#ifdef RTOS #include #include #include "hal_dma.h" #include "hal_timer.h" #include "hal_trace.h" #include "heap_api.h" #include "string.h" #include "bt_drv.h" #include "cmsis_os.h" #include "hal_btdump.h" #include "iqcorrect.h" #include "nvrecord.h" #include "nvrecord_env.h" #include "nvrecord_dev.h" #ifdef TX_IQ_CAL #define LOG_MODULE HAL_TRACE_MODULE_APP #define NTbl (1024) #define fftSize 1024 #define bitshift 10 #define pi (3.1415926535898) #define min(a,b) (((a) < (b)) ? (a) : (b)) #define READ_REG(b,a) *(volatile uint32_t *)(b+a) #define WRITE_REG(v,b,a) *(volatile uint32_t *)(b+a) = v #define BUF_SIZE (1024) #define MAX_COUNT 5 volatile int iqimb_dma_status = 0; //short M0data[BUF_SIZE]; #define MED_MEM_POOL_SIZE (20*1024) static uint8_t *g_medMemPool = NULL; extern void *rt_malloc(unsigned int size); extern void rt_free(void *rmem); typedef struct ComplexInt_ { int re; int im; } ComplexInt; typedef struct Complexflt_ { float re; float im; } ComplexFlt; typedef struct ComplexShort_ { short re; short im; } ComplexShort; #ifdef DCCalib static void Tblgen(ComplexShort*w0, ComplexShort*w1, ComplexShort*w2,int len) { for (int i=0; iM0data = (short*)med_calloc(fft_size, sizeof(short)); st->Table0 = (ComplexShort*)med_calloc(fft_size, sizeof(ComplexShort)); st->Table1 = (ComplexShort*)med_calloc(fft_size, sizeof(ComplexShort)); st->Table2 = (ComplexShort*)med_calloc(fft_size, sizeof(ComplexShort)); BT_DRV_TRACE(5,"st:%p, st->M0data:%p, st->Table0:%p, st->Table1:%p, st->Table2:%p", st, st->M0data, st->Table0, st->Table1, st->Table2); BT_DRV_TRACE(0,"malloc ok"); return st; } int32_t IQMismatchPreprocessState_destroy(IQMismatchPreprocessState *st) { BT_DRV_TRACE(5,"st:%p, st->M0data:%p, st->Table0:%p, st->Table1:%p, st->Table2:%p", st, st->M0data, st->Table0, st->Table1, st->Table2); med_free(st->M0data); med_free(st->Table0); med_free(st->Table1); med_free(st->Table2); med_free(st); return 0; } int IQMismatchParameterCalc_ex(short *M0data, short Cohcnt, ComplexShort *Table0, ComplexShort *Table1, ComplexShort *Table2,int fftsize) { int i,j,k; float M0 = 0; //ComplexInt tmp0; ComplexFlt tmp0; ComplexFlt tmp1; ComplexFlt tmp2; for (j = 0; j < Cohcnt; j++) { tmp0.re = 0.0f; tmp0.im = 0.0f; tmp1.re = 0.0f; tmp1.im = 0.0f; tmp2.re = 0.0f; tmp2.im = 0.0f; k = 0; for (i=0; i=fftsize) k = 0; tmp0.re = tmp0.re + (((int)M0data[i] *(int)Table0[k].re) >> 15) ; tmp0.im = tmp0.im + (((int)M0data[i] * (int)Table0[k].im) >> 15) ; tmp1.re = tmp1.re + (((int)M0data[i] *(int)Table1[k].re) >> 15) ; tmp1.im = tmp1.im + (((int)M0data[i] * (int)Table1[k].im) >> 15) ; tmp2.re = tmp2.re + (((int)M0data[i] *(int)Table2[k].re) >> 15) ; tmp2.im = tmp2.im + (((int)M0data[i] * (int)Table2[k].im) >> 15) ; k = k + 1; } tmp0.re = tmp0.re/ fftsize;// >> bitshift; tmp0.im = tmp0.im/ fftsize;// >>bitshift; tmp1.re = tmp1.re/ fftsize;// >> bitshift; tmp1.im = tmp1.im/ fftsize;// >>bitshift; tmp2.re = tmp2.re/ fftsize;// >> bitshift; tmp2.im = tmp2.im/ fftsize;// >>bitshift; M0 = M0 + tmp0.re*tmp0.re + tmp0.im*tmp0.im; M0 = M0 + tmp1.re*tmp1.re + tmp1.im*tmp1.im; M0 = M0 + tmp2.re*tmp2.re + tmp2.im*tmp2.im; } return (int)(M0/Cohcnt); } void caculate_energy_main_test(IQMismatchPreprocessState *st,int* Energy,int* Energy1,int fftsize) { short Cohcnt = 1; *Energy1 = IQMismatchParameterCalc_ex(st->M0data, Cohcnt, st->Table0, st->Table1, st->Table2,fftsize); } static struct HAL_DMA_DESC_T iqimb_dma_desc[1]; static void iqimb_dma_dout_handler(uint32_t remains, uint32_t error, struct HAL_DMA_DESC_T *lli) { hal_audma_free_chan(0); hal_btdump_disable(); iqimb_dma_status = 0; return; } int bt_iqimb_dma_enable ( short * dma_dst_data, uint16_t size) { struct HAL_DMA_CH_CFG_T iqimb_dma_cfg; // BT_DRV_TRACE(0,"bt_iqimb_dma_enable :"); iqimb_dma_status = 1; memset(&iqimb_dma_cfg, 0, sizeof(iqimb_dma_cfg)); //iqimb_dma_cfg.ch = hal_audma_get_chan(HAL_AUDMA_DSD_RX,HAL_DMA_HIGH_PRIO); iqimb_dma_cfg.ch = hal_audma_get_chan(HAL_AUDMA_BTDUMP,HAL_DMA_HIGH_PRIO); iqimb_dma_cfg.dst_bsize = HAL_DMA_BSIZE_16; iqimb_dma_cfg.dst_periph = 0; //useless iqimb_dma_cfg.dst_width = HAL_DMA_WIDTH_WORD; iqimb_dma_cfg.handler = (HAL_DMA_IRQ_HANDLER_T)iqimb_dma_dout_handler; iqimb_dma_cfg.src = 0; // useless iqimb_dma_cfg.src_bsize = HAL_DMA_BSIZE_4; //iqimb_dma_cfg.src_periph = HAL_AUDMA_DSD_RX; iqimb_dma_cfg.src_periph = HAL_AUDMA_BTDUMP; iqimb_dma_cfg.src_tsize = size;//1600; //1600*2/26=123us iqimb_dma_cfg.src_width = HAL_DMA_WIDTH_WORD; //iqimb_dma_cfg.src_width = HAL_DMA_WIDTH_HALFWORD; iqimb_dma_cfg.try_burst = 1; iqimb_dma_cfg.type = HAL_DMA_FLOW_P2M_DMA; iqimb_dma_cfg.dst = (uint32_t)(dma_dst_data); hal_audma_init_desc(&iqimb_dma_desc[0], &iqimb_dma_cfg, 0, 1); hal_audma_sg_start(&iqimb_dma_desc[0], &iqimb_dma_cfg); //configed after mismatch parameter done, or apb clock muxed. //wait for(volatile int i=0; i<5000; i++); hal_btdump_enable(); return 1; } int bt_iqimb_ini () { uint32_t val; BT_DRV_TRACE(0,"bt_iqimb_ini :"); //config gpadc 26m val = READ_REG(0xd0350208,0x0); val &= 0xffefffff; //bit20 val |= (1<<18); //reg_gclk_en(BTM_CLK_26RXNFMI) val &= 0xffbfffff; //bit22 val |= (1<<20); //reg_gclk_en(BTM_CLK_26RXDUMP) val &= 0xfdffffff; //bit25 val |= (1<<25); //reg_gclk_en(BTM_CLK_26RXADC) WRITE_REG(val,0xd0350208,0x0); BT_DRV_TRACE(1,"0xd0350208 : 0x%08x",val); val = READ_REG(0xd0350228,0x0); val &= 0xffefffff; //bit20 val |= (1<<18); //reg_gclk_mode(BTM_CLK_26RXNFMI) val &= 0xffbfffff; //bit22 val |= (1<<20); //reg_gclk_mode(BTM_CLK_26RXDUMP) val &= 0xfdffffff; //bit25 val |= (1<<25); //reg_gclk_mode(BTM_CLK_26RXADC) WRITE_REG(val,0xd0350228,0x0); BT_DRV_TRACE(1,"0xd0350228 : 0x%08x",val); //for rx mux to gpadc val = READ_REG(0xd0350218,0x0); val &= 0xfffffff0; //bit3:0 1110 reg_diagcntl(3 downto 0) val |= (0xe<<0); val &= 0xfffffbff; //bit10 1 reg_diagcntl(10) val |= (0x1<<10); WRITE_REG(val,0xd0350218,0x0); BT_DRV_TRACE(1,"0xd0350218 : 0x%08x",val); val = READ_REG(0xd0330024,0x0); val &= 0xfffffff7; //bit3:0 1110 reg_diagcntl(3 downto 0) val |= (0x1<<15); WRITE_REG(val,0xd0330024,0x0); BT_DRV_TRACE(1,"0xd0330024 : 0x%08x",val); val = READ_REG(0xd0330034,0x0); val &= 0x03ffffff; //bit3:0 1110 reg_diagcntl(3 downto 0) val |= (0x1b<<26); WRITE_REG(val,0xd0330034,0x0); BT_DRV_TRACE(1,"0xd0330034 : 0x%08x",val); WRITE_REG(0x002eb948,0xd0350364,0x0); val = READ_REG(0xd0330038,0x0); val |= (0x1<<24); WRITE_REG(val,0xd0330038,0x0); WRITE_REG(0,0xc000033c,0x0); return 1; } void check_mem_data(void* data, int len) { short* share_mem = (short*)data; BT_DRV_TRACE(3,"check_mem_data :share_mem= %p, 0x%x, 0x%x",share_mem,share_mem[0],share_mem[1]); int16_t i =0; int16_t m =0; int16_t remain = len; for(m=0; m<32; m++) { for(i=0; i<32; i++) { if (remain >16) { DUMP16("%04x ",share_mem,16); share_mem +=16; remain -= 16; } else { DUMP16("%04x ",share_mem,remain); remain =0; return; } } // BT_DRV_TRACE(0,"\n"); //BT_DRV_TRACE(1,"addr :0x%08x\n",share_mem); hal_sys_timer_delay(MS_TO_TICKS(200)); } } int bt_Txdc_cal_set(int ch_num, int dc_add) { uint32_t val; uint32_t tmp = (uint32_t)dc_add; //sel apb clock val = READ_REG(0xd0350348,0x0); if(ch_num==0) { val &= 0xfffffc00; //bit31 1 int_en_mismatch val |= tmp & 0x3ff; } else { // BT_DRV_TRACE(1,"bt_Txdc_cal_set, dcadd : 0x%08x",tmp); val &= 0xfc00ffff; //bit31 1 int_en_mismatch val |= (tmp & 0x3ff) <<16; } WRITE_REG(val,0xd0350348,0x0); // BT_DRV_TRACE(1,"bt_Txdc_cal_set, 0xd0350348 : 0x%08x",val); return 1; } //g/p mismatch base addr 0xd0310000 //dc_i: 0xd0350348 9:0 //dc_q: 0xd0350348 25:16 int bt_iqimb_add_mismatch(int ch_num, int gain_mis, int phase_mis, int dc_i, int dc_q, uint32_t addr) { uint32_t val; //sel apb clock val = READ_REG(0xd0350348,0x0); val &= 0x7fffffff; //bit31 1 int_en_mismatch val |= (0x0<<31); WRITE_REG(val,0xd0350348,0x0); val = (phase_mis << 16) | (gain_mis & 0x0000ffff); WRITE_REG(val,addr,ch_num*4); //tval = READ_REG(addr,0x0); //BT_DRV_TRACE(1,"bt_iqimb_add_mismatch, iq : 0x%08x",tval); WRITE_REG(0x400000,0xd0350220,0); WRITE_REG(0x400000,0xd0350224,0); // bt_Txdc_cal_set(0,dc_i); //bt_Txdc_cal_set(1,dc_q); /* val = READ_REG(0xd0350348,0x0); val &= 0xfffffc00; //bit9:0 val |= dc_i; val &= 0xfc00ffff; //bit25:16 val |= (dc_q<<16); WRITE_REG(val,0xd0350348,0x0); */ //sel 26m clock val = READ_REG(0xd0350348,0x0); val &= 0x7fffffff; //bit31 1 int_en_mismatch val |= (0x1<<31); WRITE_REG(val,0xd0350348,0x0); return 1; } void DC_correction(IQMismatchPreprocessState *st,int *dc_i_r,int *dc_q_r,int fftsize) { uint8_t k; int Energy,Energy1,tmp; int dc_iters = 2; int dc_i; int dc_q; int dc_step = 4; int dc_i_base; int dc_q_base; int P0,PIplus,PIneg,PQplus,PQneg,PIPQ; int CI,CQ,tmp_D; dc_i_base =0; dc_q_base = 0; for(k=0; kM0data,(BUF_SIZE/2)); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); P0 = Energy1; dc_i = dc_i_base + dc_step; dc_q = dc_q_base; bt_Txdc_cal_set(0,dc_i); bt_Txdc_cal_set(1,dc_q); bt_iqimb_dma_enable(st->M0data,(BUF_SIZE/2)); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); PIplus = Energy1; dc_i = dc_i_base - dc_step; dc_q = dc_q_base; bt_Txdc_cal_set(0,dc_i); bt_Txdc_cal_set(1,dc_q); bt_iqimb_dma_enable(st->M0data,(BUF_SIZE/2)); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); PIneg = Energy1; dc_i = dc_i_base; dc_q = dc_q_base + dc_step; bt_Txdc_cal_set(0,dc_i); bt_Txdc_cal_set(1,dc_q); bt_iqimb_dma_enable(st->M0data,(BUF_SIZE/2)); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); PQplus = Energy1; dc_i = dc_i_base; dc_q = dc_q_base - dc_step; bt_Txdc_cal_set(0,dc_i); bt_Txdc_cal_set(1,dc_q); bt_iqimb_dma_enable(st->M0data,(BUF_SIZE/2)); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); PQneg = Energy1; dc_i = dc_i_base + dc_step; dc_q = dc_q_base + dc_step; bt_Txdc_cal_set(0,dc_i); bt_Txdc_cal_set(1,dc_q); bt_iqimb_dma_enable(st->M0data,(BUF_SIZE/2)); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); PIPQ = Energy1; tmp = 2*PIplus*PIplus + 2*PQplus*PQplus + 2*PIPQ*PIPQ; tmp = tmp - 6*P0*P0; tmp = tmp + 4*P0*(PIneg+PQneg+PIPQ); tmp = tmp + 2*(PIplus*(PQplus - PQneg)-PIneg*(PQplus+PQneg)); tmp_D = tmp - 4*PIPQ*(PIplus+PQplus); tmp = P0*(2*(PIplus - PIneg)+PQplus -PQneg); tmp = tmp - PIPQ*(PQneg-PQplus)+PIneg*(PQplus+PQneg); tmp = tmp + PQplus*(PQneg-PQplus-2*PIplus); CI = -dc_step*tmp; tmp = P0*(2*(PQplus - PQneg)+PIplus-PIneg); tmp = tmp - PIPQ*(PIneg-PIplus)+PQneg*(PIplus+PIneg); tmp = tmp + PIplus*(PIneg-PIplus-2*PQplus); CQ = -dc_step*tmp; dc_i_base = dc_i_base + CI/tmp_D; dc_q_base = dc_q_base + CQ/tmp_D; //dc_step = dc_step/2; } *dc_i_r = dc_i_base; *dc_q_r = dc_q_base; } int IQ_GAIN_Mismatch_Correction(IQMismatchPreprocessState *st,int phase_mis_base,int fftsize,uint32_t addr) { uint8_t k = 0; int phase_mis_tmp =0; int gain_mis_tmp =0; int tmp = 0; int energy_ret0_last = 1048576; int energy_ret0 = 0; int energy_ret1 = 0; int energy_ret2 = 0; int Energy,Energy1 ; int iters = 4; int gainstep =8; int gain_mis_base = 0; phase_mis_tmp = phase_mis_base; energy_ret0_last = 1048576; for(k=0; kM0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret0 = Energy1; if(energy_ret0<50) break; if(k>0) { if(energy_ret0_last < energy_ret0) { gain_mis_base = gain_mis_base + tmp; gain_mis_tmp = gain_mis_base; bt_iqimb_add_mismatch(0,gain_mis_tmp,phase_mis_tmp,0,0,addr); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret0 = Energy1; } } //BT_DRV_TRACE(1,"IQ gain correct energy_ret0 = %d",energy_ret0); gainstep = 4;/////////////////// gain_mis_tmp = gain_mis_base + gainstep; bt_iqimb_add_mismatch(0,gain_mis_tmp,phase_mis_tmp,0,0,addr); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret2 = Energy1; gain_mis_tmp = gain_mis_base - gainstep; bt_iqimb_add_mismatch(0,gain_mis_tmp,phase_mis_tmp,0,0,addr); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret1 = Energy1; tmp = energy_ret2 -2*energy_ret0 + energy_ret1; //BT_DRV_TRACE(1,"IQ gain correct energy_ret2 -2*energy_ret0 + energy_ret1 = %d",tmp); if(tmp>0) { tmp = (energy_ret2-energy_ret1)*gainstep/tmp/2; tmp = min(tmp,4*gainstep); gainstep = gainstep/2; } else { tmp = 0; iters = iters+1; } if(iters>8) break; if((gain_mis_base - tmp>60)||(gain_mis_base - tmp<-60)) tmp = 0; //BT_DRV_TRACE(2,"IQ gain correct gain_mis = %d ,gain_adj = %d",gain_mis_base,tmp); gain_mis_base = gain_mis_base - tmp; energy_ret0_last = energy_ret0; } return gain_mis_base; } int IQ_Phase_Mismatch_Correction(IQMismatchPreprocessState *st,int gain_mis_base,int fftsize,uint32_t addr) { uint8_t k = 0; int phase_mis_tmp =0; int gain_mis_tmp =0; int tmp = 0; int energy_ret0_last = 1048576; int energy_ret0 = 0; int energy_ret1 = 0; int energy_ret2 = 0; int Energy,Energy1 ; int iters = 4; int phasestep =4; int phase_mis_base = 0; tmp = 0; energy_ret0_last = 1048576; gain_mis_tmp = gain_mis_base; for(k=0; kM0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret0 = Energy1; if(k>0) { if(energy_ret0_last < energy_ret0) { phase_mis_base = phase_mis_base + tmp; phase_mis_tmp = phase_mis_base; bt_iqimb_add_mismatch(0,gain_mis_tmp,phase_mis_tmp,0,0,addr); //no mismatch bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret0 = Energy1; } } if(energy_ret0<50) break; // BT_DRV_TRACE(1,"IQ phase correct energy_ret0 = %d",energy_ret0); phasestep = 4;////////////////////////// phase_mis_tmp = phase_mis_base + phasestep; bt_iqimb_add_mismatch(0,gain_mis_tmp,phase_mis_tmp,0,0,addr); //no mismatch bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret2 = Energy1; // BT_DRV_TRACE(1,"IQ phase correct energy_ret2 = %d",energy_ret2); phase_mis_tmp = phase_mis_base - phasestep; bt_iqimb_add_mismatch(0,gain_mis_tmp,phase_mis_tmp,0,0,addr); //no mismatch bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); energy_ret1 = Energy1; //BT_DRV_TRACE(1,"IQ phase correct energy_ret1 = %d",energy_ret1); tmp = energy_ret2 -2*energy_ret0 + energy_ret1; // BT_DRV_TRACE(1,"IQ phase correct energy_ret2 -2*energy_ret0 + energy_ret1 = %d",tmp); if(tmp>0) { tmp = (energy_ret2-energy_ret1)*phasestep/tmp/2; tmp = min(tmp,4*phasestep); phasestep = phasestep/2; } else { tmp = 0; iters = iters + 1; } if(iters>8) break; if((phase_mis_base - tmp>60)||(phase_mis_base - tmp<-60)) tmp = 0; // BT_DRV_TRACE(2,"IQ phase correct phase_mis = %d ,phase_adj = %d",phase_mis_base,tmp); phase_mis_base = phase_mis_base - tmp; energy_ret0_last = energy_ret0; } return phase_mis_base; } static BT_IQ_CALIBRATION_CONFIG_T config; static void bt_update_local_iq_calibration_val(uint32_t freq_range, uint16_t gain_cal_val, uint16_t phase_cal_val) { config.validityMagicNum = BT_IQ_VALID_MAGIC_NUM; config.gain_cal_val[freq_range] = gain_cal_val; config.phase_cal_val[freq_range] = phase_cal_val; } // do QA calibration and get the calibration value static POSSIBLY_UNUSED void btIqCalibration(void) { btdrv_tx_iq_cal(); BT_DRV_TRACE(0,"Acquired calibration value:"); for (uint32_t range = 0;range < BT_FREQENCY_RANGE_NUM;range++) { BT_DRV_TRACE(3,"%d: 0x%x - 0x%x", range, config.gain_cal_val[range], config.phase_cal_val[range]); } } // get IQ calibration from NV static bool bt_get_iq_calibration_val_from_nv(BT_IQ_CALIBRATION_CONFIG_T* pConfig) { if (nv_record_get_extension_entry_ptr() && (BT_IQ_VALID_MAGIC_NUM == nv_record_get_extension_entry_ptr()->btIqCalConfig.validityMagicNum)) { *pConfig = nv_record_get_extension_entry_ptr()->btIqCalConfig; return true; } else { return false; } } void bt_iq_calibration_setup(void) { if (bt_get_iq_calibration_val_from_nv(&config)) { BT_DRV_TRACE(0,"Calibration value in NV:"); for (uint32_t range = 0;range < BT_FREQENCY_RANGE_NUM;range++) { BT_DRV_TRACE(3,"%d: 0x%x - 0x%x", range, config.gain_cal_val[range], config.phase_cal_val[range]); } uint32_t addr = 0xd0310000; int chs = 27; for (uint32_t range = 0;range < 3;range++) { if (0 == range) { addr = 0xd0310034; chs= 27; addr = addr-13*4; } for (uint32_t ch=0;ch < chs;ch++) { bt_iqimb_add_mismatch(0, config.gain_cal_val[range], config.phase_cal_val[range], 0,0,addr); addr = addr +4; } } } else { btIqCalibration(); uint32_t lock = nv_record_pre_write_operation(); nv_record_get_extension_entry_ptr()->btIqCalConfig = config; nv_record_post_write_operation(lock); nv_record_extension_update(); } } void bt_IQ_DC_Mismatch_Correction_Release() { int phase_mis_base; int gain_mis_base; int Energy,Energy1; uint32_t time_start = hal_sys_timer_get(); int fftsize; uint32_t addr = 0xd0310000; int chs = 27; IQMismatchPreprocessState *st; syspool_init(); syspool_get_buff(&g_medMemPool, MED_MEM_POOL_SIZE); med_heap_init(&g_medMemPool[0], MED_MEM_POOL_SIZE); //config gpadc 26m READ_REG(0xd0310000,0x0); #ifdef DCCalib int dc_i_base,dc_q_base; fftsize = 1024; st = IQMismatchPreprocessState_init(fftsize); Tblgen(st->Table0,st->Table1,st->Table2,fftsize); DC_correction(st,&dc_i_base,&dc_q_base,fftsize); bt_Txdc_cal_set(0,dc_i_base); //set cal DC I bt_Txdc_cal_set(1,dc_q_base); //val = READ_REG(0xd0350348,0x0); //BT_DRV_TRACE(1,"0xd0350348 = 0x%08x",val); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); // BT_DRV_TRACE(3,"dc cal done!!! dc_i = %d ,dc_q = %d,Energy1 = %d",dc_i_base,dc_q_base,Energy1); if(Energy1>200) { DC_correction(st,&dc_i_base,&dc_q_base,fftsize); bt_Txdc_cal_set(0,dc_i_base); //set cal DC I bt_Txdc_cal_set(1,dc_q_base); //val = READ_REG(0xd0350348,0x0); //BT_DRV_TRACE(1,"0xd0350348 = 0x%08x",val); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); } if(Energy1>200) { DC_correction(st,&dc_i_base,&dc_q_base,fftsize); bt_Txdc_cal_set(0,dc_i_base); //set cal DC I bt_Txdc_cal_set(1,dc_q_base); //val = READ_REG(0xd0350348,0x0); //BT_DRV_TRACE(1,"0xd0350348 = 0x%08x",val); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); } #endif // BT_DRV_TRACE(1,"use time: %d ticks", (hal_sys_timer_get()-time_start)); // BT_DRV_TRACE(3,"dc cal done!!! dc_i = %d ,dc_q = %d,Energy1 = %d",dc_i_base,dc_q_base,Energy1); fftsize = 1024; st = IQMismatchPreprocessState_init(fftsize); Tblgen_iq(st->Table0,st->Table1,st->Table2,fftsize); BT_DRV_TRACE(1,"use time: %d ms", __TICKS_TO_MS(hal_sys_timer_get()-time_start)); for (int k = 0; k<3; k++) { if(k==0) { WRITE_REG(0x0,0xD02201E4,0x0); WRITE_REG(0x000A000D,0xD02201E4,0x0); //osDelay(1000); addr = 0xd0310034; } else if(k==1) { WRITE_REG(0x0,0xD02201E4,0x0); WRITE_REG(0x000A0027,0xD02201E4,0x0); addr = 0xd031009c; } else { WRITE_REG(0x0,0xD02201E4,0x0); WRITE_REG(0x000A0041,0xD02201E4,0x0); addr = 0xd0310104; } gain_mis_base = IQ_GAIN_Mismatch_Correction(st,0,fftsize,addr); phase_mis_base = IQ_Phase_Mismatch_Correction(st,gain_mis_base,fftsize,addr); bt_iqimb_add_mismatch(0,gain_mis_base,phase_mis_base,0,0,addr); //no mismatch bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); // BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d ,gain_mis = %d,Energy = %d",addr,phase_mis_base,gain_mis_base,Energy1); if(Energy1>500) { if(ABS(gain_mis_base)>ABS(phase_mis_base)) { gain_mis_base = IQ_GAIN_Mismatch_Correction(st,0,fftsize,addr); phase_mis_base = IQ_Phase_Mismatch_Correction(st,gain_mis_base,fftsize,addr); } else { phase_mis_base = IQ_Phase_Mismatch_Correction(st,0,fftsize,addr); gain_mis_base = IQ_GAIN_Mismatch_Correction(st,phase_mis_base,fftsize,addr); } bt_iqimb_add_mismatch(0,gain_mis_base,phase_mis_base,0,0,addr); //no mismatch // BT_DRV_TRACE(1,"use time: %d ticks", (hal_sys_timer_get()-time_start)); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); // BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d ,gain_mis = %d,Energy = %d",addr,phase_mis_base,gain_mis_base,Energy1); } if(Energy1>500) { if(ABS(gain_mis_base)>ABS(phase_mis_base)) { gain_mis_base = IQ_GAIN_Mismatch_Correction(st,0,fftsize,addr); phase_mis_base = IQ_Phase_Mismatch_Correction(st,gain_mis_base,fftsize,addr); } else { phase_mis_base = IQ_Phase_Mismatch_Correction(st,0,fftsize,addr); gain_mis_base = IQ_GAIN_Mismatch_Correction(st,phase_mis_base,fftsize,addr); } // BT_DRV_TRACE(1,"use time: %d ticks", (hal_sys_timer_get()-time_start)); bt_iqimb_dma_enable(st->M0data,fftsize); while(1) { if(iqimb_dma_status==0) break; } caculate_energy_main_test(st,&Energy,&Energy1,fftsize); // BT_DRV_TRACE(4,"IQ phase correct addr = 0x%08x,phase_mis = %d ,gain_mis = %d,Energy = %d",addr,phase_mis_base,gain_mis_base,Energy1); } if(k==0) { chs= 27; addr = addr-13*4; } else if(k==1) { chs = 26; addr = addr - 12*4; } else { chs = 26; addr = addr -12*4; } bt_update_local_iq_calibration_val(k, gain_mis_base, phase_mis_base); for (int ch=0; ch