/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_biquad_cascade_df1_q31.c * Description: Processing function for the Q31 Biquad cascade filter * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupFilters */ /** @addtogroup BiquadCascadeDF1 @{ */ /** @brief Processing function for the Q31 Biquad cascade filter. @param[in] S points to an instance of the Q31 Biquad cascade structure @param[in] pSrc points to the block of input data @param[out] pDst points to the block of output data @param[in] blockSize number of samples to process @return none @par Scaling and Overflow Behavior The function is implemented using an internal 64-bit accumulator. The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. Thus, if the accumulator result overflows it wraps around rather than clip. In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25). After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by postShift bits and the result truncated to 1.31 format by discarding the low 32 bits. @remark Refer to \ref arm_biquad_cascade_df1_fast_q31() for a faster but less precise implementation of this filter. */ void arm_biquad_cascade_df1_q31( const arm_biquad_casd_df1_inst_q31 * S, const q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { const q31_t *pIn = pSrc; /* Source pointer */ q31_t *pOut = pDst; /* Destination pointer */ q31_t *pState = S->pState; /* pState pointer */ const q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q63_t acc; /* Accumulator */ q31_t b0, b1, b2, a1, a2; /* Filter coefficients */ q31_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */ q31_t Xn; /* Temporary input */ uint32_t uShift = ((uint32_t) S->postShift + 1U); uint32_t lShift = 32U - uShift; /* Shift to be applied to the output */ uint32_t sample, stage = S->numStages; /* Loop counters */ #if defined (ARM_MATH_LOOPUNROLL) q31_t acc_l, acc_h; /* temporary output variables */ #endif do { /* Reading the coefficients */ b0 = *pCoeffs++; b1 = *pCoeffs++; b2 = *pCoeffs++; a1 = *pCoeffs++; a2 = *pCoeffs++; /* Reading the pState values */ Xn1 = pState[0]; Xn2 = pState[1]; Yn1 = pState[2]; Yn2 = pState[3]; #if defined (ARM_MATH_LOOPUNROLL) /* Apply loop unrolling and compute 4 output values simultaneously. */ /* Variable acc hold output values that are being computed: * * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ /* Loop unrolling: Compute 4 outputs at a time */ sample = blockSize >> 2U; while (sample > 0U) { /* Read the first input */ Xn = *pIn++; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ acc = ((q63_t) b0 * Xn) + ((q63_t) b1 * Xn1) + ((q63_t) b2 * Xn2) + ((q63_t) a1 * Yn1) + ((q63_t) a2 * Yn2); /* The result is converted to 1.31 , Yn2 variable is reused */ acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */ /* Apply shift for lower part of acc and upper part of acc */ Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Store output in destination buffer. */ *pOut++ = Yn2; /* Read the second input */ Xn2 = *pIn++; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ acc = ((q63_t) b0 * Xn2) + ((q63_t) b1 * Xn) + ((q63_t) b2 * Xn1) + ((q63_t) a1 * Yn2) + ((q63_t) a2 * Yn1); /* The result is converted to 1.31, Yn1 variable is reused */ acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */ /* Apply shift for lower part of acc and upper part of acc */ Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Store output in destination buffer. */ *pOut++ = Yn1; /* Read the third input */ Xn1 = *pIn++; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ acc = ((q63_t) b0 * Xn1) + ((q63_t) b1 * Xn2) + ((q63_t) b2 * Xn) + ((q63_t) a1 * Yn1) + ((q63_t) a2 * Yn2); /* The result is converted to 1.31, Yn2 variable is reused */ acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */ /* Apply shift for lower part of acc and upper part of acc */ Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Store output in destination buffer. */ *pOut++ = Yn2; /* Read the forth input */ Xn = *pIn++; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ acc = ((q63_t) b0 * Xn) + ((q63_t) b1 * Xn1) + ((q63_t) b2 * Xn2) + ((q63_t) a1 * Yn2) + ((q63_t) a2 * Yn1); /* The result is converted to 1.31, Yn1 variable is reused */ acc_l = (acc ) & 0xffffffff; /* Calc lower part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Calc upper part of acc */ /* Apply shift for lower part of acc and upper part of acc */ Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Store output in destination buffer. */ *pOut++ = Yn1; /* Every time after the output is computed state should be updated. */ /* The states should be updated as: */ /* Xn2 = Xn1 */ /* Xn1 = Xn */ /* Yn2 = Yn1 */ /* Yn1 = acc */ Xn2 = Xn1; Xn1 = Xn; /* decrement loop counter */ sample--; } /* Loop unrolling: Compute remaining outputs */ sample = blockSize & 0x3U; #else /* Initialize blkCnt with number of samples */ sample = blockSize; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (sample > 0U) { /* Read the input */ Xn = *pIn++; /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ acc = ((q63_t) b0 * Xn) + ((q63_t) b1 * Xn1) + ((q63_t) b2 * Xn2) + ((q63_t) a1 * Yn1) + ((q63_t) a2 * Yn2); /* The result is converted to 1.31 */ acc = acc >> lShift; /* Store output in destination buffer. */ *pOut++ = (q31_t) acc; /* Every time after the output is computed state should be updated. */ /* The states should be updated as: */ /* Xn2 = Xn1 */ /* Xn1 = Xn */ /* Yn2 = Yn1 */ /* Yn1 = acc */ Xn2 = Xn1; Xn1 = Xn; Yn2 = Yn1; Yn1 = (q31_t) acc; /* decrement loop counter */ sample--; } /* Store the updated state variables back into the pState array */ *pState++ = Xn1; *pState++ = Xn2; *pState++ = Yn1; *pState++ = Yn2; /* The first stage goes from the input buffer to the output buffer. */ /* Subsequent numStages occur in-place in the output buffer */ pIn = pDst; /* Reset output pointer */ pOut = pDst; /* decrement loop counter */ stage--; } while (stage > 0U); } /** @} end of BiquadCascadeDF1 group */