/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_sin_f32.c
* Description: Fast sine calculation for floating-point values
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
#include "arm_common_tables.h"
/**
@ingroup groupFastMath
*/
/**
@defgroup sin Sine
Computes the trigonometric sine function using a combination of table lookup
and linear interpolation. There are separate functions for
Q15, Q31, and floating-point data types.
The input to the floating-point version is in radians while the
fixed-point Q15 and Q31 have a scaled input with the range
[0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
value of 2*pi wraps around to 0.
The implementation is based on table lookup using 256 values together with linear interpolation.
The steps used are:
-# Calculation of the nearest integer table index
-# Compute the fractional portion (fract) of the table index.
-# The final result equals (1.0f-fract)*a + fract*b;
where
b = Table[index]; c = Table[index+1];*/ /** @addtogroup sin @{ */ /** @brief Fast approximation to the trigonometric sine function for floating-point data. @param[in] x input value in radians. @return sin(x) */ float32_t arm_sin_f32( float32_t x) { float32_t sinVal, fract, in; /* Temporary input, output variables */ uint16_t index; /* Index variable */ float32_t a, b; /* Two nearest output values */ int32_t n; float32_t findex; /* input x is in radians */ /* Scale input to [0 1] range from [0 2*PI] , divide input by 2*pi */ in = x * 0.159154943092f; /* Calculation of floor value of input */ n = (int32_t) in; /* Make negative values towards -infinity */ if (in < 0.0f) { n--; } /* Map input value to [0 1] */ in = in - (float32_t) n; /* Calculation of index of the table */ findex = (float32_t)FAST_MATH_TABLE_SIZE * in; index = (uint16_t)findex; /* when "in" is exactly 1, we need to rotate the index down to 0 */ if (index >= FAST_MATH_TABLE_SIZE) { index = 0; findex -= (float32_t)FAST_MATH_TABLE_SIZE; } /* fractional value calculation */ fract = findex - (float32_t) index; /* Read two nearest values of input value from the sin table */ a = sinTable_f32[index]; b = sinTable_f32[index+1]; /* Linear interpolation process */ sinVal = (1.0f - fract) * a + fract * b; /* Return output value */ return (sinVal); } /** @} end of sin group */