/** **************************************************************************************** * @addtogroup CPPCTASK * @{ **************************************************************************************** */ /* * INCLUDE FILES **************************************************************************************** */ #include "rwip_config.h" #if (BLE_CP_COLLECTOR) #include "cpp_common.h" #include "cppc.h" #include "cppc_task.h" #include "gap.h" #include "gattc_task.h" #include "ke_mem.h" #include "ke_timer.h" #include "co_utils.h" /* * STRUCTURES **************************************************************************************** */ /// State machine used to retrieve Cycling Power service characteristics /// information const struct prf_char_def cppc_cps_char[CPP_CPS_CHAR_MAX] = { /// CP Measurement [CPP_CPS_MEAS_CHAR] = {ATT_CHAR_CP_MEAS, ATT_MANDATORY, ATT_CHAR_PROP_NTF}, /// CP Feature [CPP_CPS_FEAT_CHAR] = {ATT_CHAR_CP_FEAT, ATT_MANDATORY, ATT_CHAR_PROP_RD}, /// Sensor Location [CPP_CPS_SENSOR_LOC_CHAR] = {ATT_CHAR_SENSOR_LOC, ATT_MANDATORY, ATT_CHAR_PROP_RD}, /// Vector [CPP_CPS_VECTOR_CHAR] = {ATT_CHAR_CP_VECTOR, ATT_OPTIONAL, ATT_CHAR_PROP_NTF}, /// SC Control Point [CPP_CPS_CTNL_PT_CHAR] = {ATT_CHAR_CP_CNTL_PT, ATT_OPTIONAL, ATT_CHAR_PROP_WR | ATT_CHAR_PROP_IND}, }; /// State machine used to retrieve Cycling Power service characteristic /// descriptor information const struct prf_char_desc_def cppc_cps_char_desc[CPPC_DESC_MAX] = { /// CP Measurement Char. - Client Characteristic Configuration [CPPC_DESC_CP_MEAS_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_MANDATORY, CPP_CPS_MEAS_CHAR}, /// CP Measurement Char. - Server Characteristic Configuration [CPPC_DESC_CP_MEAS_SV_CFG] = {ATT_DESC_SERVER_CHAR_CFG, ATT_OPTIONAL, CPP_CPS_MEAS_CHAR}, /// CP Vector Char. - Client Characteristic Configuration [CPPC_DESC_VECTOR_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_OPTIONAL, CPP_CPS_VECTOR_CHAR}, /// Control Point Char. - Client Characteristic Configuration [CPPC_DESC_CTNL_PT_CL_CFG] = {ATT_DESC_CLIENT_CHAR_CFG, ATT_OPTIONAL, CPP_CPS_CTNL_PT_CHAR}, }; /* * HANDLER FUNCTIONS DEFINITIONS **************************************************************************************** */ /** **************************************************************************************** * @brief Handles reception of the @ref CPPC_ENABLE_REQ message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cppc_enable_req_handler(ke_msg_id_t const msgid, struct cppc_enable_req *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Status uint8_t status = GAP_ERR_NO_ERROR; // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); uint8_t state = ke_state_get(dest_id); // Cycling Power Profile Collector Role Task Environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); ASSERT_INFO(cppc_env != NULL, dest_id, src_id); if ((state == CPPC_IDLE) && (cppc_env->env[conidx] == NULL)) { // allocate environment variable for task instance cppc_env->env[conidx] = (struct cppc_cnx_env *)ke_malloc( sizeof(struct cppc_cnx_env), KE_MEM_ATT_DB); memset(cppc_env->env[conidx], 0, sizeof(struct cppc_cnx_env)); // Config connection, start discovering if (param->con_type == PRF_CON_DISCOVERY) { // start discovering CPS on peer prf_disc_svc_send(&(cppc_env->prf_env), conidx, ATT_SVC_CYCLING_POWER); // Go to DISCOVERING state ke_state_set(dest_id, CPPC_DISCOVERING); } // normal connection, get saved att details else { cppc_env->env[conidx]->cps = param->cps; // send APP confirmation that can start normal connection to TH cppc_enable_rsp_send(cppc_env, conidx, GAP_ERR_NO_ERROR); } } else if (state != CPPC_FREE) { status = PRF_ERR_REQ_DISALLOWED; } // send an error if request fails if (status != GAP_ERR_NO_ERROR) { cppc_enable_rsp_send(cppc_env, conidx, status); } return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref CPPC_READ_CMD message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cppc_read_req_handler(ke_msg_id_t const msgid, struct cpps_read_cmd *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t state = ke_state_get(dest_id); uint8_t status = PRF_ERR_REQ_DISALLOWED; // Message status uint8_t msg_status = KE_MSG_CONSUMED; // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); if (state == CPPC_IDLE) { ASSERT_INFO(cppc_env != NULL, dest_id, src_id); // environment variable not ready if (cppc_env->env[conidx] == NULL) { status = PRF_APP_ERROR; } else { // Get the handler uint16_t hdl = cppc_get_read_handle_req(cppc_env, conidx, param); // Check if handle is viable if (hdl != ATT_INVALID_SEARCH_HANDLE) { // Force the operation value param->operation = CPPC_READ_OP_CODE; // Store the command structure cppc_env->env[conidx]->operation = param; msg_status = KE_MSG_NO_FREE; // Send the read request prf_read_char_send(&(cppc_env->prf_env), conidx, cppc_env->env[conidx]->cps.svc.shdl, cppc_env->env[conidx]->cps.svc.ehdl, hdl); // Go to the Busy state ke_state_set(dest_id, CPPC_BUSY); status = ATT_ERR_NO_ERROR; } else { status = PRF_ERR_INEXISTENT_HDL; } } } else if (state == CPPC_FREE) { status = GAP_ERR_DISCONNECTED; } else { // Another procedure is pending, keep the command for later msg_status = KE_MSG_SAVED; status = GAP_ERR_NO_ERROR; } if (status != GAP_ERR_NO_ERROR) { // Send the complete event message to the task id stored in the environment cppc_send_cmp_evt(cppc_env, conidx, CPPC_READ_OP_CODE, status); } return (int)msg_status; } /** **************************************************************************************** * @brief Handles reception of the @ref CPPC_CFG_NTFIND_CMD message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cppc_cfg_ntfind_cmd_handler(ke_msg_id_t const msgid, struct cppc_cfg_ntfind_cmd *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); uint8_t state = ke_state_get(dest_id); // Message status uint8_t msg_status = KE_MSG_CONSUMED; if (cppc_env != NULL) { // Status uint8_t status = PRF_ERR_REQ_DISALLOWED; // Handle uint16_t handle = ATT_INVALID_SEARCH_HANDLE; // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); do { if (state != CPPC_IDLE) { // Another procedure is pending, keep the command for later msg_status = KE_MSG_SAVED; break; } ASSERT_ERR(cppc_env->env[conidx] != NULL); // Get handle status = cppc_get_write_desc_handle_req(conidx, param, cppc_env, &handle); } while (0); if ((status == GAP_ERR_NO_ERROR) && (handle != ATT_INVALID_SEARCH_HANDLE)) { // Set the operation code param->operation = CPPC_CFG_NTF_IND_OP_CODE; // Store the command structure cppc_env->env[conidx]->operation = param; msg_status = KE_MSG_NO_FREE; // Go to the Busy state ke_state_set(dest_id, CPPC_BUSY); // Send GATT Write Request prf_gatt_write_ntf_ind(&cppc_env->prf_env, conidx, handle, param->ntfind_cfg); } } else { cppc_send_no_conn_cmp_evt(dest_id, src_id, CPPC_CFG_NTF_IND_OP_CODE); } return (int)msg_status; } /** **************************************************************************************** * @brief Handles reception of the @ref CPPC_CTNL_PT_CFG_REQ message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cppc_ctnl_pt_cfg_req_handler(ke_msg_id_t const msgid, struct cppc_ctnl_pt_cfg_req *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Message status uint8_t msg_status = KE_MSG_CONSUMED; // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); if (cppc_env != NULL) { // Status uint8_t status = GAP_ERR_NO_ERROR; do { // State is Connected or Busy ASSERT_ERR(ke_state_get(dest_id) > CPPC_FREE); // Check the provided connection handle if (cppc_env->env[conidx] == NULL) { status = PRF_ERR_INVALID_PARAM; break; } if (ke_state_get(dest_id) != CPPC_IDLE) { // Another procedure is pending, keep the command for later msg_status = KE_MSG_SAVED; // Status is GAP_ERR_NO_ERROR, no message will be sent to the // application break; } // Check if the characteristic has been found if (cppc_env->env[conidx]->cps.descs[CPPC_DESC_CTNL_PT_CL_CFG].desc_hdl != ATT_INVALID_SEARCH_HANDLE) { // Request array declaration uint8_t req[CPP_CP_CNTL_PT_REQ_MAX_LEN]; // Pack request uint8_t nb = cppc_pack_ctnl_pt_req(param, req, &status); if (status == GAP_ERR_NO_ERROR) { // Set the operation code param->operation = CPPC_CTNL_PT_CFG_WR_OP_CODE; // Store the command structure cppc_env->env[conidx]->operation = param; // Store the command information msg_status = KE_MSG_NO_FREE; // Go to the Busy state ke_state_set(dest_id, CPPC_BUSY); // Send the write request prf_gatt_write( &(cppc_env->prf_env), conidx, cppc_env->env[conidx]->cps.chars[CPP_CPS_CTNL_PT_CHAR].val_hdl, (uint8_t *)&req[0], nb, GATTC_WRITE); } } else { status = PRF_ERR_INEXISTENT_HDL; } } while (0); if (status != GAP_ERR_NO_ERROR) { // Send a complete event status to the application cppc_send_cmp_evt(cppc_env, conidx, CPPC_CTNL_PT_CFG_WR_OP_CODE, status); } } else { // No connection cppc_send_no_conn_cmp_evt(dest_id, src_id, CPPC_CTNL_PT_CFG_WR_OP_CODE); } return (int)msg_status; } /** **************************************************************************************** * @brief Handles reception of the @ref CPPC_TIMEOUT_TIMER_IND message. This *message is received when the peer device doesn't send a SC Control Point *indication within 30s after reception of the write response. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int cppc_timeout_timer_ind_handler(ke_msg_id_t const msgid, void const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); // Get connection index uint8_t conidx = KE_IDX_GET(dest_id); if (cppc_env != NULL) { ASSERT_ERR(cppc_env->env[conidx]->operation != NULL); ASSERT_ERR( ((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation == CPPC_CTNL_PT_CFG_IND_OP_CODE); // Send the complete event message cppc_send_cmp_evt(cppc_env, conidx, CPPC_CTNL_PT_CFG_WR_OP_CODE, PRF_ERR_PROC_TIMEOUT); } // else drop the message return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_SDP_SVC_IND_HANDLER message. * The handler stores the found service details for service discovery. * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_sdp_svc_ind_handler(ke_msg_id_t const msgid, struct gattc_sdp_svc_ind const *ind, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t state = ke_state_get(dest_id); if (state == CPPC_DISCOVERING) { uint8_t conidx = KE_IDX_GET(dest_id); struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); ASSERT_INFO(cppc_env != NULL, dest_id, src_id); ASSERT_INFO(cppc_env->env[conidx] != NULL, dest_id, src_id); if (cppc_env->env[conidx]->nb_svc == 0) { // Retrieve CPS characteristics and descriptors prf_extract_svc_info(ind, CPP_CPS_CHAR_MAX, &cppc_cps_char[0], &cppc_env->env[conidx]->cps.chars[0], CPPC_DESC_MAX, &cppc_cps_char_desc[0], &cppc_env->env[conidx]->cps.descs[0]); // Even if we get multiple responses we only store 1 range cppc_env->env[conidx]->cps.svc.shdl = ind->start_hdl; cppc_env->env[conidx]->cps.svc.ehdl = ind->end_hdl; } cppc_env->env[conidx]->nb_svc++; } return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_CMP_EVT message. * @param[in] msgid Id of the message received. * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance. * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_cmp_evt_handler(ke_msg_id_t const msgid, struct gattc_cmp_evt const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); // Status uint8_t status; if (cppc_env != NULL) { uint8_t conidx = KE_IDX_GET(dest_id); uint8_t state = ke_state_get(dest_id); if (state == CPPC_DISCOVERING) { status = param->status; if ((status == ATT_ERR_ATTRIBUTE_NOT_FOUND) || (status == ATT_ERR_NO_ERROR)) { // Discovery // check characteristic validity if (cppc_env->env[conidx]->nb_svc == 1) { status = prf_check_svc_char_validity(CPP_CPS_CHAR_MAX, cppc_env->env[conidx]->cps.chars, cppc_cps_char); } // too much services else if (cppc_env->env[conidx]->nb_svc > 1) { status = PRF_ERR_MULTIPLE_SVC; } // no services found else { status = PRF_ERR_STOP_DISC_CHAR_MISSING; } // check descriptor validity if (status == GAP_ERR_NO_ERROR) { status = prf_check_svc_char_desc_validity( CPPC_DESC_MAX, cppc_env->env[conidx]->cps.descs, cppc_cps_char_desc, cppc_env->env[conidx]->cps.chars); } } cppc_enable_rsp_send(cppc_env, conidx, status); } else if (state == CPPC_BUSY) { switch (param->operation) { case GATTC_READ: { // Send the complete event status cppc_send_cmp_evt(cppc_env, conidx, CPPC_READ_OP_CODE, param->status); } break; case GATTC_WRITE: case GATTC_WRITE_NO_RESPONSE: { uint8_t operation = ((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation; if (operation == CPPC_CFG_NTF_IND_OP_CODE) { // Send the complete event status cppc_send_cmp_evt(cppc_env, conidx, operation, param->status); } else if (operation == CPPC_CTNL_PT_CFG_WR_OP_CODE) { if (param->status == GAP_ERR_NO_ERROR) { // Start Timeout Procedure ke_timer_set(CPPC_TIMEOUT_TIMER_IND, dest_id, ATT_TRANS_RTX); // Wait for the response indication ((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation = CPPC_CTNL_PT_CFG_IND_OP_CODE; } else { // Send the complete event status cppc_send_cmp_evt(cppc_env, conidx, operation, param->status); } } } break; case GATTC_REGISTER: case GATTC_UNREGISTER: { // Do nothing } break; default: { ASSERT_ERR(0); } break; } } } // else ignore the message return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_READ_IND message. * Generic event received after every simple read command sent to peer server. * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_read_ind_handler(ke_msg_id_t const msgid, struct gattc_read_ind const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t state = ke_state_get(dest_id); // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); if (state == CPPC_BUSY) { uint8_t conidx = KE_IDX_GET(dest_id); ASSERT_INFO(cppc_env != NULL, dest_id, src_id); ASSERT_INFO(cppc_env->env[conidx] != NULL, dest_id, src_id); // Send the read value to the HL struct cppc_value_ind *ind = KE_MSG_ALLOC( CPPC_VALUE_IND, prf_dst_task_get(&(cppc_env->prf_env), conidx), dest_id, cppc_value_ind); switch ( ((struct cpps_read_cmd *)cppc_env->env[conidx]->operation)->read_code) { // Read CP Feature Characteristic value case (CPPC_RD_CP_FEAT): { ind->value.sensor_feat = co_read32p(¶m->value[0]); // Mask the reserved bits // ind->value.sensor_feat &= CPP_FEAT_ALL_SUPP; } break; // Read Sensor Location Characteristic value case (CPPC_RD_SENSOR_LOC): { ind->value.sensor_loc = param->value[0]; } break; // Read Client Characteristic Configuration Descriptor value case (CPPC_RD_WR_CP_MEAS_CL_CFG): case (CPPC_RD_WR_CP_MEAS_SV_CFG): case (CPPC_RD_WR_VECTOR_CFG): case (CPPC_RD_WR_CTNL_PT_CFG): { co_write16p(&ind->value.ntf_cfg, param->value[0]); } break; default: { ASSERT_ERR(0); } break; } ind->att_code = ((struct cpps_read_cmd *)cppc_env->env[conidx]->operation)->read_code; // Send the message to the application ke_msg_send(ind); } // else drop the message return (KE_MSG_CONSUMED); } /** **************************************************************************************** * @brief Handles reception of the @ref GATTC_EVENT_IND message. * @param[in] msgid Id of the message received (probably unused). * @param[in] param Pointer to the parameters of the message. * @param[in] dest_id ID of the receiving task instance (probably unused). * @param[in] src_id ID of the sending task instance. * @return If the message was consumed or not. **************************************************************************************** */ __STATIC int gattc_event_ind_handler(ke_msg_id_t const msgid, struct gattc_event_ind const *param, ke_task_id_t const dest_id, ke_task_id_t const src_id) { uint8_t conidx = KE_IDX_GET(dest_id); // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); if (cppc_env != NULL) { switch (param->type) { case (GATTC_NOTIFY): { if (param->handle == cppc_env->env[conidx]->cps.chars[CPP_CPS_MEAS_CHAR].val_hdl) { // Unpack measurement cppc_unpack_meas_ind(conidx, param, cppc_env); } else if (param->handle == cppc_env->env[conidx] ->cps.chars[CPP_CPS_VECTOR_CHAR] .val_hdl) { // Unpack vector cppc_unpack_vector_ind(conidx, param, cppc_env); } else { ASSERT_ERR(0); } } break; case (GATTC_INDICATE): { // confirm that indication has been correctly received struct gattc_event_cfm *cfm = KE_MSG_ALLOC(GATTC_EVENT_CFM, src_id, dest_id, gattc_event_cfm); cfm->handle = param->handle; ke_msg_send(cfm); // Check if we were waiting for the indication if (cppc_env->env[conidx]->operation != NULL) { if (((struct cppc_cmd *)cppc_env->env[conidx]->operation)->operation == CPPC_CTNL_PT_CFG_IND_OP_CODE) { // Stop the procedure timeout timer ke_timer_clear(CPPC_TIMEOUT_TIMER_IND, dest_id); // Unpack control point cppc_unpack_ctln_pt_ind(conidx, param, cppc_env); // Send the complete event message cppc_send_cmp_evt(cppc_env, conidx, CPPC_CTNL_PT_CFG_WR_OP_CODE, GAP_ERR_NO_ERROR); } // else drop the message } // else drop the message } break; default: { ASSERT_ERR(0); } break; } } return (KE_MSG_CONSUMED); } /* * GLOBAL VARIABLE DEFINITIONS **************************************************************************************** */ /// Specifies the default message handlers KE_MSG_HANDLER_TAB(cppc){ {GATTC_SDP_SVC_IND, (ke_msg_func_t)gattc_sdp_svc_ind_handler}, {CPPC_READ_CMD, (ke_msg_func_t)cppc_read_req_handler}, {GATTC_READ_IND, (ke_msg_func_t)gattc_read_ind_handler}, {CPPC_CFG_NTFIND_CMD, (ke_msg_func_t)cppc_cfg_ntfind_cmd_handler}, {CPPC_CTNL_PT_CFG_REQ, (ke_msg_func_t)cppc_ctnl_pt_cfg_req_handler}, {GATTC_EVENT_IND, (ke_msg_func_t)gattc_event_ind_handler}, {GATTC_EVENT_REQ_IND, (ke_msg_func_t)gattc_event_ind_handler}, {CPPC_TIMEOUT_TIMER_IND, (ke_msg_func_t)cppc_timeout_timer_ind_handler}, {CPPC_ENABLE_REQ, (ke_msg_func_t)cppc_enable_req_handler}, {GATTC_CMP_EVT, (ke_msg_func_t)gattc_cmp_evt_handler}, }; void cppc_task_init(struct ke_task_desc *task_desc) { // Get the address of the environment struct cppc_env_tag *cppc_env = PRF_ENV_GET(CPPC, cppc); task_desc->msg_handler_tab = cppc_msg_handler_tab; task_desc->msg_cnt = ARRAY_LEN(cppc_msg_handler_tab); task_desc->state = cppc_env->state; task_desc->idx_max = CPPC_IDX_MAX; } #endif //(BLE_CP_COLLECTOR) /// @} CPPCTASK