/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_scale_q15.c * Description: Multiplies a Q15 vector by a scalar * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupMath */ /** @addtogroup BasicScale @{ */ /** @brief Multiplies a Q15 vector by a scalar. @param[in] pSrc points to the input vector @param[in] scaleFract fractional portion of the scale value @param[in] shift number of bits to shift the result by @param[out] pDst points to the output vector @param[in] blockSize number of samples in each vector @return none @par Scaling and Overflow Behavior The input data *pSrc and scaleFract are in 1.15 format. These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. */ void arm_scale_q15(const q15_t *pSrc, q15_t scaleFract, int8_t shift, q15_t *pDst, uint32_t blockSize) { uint32_t blkCnt; /* Loop counter */ int8_t kShift = 15 - shift; /* Shift to apply after scaling */ #if defined(ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_DSP) q31_t inA1, inA2; q31_t out1, out2, out3, out4; /* Temporary output variables */ q15_t in1, in2, in3, in4; /* Temporary input variables */ #endif #endif #if defined(ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = blockSize >> 2U; while (blkCnt > 0U) { /* C = A * scale */ #if defined(ARM_MATH_DSP) /* read 2 times 2 samples at a time from source */ inA1 = read_q15x2_ia((q15_t **)&pSrc); inA2 = read_q15x2_ia((q15_t **)&pSrc); /* Scale inputs and store result in temporary variables * in single cycle by packing the outputs */ out1 = (q31_t)((q15_t)(inA1 >> 16) * scaleFract); out2 = (q31_t)((q15_t)(inA1)*scaleFract); out3 = (q31_t)((q15_t)(inA2 >> 16) * scaleFract); out4 = (q31_t)((q15_t)(inA2)*scaleFract); /* apply shifting */ out1 = out1 >> kShift; out2 = out2 >> kShift; out3 = out3 >> kShift; out4 = out4 >> kShift; /* saturate the output */ in1 = (q15_t)(__SSAT(out1, 16)); in2 = (q15_t)(__SSAT(out2, 16)); in3 = (q15_t)(__SSAT(out3, 16)); in4 = (q15_t)(__SSAT(out4, 16)); /* store result to destination */ write_q15x2_ia(&pDst, __PKHBT(in2, in1, 16)); write_q15x2_ia(&pDst, __PKHBT(in4, in3, 16)); #else *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16)); #endif /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = blockSize % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C = A * scale */ /* Scale input and store result in destination buffer. */ *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16)); /* Decrement loop counter */ blkCnt--; } } /** @} end of BasicScale group */