/** **************************************************************************************** * @addtogroup GLPC * @{ **************************************************************************************** */ /* * INCLUDE FILES **************************************************************************************** */ #include "rwip_config.h" #if (BLE_GL_COLLECTOR) #include "gap.h" #include "glpc.h" #include "glpc_task.h" #include "co_utils.h" #include "ke_mem.h" /* * TYPE DEFINITIONS **************************************************************************************** */ /* * LOCAL FUNCTION DEFINITIONS **************************************************************************************** */ /** **************************************************************************************** * @brief Initialization of the GLPC module. * This function performs all the initializations of the Profile module. * - Creation of database (if it's a service) * - Allocation of profile required memory * - Initialization of task descriptor to register application * - Task State array * - Number of tasks * - Default task handler * * @param[out] env Collector or Service allocated environment data. * @param[in|out] start_hdl Service start handle (0 - dynamically allocated), *only applies for services. * @param[in] app_task Application task number. * @param[in] sec_lvl Security level (AUTH, EKS and MI field of @see enum *attm_value_perm_mask) * @param[in] param Configuration parameters of profile collector or *service (32 bits aligned) * * @return status code to know if profile initialization succeed or not. **************************************************************************************** */ static uint8_t glpc_init(struct prf_task_env *env, uint16_t *start_hdl, uint16_t app_task, uint8_t sec_lvl, void *params) { uint8_t idx; //-------------------- allocate memory required for the profile //--------------------- struct glpc_env_tag *glpc_env = (struct glpc_env_tag *)ke_malloc( sizeof(struct glpc_env_tag), KE_MEM_ATT_DB); // allocate GLPC required environment variable env->env = (prf_env_t *)glpc_env; glpc_env->prf_env.app_task = app_task | (PERM_GET(sec_lvl, SVC_MI) ? PERM(PRF_MI, ENABLE) : PERM(PRF_MI, DISABLE)); glpc_env->prf_env.prf_task = env->task | PERM(PRF_MI, ENABLE); // initialize environment variable env->id = TASK_ID_GLPC; glpc_task_init(&(env->desc)); for (idx = 0; idx < GLPC_IDX_MAX; idx++) { glpc_env->env[idx] = NULL; // service is ready, go into an Idle state ke_state_set(KE_BUILD_ID(env->task, idx), GLPC_FREE); } return GAP_ERR_NO_ERROR; } /** **************************************************************************************** * @brief Destruction of the GLPC module - due to a reset for instance. * This function clean-up allocated memory (attribute database is destroyed by *another procedure) * * @param[in|out] env Collector or Service allocated environment data. **************************************************************************************** */ static void glpc_destroy(struct prf_task_env *env) { uint8_t idx; struct glpc_env_tag *glpc_env = (struct glpc_env_tag *)env->env; // cleanup environment variable for each task instances for (idx = 0; idx < GLPC_IDX_MAX; idx++) { if (glpc_env->env[idx] != NULL) { ke_free(glpc_env->env[idx]); } } // free profile environment variables env->env = NULL; ke_free(glpc_env); } /** **************************************************************************************** * @brief Handles Connection creation * * @param[in|out] env Collector or Service allocated environment data. * @param[in] conidx Connection index **************************************************************************************** */ static void glpc_create(struct prf_task_env *env, uint8_t conidx) { /* Put GLP Client in Idle state */ ke_state_set(KE_BUILD_ID(env->task, conidx), GLPC_IDLE); } /** **************************************************************************************** * @brief Handles Disconnection * * @param[in|out] env Collector or Service allocated environment data. * @param[in] conidx Connection index * @param[in] reason Detach reason **************************************************************************************** */ static void glpc_cleanup(struct prf_task_env *env, uint8_t conidx, uint8_t reason) { struct glpc_env_tag *glpc_env = (struct glpc_env_tag *)env->env; // clean-up environment variable allocated for task instance if (glpc_env->env[conidx] != NULL) { ke_free(glpc_env->env[conidx]); glpc_env->env[conidx] = NULL; } /* Put GLP Client in Free state */ ke_state_set(KE_BUILD_ID(env->task, conidx), GLPC_FREE); } /* * GLOBAL VARIABLE DEFINITIONS **************************************************************************************** */ /// GLPC Task interface required by profile manager const struct prf_task_cbs glpc_itf = { glpc_init, glpc_destroy, glpc_create, glpc_cleanup, }; /* * EXPORTED FUNCTIONS DEFINITIONS **************************************************************************************** */ const struct prf_task_cbs *glpc_prf_itf_get(void) { return &glpc_itf; } void glpc_enable_rsp_send(struct glpc_env_tag *glpc_env, uint8_t conidx, uint8_t status) { // Send to APP the details of the discovered attributes on GLPS struct glpc_enable_rsp *rsp = KE_MSG_ALLOC( GLPC_ENABLE_RSP, prf_dst_task_get(&(glpc_env->prf_env), conidx), prf_src_task_get(&(glpc_env->prf_env), conidx), glpc_enable_rsp); rsp->status = status; if (status == GAP_ERR_NO_ERROR) { rsp->gls = glpc_env->env[conidx]->gls; // Register GLPC task in gatt for indication/notifications prf_register_atthdl2gatt(&(glpc_env->prf_env), conidx, &(glpc_env->env[conidx]->gls.svc)); // Go to IDLE state ke_state_set(prf_src_task_get(&(glpc_env->prf_env), conidx), GLPC_IDLE); } ke_msg_send(rsp); } uint8_t glpc_unpack_meas_value(uint8_t *packed_meas, struct glp_meas *meas_val, uint16_t *seq_num) { uint8_t cursor = 0; // Flags meas_val->flags = packed_meas[cursor]; cursor += 1; // Sequence Number *seq_num = co_read16p(packed_meas + cursor); cursor += 2; // Base Time cursor += prf_unpack_date_time(packed_meas + cursor, &(meas_val->base_time)); // Time Offset if ((meas_val->flags & GLP_MEAS_TIME_OFF_PRES) != 0) { meas_val->time_offset = co_read16p(packed_meas + cursor); cursor += 2; } // Glucose Concentration, type and location if ((meas_val->flags & GLP_MEAS_GL_CTR_TYPE_AND_SPL_LOC_PRES) != 0) { meas_val->concentration = co_read16p(packed_meas + cursor); cursor += 2; /* type and location are 2 nibble values */ meas_val->location = packed_meas[cursor] >> 4; meas_val->type = packed_meas[cursor] & 0xF; cursor += 1; } // Sensor Status Annunciation if ((meas_val->flags & GLP_MEAS_SENS_STAT_ANNUN_PRES) != 0) { meas_val->status = co_read16p(packed_meas + cursor); cursor += 2; } return cursor; } uint8_t glpc_unpack_meas_ctx_value(uint8_t *packed_meas_ctx, struct glp_meas_ctx *meas_ctx_val, uint16_t *seq_num) { uint8_t cursor = 0; // Flags meas_ctx_val->flags = packed_meas_ctx[cursor]; cursor += 1; // Sequence Number *seq_num = co_read16p(packed_meas_ctx + cursor); cursor += 2; // Extended Flags if ((meas_ctx_val->flags & GLP_CTX_EXTD_F_PRES) != 0) { meas_ctx_val->ext_flags = packed_meas_ctx[cursor]; cursor += 1; } // Carbohydrate ID And Carbohydrate Present if ((meas_ctx_val->flags & GLP_CTX_CRBH_ID_AND_CRBH_PRES) != 0) { // Carbohydrate ID meas_ctx_val->carbo_id = packed_meas_ctx[cursor]; cursor += 1; // Carbohydrate Present meas_ctx_val->carbo_val = co_read16p(packed_meas_ctx + cursor); cursor += 2; } // Meal Present if ((meas_ctx_val->flags & GLP_CTX_MEAL_PRES) != 0) { meas_ctx_val->meal = packed_meas_ctx[cursor]; cursor += 1; } // Tester-Health Present if ((meas_ctx_val->flags & GLP_CTX_TESTER_HEALTH_PRES) != 0) { // Tester and Health are 2 nibble values meas_ctx_val->health = packed_meas_ctx[cursor] >> 4; meas_ctx_val->tester = packed_meas_ctx[cursor] & 0xF; cursor += 1; } // Exercise Duration & Exercise Intensity Present if ((meas_ctx_val->flags & GLP_CTX_EXE_DUR_AND_EXE_INTENS_PRES) != 0) { // Exercise Duration meas_ctx_val->exercise_dur = co_read16p(packed_meas_ctx + cursor); cursor += 2; // Exercise Intensity meas_ctx_val->exercise_intens = packed_meas_ctx[cursor]; cursor += 1; } // Medication ID And Medication Present if ((meas_ctx_val->flags & GLP_CTX_MEDIC_ID_AND_MEDIC_PRES) != 0) { // Medication ID meas_ctx_val->med_id = packed_meas_ctx[cursor]; cursor += 1; // Medication Present meas_ctx_val->med_val = co_read16p(packed_meas_ctx + cursor); cursor += 2; } // HbA1c Present if ((meas_ctx_val->flags & GLP_CTX_HBA1C_PRES) != 0) { // HbA1c meas_ctx_val->hba1c_val = co_read16p(packed_meas_ctx + cursor); cursor += 2; } return cursor; } uint8_t glpc_pack_racp_req(uint8_t *packed_val, const struct glp_racp_req *racp_req) { uint8_t cursor = 0; // command op code packed_val[cursor] = racp_req->op_code; cursor++; // operator of the function packed_val[cursor] = racp_req->filter.operator; cursor++; // Abort operation don't require any other parameter if (racp_req->op_code == GLP_REQ_ABORT_OP) { return cursor; } // check if request requires operand (filter) if ((racp_req->filter.operator>= GLP_OP_LT_OR_EQ) && (racp_req->filter.operator<= GLP_OP_WITHIN_RANGE_OF)) { // command filter type packed_val[cursor] = racp_req->filter.filter_type; cursor++; // filter uses sequence number if (racp_req->filter.filter_type == GLP_FILTER_SEQ_NUMBER) { // minimum value if ((racp_req->filter.operator== GLP_OP_GT_OR_EQ) || (racp_req->filter.operator== GLP_OP_WITHIN_RANGE_OF)) { // minimum value co_write16p(packed_val + cursor, racp_req->filter.val.seq_num.min); cursor += 2; } // maximum value if ((racp_req->filter.operator== GLP_OP_LT_OR_EQ) || (racp_req->filter.operator== GLP_OP_WITHIN_RANGE_OF)) { // maximum value co_write16p(packed_val + cursor, racp_req->filter.val.seq_num.max); cursor += 2; } } // filter uses user facing time else { // retrieve minimum value if ((racp_req->filter.operator== GLP_OP_GT_OR_EQ) || (racp_req->filter.operator== GLP_OP_WITHIN_RANGE_OF)) { // retrieve minimum facing time cursor += prf_pack_date_time((packed_val + cursor), &(racp_req->filter.val.time.facetime_min)); } // retrieve maximum value if ((racp_req->filter.operator== GLP_OP_LT_OR_EQ) || (racp_req->filter.operator== GLP_OP_WITHIN_RANGE_OF)) { // retrieve maximum facing time cursor += prf_pack_date_time((packed_val + cursor), &(racp_req->filter.val.time.facetime_max)); } } } return cursor; } uint8_t glpc_unpack_racp_rsp(uint8_t *packed_val, struct glp_racp_rsp *racp_rsp) { uint8_t cursor = 0; // response op code racp_rsp->op_code = packed_val[cursor]; cursor++; // operator (null) cursor++; // number of records if (racp_rsp->op_code == GLP_REQ_NUM_OF_STRD_RECS_RSP) { racp_rsp->operand.num_of_record = co_read16p(packed_val + cursor); cursor += 2; } else { // requested opcode racp_rsp->operand.rsp.op_code_req = packed_val[cursor]; cursor++; // command status racp_rsp->operand.rsp.status = packed_val[cursor]; cursor++; } return cursor; } uint8_t glpc_validate_request(struct glpc_env_tag *glpc_env, uint8_t conidx, uint8_t char_code) { uint8_t status = GAP_ERR_NO_ERROR; // check if feature val characteristic exists if (glpc_env->env[conidx]->gls.chars[char_code].val_hdl == ATT_INVALID_HANDLE) { status = PRF_ERR_INEXISTENT_HDL; } return (status); } #endif /* (BLE_GL_COLLECTOR) */ /// @} GLPC