_block are required. */ size -= ( 1 + (sizeof(((umm_block *)0)->body)) ); return( 2 + size/(sizeof(umm_block)) ); } /* ------------------------------------------------------------------------ */ /* * Split the block `c` into two blocks: `c` and `c + blocks`. * * - `new_freemask` should be `0` if `c + blocks` used, or `UMM_FREELIST_MASK` * otherwise. * * Note that free pointers are NOT modified by this function. */ static void umm_split_block( unsigned short int c, unsigned short int blocks, unsigned short int new_freemask ) { UMM_NBLOCK(c+blocks) = (UMM_NBLOCK(c) & UMM_BLOCKNO_MASK) | new_freemask; UMM_PBLOCK(c+blocks) = c; UMM_PBLOCK(UMM_NBLOCK(c) & UMM_BLOCKNO_MASK) = (c+blocks); UMM_NBLOCK(c) = (c+blocks); } /* ------------------------------------------------------------------------ */ static void umm_disconnect_from_free_list( unsigned short int c ) { /* Disconnect this block from the FREE list */ UMM_NFREE(UMM_PFREE(c)) = UMM_NFREE(c); UMM_PFREE(UMM_NFREE(c)) = UMM_PFREE(c); /* And clear the free block indicator */ UMM_NBLOCK(c) &= (~UMM_FREELIST_MASK); } /* ------------------------------------------------------------------------ * The umm_assimilate_up() function assumes that UMM_NBLOCK(c) does NOT * have the UMM_FREELIST_MASK bit set! */ static void umm_assimilate_up( unsigned short int c ) { if( UMM_NBLOCK(UMM_NBLOCK(c)) & UMM_FREELIST_MASK ) { /* * The next block is a free block, so assimilate up and remove it from * the free list */ DBGLOG_DEBUG(2, "%d Assimilate up to next block %d, which is FREE\n", c, UMM_NBLOCK(c)); /* Disconnect the next block from the FREE list */ umm_disconnect_from_free_list( UMM_NBLOCK(c) ); /* Assimilate the next block with this one */ UMM_PBLOCK(UMM_NBLOCK(UMM_NBLOCK(c)) & UMM_BLOCKNO_MASK) = c; UMM_NBLOCK(c) = UMM_NBLOCK(UMM_NBLOCK(c)) & UMM_BLOCKNO_MASK; } } /* ------------------------------------------------------------------------ * The umm_assimilate_down() function assumes that UMM_NBLOCK(c) does NOT * have the UMM_FREELIST_MASK bit set! */ static unsigned short int umm_assimilate_down( unsigned short int c, unsigned short int freemask ) { UMM_NBLOCK(UMM_PBLOCK(c)) = UMM_NBLOCK(c) | freemask; UMM_PBLOCK(UMM_NBLOCK(c)) = UMM_PBLOCK(c); return( UMM_PBLOCK(c) ); } /* ------------------------------------------------------------------------- */ void umm_init( void ) { /* init heap pointer and size, and memset it to 0 */ umm_heap = (umm_block *)UMM_MALLOC_CFG_HEAP_ADDR; umm_numblocks = (UMM_MALLOC_CFG_HEAP_SIZE / sizeof(umm_block)); DBGLOG_DEBUG(3, "%s umm_heap %p blocks number %d", __func__, umm_heap, umm_numblocks); if (umm_clock_mutex_id == NULL) { umm_clock_mutex_id = osMutexCreate((osMutex(umm_clock_mutex))); } memset(umm_heap, 0x00, UMM_MALLOC_CFG_HEAP_SIZE); /* setup initial blank heap structure */ { /* index of the 0th `umm_block` */ const unsigned short int block_0th = 0; /* index of the 1st `umm_block` */ const unsigned short int block_1th = 1; /* index of the latest `umm_block` */ const unsigned short int block_last = UMM_NUMBLOCKS - 1; /* setup the 0th `umm_block`, which just points to the 1st */ UMM_NBLOCK(block_0th) = block_1th; UMM_NFREE(block_0th) = block_1th; UMM_PFREE(block_0th) = block_1th; /* * Now, we need to set the whole heap space as a huge free block. We should * not touch the 0th `umm_block`, since it's special: the 0th `umm_block` * is the head of the free block list. It's a part of the heap invariant. * * See the detailed explanation at the beginning of the file. */ /* * 1th `umm_block` has pointers: * * - next `umm_block`: the latest one * - prev `umm_block`: the 0th * * Plus, it's a free `umm_block`, so we need to apply `UMM_FREELIST_MASK` * * And it's the last free block, so the next free block is 0. */ UMM_NBLOCK(block_1th) = block_last | UMM_FREELIST_MASK; UMM_NFREE(block_1th) = 0; UMM_PBLOCK(block_1th) = block_0th; UMM_PFREE(block_1th) = block_0th; /* * latest `umm_block` has pointers: * * - next `umm_block`: 0 (meaning, there are no more `umm_blocks`) * - prev `umm_block`: the 1st * * It's not a free block, so we don't touch NFREE / PFREE at all. */ UMM_NBLOCK(block_last) = 0; UMM_PBLOCK(block_last) = block_1th; } } /* ------------------------------------------------------------------------ */ void umm_free( void *ptr ) { unsigned short int c; /* If we're being asked to free a NULL pointer, well that's just silly! */ if( (void *)0 == ptr ) { DBGLOG_DEBUG(0, "free a null pointer -> do nothing\n" ); return; } /* * FIXME: At some point it might be a good idea to add a check to make sure * that the pointer we're being asked to free up is actually within * the umm_heap! * * NOTE: See the new umm_info() function that you can use to see if a ptr is * on the free list! */ /* Protect the critical section... */ UMM_CRITICAL_ENTRY(); /* Figure out which block we're in. Note the use of truncated division... */ c = (((char *)ptr)-(char *)(&(umm_heap[0])))/sizeof(umm_block); DBGLOG_DEBUG(2, "Freeing block %6i %p\n", c, ptr); /* Now let's assimilate this block with the next one if possible. */ umm_assimilate_up( c ); /* Then assimilate with the previous block if possible */ if( UMM_NBLOCK(UMM_PBLOCK(c)) & UMM_FREELIST_MASK ) { DBGLOG_DEBUG(1, "Assimilate down to next block %d, which is FREE\n", UMM_PBLOCK(c)); c = umm_assimilate_down(c, UMM_FREELIST_MASK); } else { /* * The previous block is not a free block, so add this one to the head * of the free list */ DBGLOG_DEBUG(0, "Just add to head of free list\n" ); UMM_PFREE(UMM_NFREE(0)) = c; UMM_NFREE(c) = UMM_NFREE(0); UMM_PFREE(c) = 0; UMM_NFREE(0) = c; UMM_NBLOCK(c) |= UMM_FREELIST_MASK; } /* Release the critical section... */ UMM_CRITICAL_EXIT(); } /* ------------------------------------------------------------------------ */ void *umm_malloc( size_t size ) { unsigned short int blocks; unsigned short int blockSize = 0; unsigned short int bestSize; unsigned short int bestBlock; unsigned short int cf; if (umm_heap == NULL) { umm_init(); } /* * the very first thing we do is figure out if we're being asked to allocate * a size of 0 - and if we are we'll simply return a null pointer. if not * then reduce the size by 1 byte so that the subsequent calculations on * the number of blocks to allocate are easier... */ if( 0 == size ) { DBGLOG_DEBUG(0, "malloc a block of 0 bytes -> do nothing\n" ); return( (void *)NULL ); } /* Protect the critical section... */ UMM_CRITICAL_ENTRY(); blocks = umm_blocks( size ); /* * Now we can scan through the free list until we find a space that's big * enough to hold the number of blocks we need. * * This part may be customized to be a best-fit, worst-fit, or first-fit * algorithm */ cf = UMM_NFREE(0); bestBlock = UMM_NFREE(0); bestSize = 0x7FFF; while( cf ) { blockSize = (UMM_NBLOCK(cf) & UMM_BLOCKNO_MASK) - cf; DBGLOG_DEBUG(2, "Looking at block %6i size %6i\n", cf, blockSize ); #if defined UMM_BEST_FIT if( (blockSize >= blocks) && (blockSize < bestSize) ) { bestBlock = cf; bestSize = blockSize; } #elif defined UMM_FIRST_FIT /* This is the first block that fits! */ if( (blockSize >= blocks) ) break; #else # error "No UMM_*_FIT is defined - check umm_malloc_cfg.h" #endif cf = UMM_NFREE(cf); } if( 0x7FFF != bestSize ) { cf = bestBlock; blockSize = bestSize; } if( UMM_NBLOCK(cf) & UMM_BLOCKNO_MASK && blockSize >= blocks ) { /* * This is an existing block in the memory heap, we just need to split off * what we need, unlink it from the free list and mark it as in use, and * link the rest of the block back into the freelist as if it was a new * block on the free list... */ if( blockSize == blocks ) { /* It's an exact fit and we don't neet to split off a block. */ DBGLOG_DEBUG(2, "Allocating %6i blocks starting at %6i - exact\n", blocks, cf ); /* Disconnect this block from the FREE list */ umm_disconnect_from_free_list( cf ); } else { /* It's not an exact fit and we need to split off a block. */ DBGLOG_DEBUG(2, "Allocating %6i blocks starting at %6i - existing\n", blocks, cf ); /* * split current free block `cf` into two blocks. The first one will be * returned to user, so it's not free, and the second one will be free. */ umm_split_block( cf, blocks, UMM_FREELIST_MASK /*new block is free*/ ); /* * `umm_split_block()` does not update the free pointers (it affects * only free flags), but effectively we've just moved beginning of the * free block from `cf` to `cf + blocks`. So we have to adjust pointers * to and from adjacent free blocks. */ /* previous free block */ UMM_NFREE( UMM_PFREE(cf) ) = cf + blocks; UMM_PFREE( cf + blocks ) = UMM_PFREE(cf); /* next free block */ UMM_PFREE( UMM_NFREE(cf) ) = cf + blocks; UMM_NFREE( cf + blocks ) = UMM_NFREE(cf); } } else { /* Out of memory */ DBGLOG_DEBUG(1, "Can't allocate %5i blocks\n", blocks ); trace_umm_blocks_info(); /* Release the critical section... */ UMM_CRITICAL_EXIT(); return( (void *)NULL ); } /* Release the critical section... */ UMM_CRITICAL_EXIT(); return( (void *)&UMM_DATA(cf) ); } /* ------------------------------------------------------------------------ */ void *umm_realloc( void *ptr, size_t size ) { unsigned short int blocks; unsigned short int blockSize; unsigned short int prevBlockSize = 0; unsigned short int nextBlockSize = 0; unsigned short int c; size_t curSize; if (umm_heap == NULL) { umm_init(); } /* * This code looks after the case of a NULL value for ptr. The ANSI C * standard says that if ptr is NULL and size is non-zero, then we've * got to work the same a malloc(). If size is also 0, then our version * of malloc() returns a NULL pointer, which is OK as far as the ANSI C * standard is concerned. */ if( ((void *)NULL == ptr) ) { DBGLOG_DEBUG(0, "realloc the NULL pointer - call malloc()\n" ); return( umm_malloc(size) ); } /* * Now we're sure that we have a non_NULL ptr, but we're not sure what * we should do with it. If the size is 0, then the ANSI C standard says that * we should operate the same as free. */ if( 0 == size ) { DBGLOG_DEBUG(0, "realloc to 0 size, just free the block\n" ); umm_free( ptr ); return( (void *)NULL ); } /* * Otherwise we need to actually do a reallocation. A naiive approach * would be to malloc() a new block of the correct size, copy the old data * to the new block, and then free the old block. * * While this will work, we end up doing a lot of possibly unnecessary * copying. So first, let's figure out how many blocks we'll need. */ blocks = umm_blocks( size ); /* Figure out which block we're in. Note the use of truncated division... */ c = (((char *)ptr)-(char *)(&(umm_heap[0])))/sizeof(umm_block); /* Figure out how big this block is ... the free bit is not set :-) */ blockSize = (UMM_NBLOCK(c) - c); /* Figure out how many bytes are in this block */ curSize = (blockSize*sizeof(umm_block))-(sizeof(((umm_block *)0)->header)); /* Protect the critical section... */ UMM_CRITICAL_ENTRY(); /* Now figure out if the previous and/or next blocks are free as well as * their sizes - this will help us to minimize special code later when we * decide if it's possible to use the adjacent blocks. * * We set prevBlockSize and nextBlockSize to non-zero values ONLY if they * are free! */ if ((UMM_NBLOCK(UMM_NBLOCK(c)) & UMM_FREELIST_MASK)) { nextBlockSize = (UMM_NBLOCK(UMM_NBLOCK(c)) & UMM_BLOCKNO_MASK) - UMM_NBLOCK(c); } if ((UMM_NBLOCK(UMM_PBLOCK(c)) & UMM_FREELIST_MASK)) { prevBlockSize = (c - UMM_PBLOCK(c)); } DBGLOG_DEBUG(4, "realloc blocks %i blockSize %i nextBlockSize %i prevBlockSize %i\n", blocks, blockSize, nextBlockSize, prevBlockSize ); /* * Ok, now that we're here we know how many blocks we want and the current * blockSize. The prevBlockSize and nextBlockSize are set and we can figure * out the best strategy for the new allocation as follows: * * 1. If the new block is the same size or smaller than the current block do * nothing. * 2. If the next block is free and adding it to the current block gives us * enough memory, assimilate the next block. * 3. If the prev block is free and adding it to the current block gives us * enough memory, remove the previous block from the free list, assimilate * it, copy to the new block. * 4. If the prev and next blocks are free and adding them to the current * block gives us enough memory, assimilate the next block, remove the * previous block from the free list, assimilate it, copy to the new block. * 5. Otherwise try to allocate an entirely new block of memory. If the * allocation works free the old block and return the new pointer. If * the allocation fails, return NULL and leave the old block intact. * * All that's left to do is decide if the fit was exact or not. If the fit * was not exact, then split the memory block so that we use only the requested * number of blocks and add what's left to the free list. */ if (blockSize >= blocks) { DBGLOG_DEBUG(1, "realloc the same or smaller size block - %i, do nothing\n", blocks ); /* This space intentionally left blank */ } else if ((blockSize + nextBlockSize) >= blocks) { DBGLOG_DEBUG(1, "realloc using next block - %i\n", blocks ); umm_assimilate_up( c ); blockSize += nextBlockSize; } else if ((prevBlockSize + blockSize) >= blocks) { DBGLOG_DEBUG(1, "realloc using prev block - %i\n", blocks ); umm_disconnect_from_free_list( UMM_PBLOCK(c) ); c = umm_assimilate_down(c, 0); memmove( (void *)&UMM_DATA(c), ptr, curSize ); ptr = (void *)&UMM_DATA(c); blockSize += prevBlockSize; } else if ((prevBlockSize + blockSize + nextBlockSize) >= blocks) { DBGLOG_DEBUG(1, "realloc using prev and next block - %i\n", blocks ); umm_assimilate_up( c ); umm_disconnect_from_free_list( UMM_PBLOCK(c) ); c = umm_assimilate_down(c, 0); memmove( (void *)&UMM_DATA(c), ptr, curSize ); ptr = (void *)&UMM_DATA(c); blockSize += (prevBlockSize + nextBlockSize); } else { DBGLOG_DEBUG(1, "realloc a completely new block %i\n", blocks ); void *oldptr = ptr; if( (ptr = umm_malloc( size )) ) { DBGLOG_DEBUG(2, "realloc %i to a bigger block %i, copy, and free the old\n", blockSize, blocks ); memcpy( ptr, oldptr, curSize ); umm_free( oldptr ); } else { DBGLOG_DEBUG(2, "realloc %i to a bigger block %i failed - return NULL and leave the old block!\n", blockSize, blocks ); /* This space intentionally left blnk */ } blockSize = blocks; } /* Now all we need to do is figure out if the block fit exactly or if we * need to split and free ... */ if (blockSize > blocks ) { DBGLOG_DEBUG(2, "split and free %i blocks from %i\n", blocks, blockSize ); umm_split_block( c, blocks, 0 ); umm_free( (void *)&UMM_DATA(c+blocks) ); } /* Release the critical section... */ UMM_CRITICAL_EXIT(); return( ptr ); } /* ------------------------------------------------------------------------ */ void *umm_calloc( size_t num, size_t item_size ) { void *ret; ret = umm_malloc((size_t)(item_size * num)); if (ret) memset(ret, 0x00, (size_t)(item_size * num)); return ret; } /* ------------------------------------------------------------------------ */