/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_conv_partial_fast_q15.c * Description: Fast Q15 Partial convolution * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupFilters */ /** @addtogroup PartialConv @{ */ /** @brief Partial convolution of Q15 sequences (fast version). @param[in] pSrcA points to the first input sequence @param[in] srcALen length of the first input sequence @param[in] pSrcB points to the second input sequence @param[in] srcBLen length of the second input sequence @param[out] pDst points to the location where the output result is written @param[in] firstIndex is the first output sample to start with @param[in] numPoints is the number of output points to be computed @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_ARGUMENT_ERROR : requested subset is not in the range [0 srcALen+srcBLen-2] @remark Refer to \ref arm_conv_partial_q15() for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion. */ arm_status arm_conv_partial_fast_q15( const q15_t * pSrcA, uint32_t srcALen, const q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst, uint32_t firstIndex, uint32_t numPoints) { const q15_t *pIn1; /* InputA pointer */ const q15_t *pIn2; /* InputB pointer */ q15_t *pOut = pDst; /* Output pointer */ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ const q15_t *px; /* Intermediate inputA pointer */ const q15_t *py; /* Intermediate inputB pointer */ const q15_t *pSrc1, *pSrc2; /* Intermediate pointers */ q31_t x0, x1, x2, x3, c0; /* Temporary input variables */ uint32_t j, k, count, blkCnt, check; int32_t blockSize1, blockSize2, blockSize3; /* Loop counters */ arm_status status; /* Status of Partial convolution */ /* Check for range of output samples to be calculated */ if ((firstIndex + numPoints) > ((srcALen + (srcBLen - 1U)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* Conditions to check which loopCounter holds * the first and last indices of the output samples to be calculated. */ check = firstIndex + numPoints; blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0; blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3; blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex; blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1U)) ? blockSize1 : (int32_t) numPoints) : 0; blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) + (int32_t) firstIndex); blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ /* The function is internally * divided into three stages according to the number of multiplications that has to be * taken place between inputA samples and inputB samples. In the first stage of the * algorithm, the multiplications increase by one for every iteration. * In the second stage of the algorithm, srcBLen number of multiplications are done. * In the third stage of the algorithm, the multiplications decrease by one * for every iteration. */ /* Set the output pointer to point to the firstIndex * of the output sample to be calculated. */ pOut = pDst + firstIndex; /* -------------------------- * Initializations of stage1 * -------------------------*/ /* sum = x[0] * y[0] * sum = x[0] * y[1] + x[1] * y[0] * .... * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] */ /* In this stage the MAC operations are increased by 1 for every iteration. The count variable holds the number of MAC operations performed. Since the partial convolution starts from firstIndex Number of Macs to be performed is firstIndex + 1 */ count = 1U + firstIndex; /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc2 = pIn2 + firstIndex; py = pSrc2; /* ------------------------ * Stage1 process * ----------------------*/ /* For loop unrolling by 4, this stage is divided into two. */ /* First part of this stage computes the MAC operations less than 4 */ /* Second part of this stage computes the MAC operations greater than or equal to 4 */ /* The first part of the stage starts here */ while ((count < 4U) && (blockSize1 > 0)) { /* Accumulator is made zero for every iteration */ sum = 0; /* Loop over number of MAC operations between * inputA samples and inputB samples */ k = count; while (k > 0U) { /* Perform the multiply-accumulates */ sum = __SMLAD(*px++, *py--, sum); /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (sum >> 15); /* Update the inputA and inputB pointers for next MAC calculation */ py = ++pSrc2; px = pIn1; /* Increment MAC count */ count++; /* Decrement loop counter */ blockSize1--; } /* The second part of the stage starts here */ /* The internal loop, over count, is unrolled by 4 */ /* To, read the last two inputB samples using SIMD: * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */ py = py - 1; while (blockSize1 > 0) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. a second loop below computes MACs for the remaining 1 to 3 samples. */ while (k > 0U) { /* Perform the multiply-accumulate */ /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum); /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum); /* Decrement loop counter */ k--; } /* For the next MAC operations, the pointer py is used without SIMD So, py is incremented by 1 */ py = py + 1U; /* If the count is not a multiple of 4, compute any remaining MACs here. No loop unrolling is used. */ k = count % 0x4U; while (k > 0U) { /* Perform the multiply-accumulates */ sum = __SMLAD(*px++, *py--, sum); /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (sum >> 15); /* Update the inputA and inputB pointers for next MAC calculation */ py = ++pSrc2 - 1U; px = pIn1; /* Increment MAC count */ count++; /* Decrement loop counter */ blockSize1--; } /* -------------------------- * Initializations of stage2 * ------------------------*/ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] * .... * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] */ /* Working pointer of inputA */ if ((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) { pSrc1 = pIn1 + firstIndex - srcBLen + 1; } else { pSrc1 = pIn1; } px = pSrc1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); py = pSrc2; /* count is the index by which the pointer pIn1 to be incremented */ count = 0U; /* ------------------- * Stage2 process * ------------------*/ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. * So, to loop unroll over blockSize2, * srcBLen should be greater than or equal to 4 */ if (srcBLen >= 4U) { /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = ((uint32_t) blockSize2 >> 2U); while (blkCnt > 0U) { py = py - 1U; /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* read x[0], x[1] samples */ x0 = read_q15x2 ((q15_t *) px); /* read x[1], x[2] samples */ x1 = read_q15x2 ((q15_t *) px + 1); px += 2U; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ do { /* Read the last two inputB samples using SIMD: * y[srcBLen - 1] and y[srcBLen - 2] */ c0 = read_q15x2_da ((q15_t **) &py); /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ acc0 = __SMLADX(x0, c0, acc0); /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ acc1 = __SMLADX(x1, c0, acc1); /* Read x[2], x[3] */ x2 = read_q15x2 ((q15_t *) px); /* Read x[3], x[4] */ x3 = read_q15x2 ((q15_t *) px + 1); /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ acc2 = __SMLADX(x2, c0, acc2); /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ acc3 = __SMLADX(x3, c0, acc3); /* Read y[srcBLen - 3] and y[srcBLen - 4] */ c0 = read_q15x2_da ((q15_t **) &py); /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ acc0 = __SMLADX(x2, c0, acc0); /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ acc1 = __SMLADX(x3, c0, acc1); /* Read x[4], x[5] */ x0 = read_q15x2 ((q15_t *) px + 2); /* Read x[5], x[6] */ x1 = read_q15x2 ((q15_t *) px + 3); px += 4U; /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ acc2 = __SMLADX(x0, c0, acc2); /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ acc3 = __SMLADX(x1, c0, acc3); } while (--k); /* For the next MAC operations, SIMD is not used So, the 16 bit pointer if inputB, py is updated */ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. No loop unrolling is used. */ k = srcBLen % 0x4U; if (k == 1U) { /* Read y[srcBLen - 5] */ c0 = *(py + 1); #ifdef ARM_MATH_BIG_ENDIAN c0 = c0 << 16U; #else c0 = c0 & 0x0000FFFF; #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ /* Read x[7] */ x3 = read_q15x2 ((q15_t *) px); px++; /* Perform the multiply-accumulate */ acc0 = __SMLAD (x0, c0, acc0); acc1 = __SMLAD (x1, c0, acc1); acc2 = __SMLADX(x1, c0, acc2); acc3 = __SMLADX(x3, c0, acc3); } if (k == 2U) { /* Read y[srcBLen - 5], y[srcBLen - 6] */ c0 = read_q15x2 ((q15_t *) py); /* Read x[7], x[8] */ x3 = read_q15x2 ((q15_t *) px); /* Read x[9] */ x2 = read_q15x2 ((q15_t *) px + 1); px += 2U; /* Perform the multiply-accumulate */ acc0 = __SMLADX(x0, c0, acc0); acc1 = __SMLADX(x1, c0, acc1); acc2 = __SMLADX(x3, c0, acc2); acc3 = __SMLADX(x2, c0, acc3); } if (k == 3U) { /* Read y[srcBLen - 5], y[srcBLen - 6] */ c0 = read_q15x2 ((q15_t *) py); /* Read x[7], x[8] */ x3 = read_q15x2 ((q15_t *) px); /* Read x[9] */ x2 = read_q15x2 ((q15_t *) px + 1); /* Perform the multiply-accumulate */ acc0 = __SMLADX(x0, c0, acc0); acc1 = __SMLADX(x1, c0, acc1); acc2 = __SMLADX(x3, c0, acc2); acc3 = __SMLADX(x2, c0, acc3); c0 = *(py-1); #ifdef ARM_MATH_BIG_ENDIAN c0 = c0 << 16U; #else c0 = c0 & 0x0000FFFF; #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ /* Read x[10] */ x3 = read_q15x2 ((q15_t *) px + 2); px += 3U; /* Perform the multiply-accumulates */ acc0 = __SMLADX(x1, c0, acc0); acc1 = __SMLAD (x2, c0, acc1); acc2 = __SMLADX(x2, c0, acc2); acc3 = __SMLADX(x3, c0, acc3); } /* Store the results in the accumulators in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN write_q15x2_ia (&pOut, __PKHBT(acc0 >> 15, acc1 >> 15, 16)); write_q15x2_ia (&pOut, __PKHBT(acc2 >> 15, acc3 >> 15, 16)); #else write_q15x2_ia (&pOut, __PKHBT(acc1 >> 15, acc0 >> 15, 16)); write_q15x2_ia (&pOut, __PKHBT(acc3 >> 15, acc2 >> 15, 16)); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Increment the pointer pIn1 index, count by 4 */ count += 4U; /* Update the inputA and inputB pointers for next MAC calculation */ px = pSrc1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. No loop unrolling is used. */ blkCnt = (uint32_t) blockSize2 % 0x4U; while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. a second loop below computes MACs for the remaining 1 to 3 samples. */ while (k > 0U) { /* Perform the multiply-accumulates */ sum += ((q31_t) *px++ * *py--); sum += ((q31_t) *px++ * *py--); sum += ((q31_t) *px++ * *py--); sum += ((q31_t) *px++ * *py--); /* Decrement loop counter */ k--; } /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* Perform the multiply-accumulates */ sum += ((q31_t) *px++ * *py--); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (sum >> 15); /* Increment the pointer pIn1 index, count by 1 */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pSrc1 + count; py = pSrc2; /* Decrement loop counter */ blkCnt--; } } else { /* If the srcBLen is not a multiple of 4, * the blockSize2 loop cannot be unrolled by 4 */ blkCnt = (uint32_t) blockSize2; while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* srcBLen number of MACS should be performed */ k = srcBLen; while (k > 0U) { /* Perform the multiply-accumulate */ sum += ((q31_t) *px++ * *py--); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (sum >> 15); /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pSrc1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } } /* -------------------------- * Initializations of stage3 * -------------------------*/ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] * .... * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] * sum += x[srcALen-1] * y[srcBLen-1] */ /* In this stage the MAC operations are decreased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = srcBLen - 1U; /* Working pointer of inputA */ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1U); px = pSrc1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); pIn2 = pSrc2 - 1U; py = pIn2; /* ------------------- * Stage3 process * ------------------*/ /* For loop unrolling by 4, this stage is divided into two. */ /* First part of this stage computes the MAC operations greater than 4 */ /* Second part of this stage computes the MAC operations less than or equal to 4 */ /* The first part of the stage starts here */ j = count >> 2U; while ((j > 0U) && (blockSize3 > 0)) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while (k > 0U) { /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied * with y[srcBLen - 1], y[srcBLen - 2] respectively */ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum); /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied * with y[srcBLen - 3], y[srcBLen - 4] respectively */ sum = __SMLADX(read_q15x2_ia ((q15_t **) &px), read_q15x2_da ((q15_t **) &py), sum); /* Decrement loop counter */ k--; } /* For the next MAC operations, the pointer py is used without SIMD So, py is incremented by 1 */ py = py + 1U; /* If the count is not a multiple of 4, compute any remaining MACs here. No loop unrolling is used. */ k = count % 0x4U; while (k > 0U) { /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */ sum = __SMLAD(*px++, *py--, sum); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (sum >> 15); /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pIn2; /* Decrement the MAC count */ count--; /* Decrement the loop counter */ blockSize3--; j--; } /* The second part of the stage starts here */ /* SIMD is not used for the next MAC operations, * so pointer py is updated to read only one sample at a time */ py = py + 1U; while (blockSize3 > 0) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count; while (k > 0U) { /* Perform the multiply-accumulates */ /* sum += x[srcALen-1] * y[srcBLen-1] */ sum = __SMLAD(*px++, *py--, sum); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q15_t) (sum >> 15); /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pSrc2; /* Decrement the MAC count */ count--; /* Decrement the loop counter */ blockSize3--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** @} end of PartialConv group */