Compare commits

..

No commits in common. "7facfe997caefbe0612ca18ce2be11892fd65c66" and "56d75943a198bee6f888f7afd16a13f4e89bc1a0" have entirely different histories.

1021 changed files with 285633 additions and 230734 deletions

View File

@ -1 +0,0 @@
BasedOnStyle: LLVM

View File

@ -1,16 +0,0 @@
{
"name": "Open PineBuds Pro - VS Code Development Environment",
"build": {
"dockerfile": "../Dockerfile",
"context": ".."
},
"extensions": [
"ms-vscode.cmake-tools",
"ms-vscode.cpptools"
],
"runArgs": [
"--privileged"
],
"userEnvProbe": "loginInteractiveShell",
"remoteUser": "root"
}

View File

@ -1,15 +0,0 @@
version: 2
updates:
- package-ecosystem: "docker"
directory: "/"
schedule:
interval: "weekly"
commit-message:
prefix: "chore(deps)"
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"
commit-message:
prefix: "chore(ci)"

View File

@ -1,36 +0,0 @@
name: Container image builder workflow
on:
push:
branches: [main]
workflow_dispatch:
concurrency:
group: gh-ref-${{ github.ref }}
cancel-in-progress: true
jobs:
build-and-push-images:
if: ${{ github.repository == 'pine64/OpenPineBuds' }}
name: Build and push container image for PineBuds Pro SDK to GHCR.io
runs-on: ubuntu-latest
steps:
- name: Checkout sources
uses: actions/checkout@v4
- name: Build images
id: build
uses: redhat-actions/buildah-build@v2
with:
image: ${{ github.repository }}
context: /
tags: ${{ contains(github.ref_name, 'main') && 'latest' || github.ref_name }}-sdk
containerfiles: /Dockerfile
- name: Push container
uses: redhat-actions/push-to-registry@v2
with:
image: ${{ steps.build.outputs.image }}
tags: ${{ steps.build.outputs.tags }}
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}

View File

@ -1,17 +0,0 @@
name: CI
on: [push, pull_request]
jobs:
build-firmware:
runs-on: ubuntu-latest
container:
image: ghcr.io/pine64/openpinebuds:latest-sdk
steps:
- name: Build the main firmware
run: cd /usr/src/ && ./build.sh || cat /usr/src/log.txt
- name: Archive produced firmware
uses: actions/upload-artifact@v3
with:
path: /usr/src/out/open_source/open_source.bin

3
.gitignore vendored
View File

@ -18,8 +18,6 @@
!.gitignore !.gitignore
!.gitattributes !.gitattributes
!.mailmap !.mailmap
!.github
!.devcontainer
# Backup files # Backup files
*~ *~
@ -27,7 +25,6 @@
*.BAK *.BAK
*.orig *.orig
\#*# \#*#
firmware-backups/
# Tag files # Tag files
/tags /tags

View File

@ -1,48 +1,23 @@
FROM debian:bullseye-slim AS base FROM rust:1-slim-buster as programmer_build
LABEL maintainer="Ben V. Brown <ralim@ralimtek.com>"
FROM base AS rust_build
LABEL org.opencontainers.image.authors = "Ben V. Brown <ralim@ralimtek.com>, Dom Rodriguez <shymega@shymega.org.uk>"
WORKDIR /usr/src WORKDIR /usr/src
ENV PATH="/root/.cargo/bin:$PATH" RUN apt-get update && apt-get install -y git pkg-config libudev-dev bc
RUN git clone https://github.com/Ralim/bestool.git
RUN cd /usr/src/bestool/bestool/ && cargo build --release
RUN apt-get update \ FROM debian:buster
&& apt-get install -y \ LABEL maintainer="Ben V. Brown <ralim@ralimtek.com>"
bc \
build-essential \
curl \
git \
libudev-dev \
pkg-config \
&& curl https://sh.rustup.rs -sSf | bash -s -- -y \
&& git clone https://github.com/Ralim/bestool.git \
&& cd /usr/src/bestool/bestool/ \
&& cargo build --release
FROM base as dev_env
WORKDIR /usr/src RUN apt update && apt-get install -y make git bash curl tar bzip2 bc xxd ffmpeg
RUN apt-get update \ WORKDIR /src
&& apt-get install -y \ # Git trust
bash \ RUN git config --global --add safe.directory /src
bc \ # Grab arm compiler; we have to use this ancient one or else we get boot failures. Probably subtle link issues.
bzip2 \
curl \
ffmpeg \
clang-format \
git \
make \
tar \
xxd \
&& git config --global --add safe.directory /src \
&& mkdir -pv /src \
&& curl \
https://armkeil.blob.core.windows.net/developer/Files/downloads/gnu-rm/9-2019q4/gcc-arm-none-eabi-9-2019-q4-major-$(arch)-linux.tar.bz2 | tar -xj -C /src/
RUN curl https://armkeil.blob.core.windows.net/developer/Files/downloads/gnu-rm/9-2019q4/gcc-arm-none-eabi-9-2019-q4-major-x86_64-linux.tar.bz2 | tar -xj
ENV PATH="${PATH}:/src/gcc-arm-none-eabi-9-2019-q4-major/bin" ENV PATH="${PATH}:/src/gcc-arm-none-eabi-9-2019-q4-major/bin"
COPY --from=rust_build /usr/src/bestool/bestool/target/release/bestool /usr/local/bin/bestool WORKDIR /usr/src
COPY --from=programmer_build /usr/src/bestool/bestool/target/release/bestool /usr/local/bin/bestool
COPY . /usr/src COPY . /usr/src
ENTRYPOINT ["/bin/bash"]

View File

@ -195,19 +195,6 @@ $(error Invalid target: T=$(T))
endif endif
export T export T
# Default audio source: en (English, config/_default_cfg_src_/res/en)
AUDIO ?= en
AUDIO := $(strip $(AUDIO))
# Select audio source
AUDIO_FOLDER = config/_default_cfg_src_/res/$(AUDIO)
ifeq ($(AUDIO),)
$(error Please specify the sound language in the command line: AUDIO=<audioName>)
endif
ifeq ($(wildcard $(AUDIO_FOLDER)),)
$(error Invalid target: AUDIO=$(AUDIO))
endif
export AUDIO
KBUILD_OUTPUT := $(KBUILD_OUTPUT)/$(T) KBUILD_OUTPUT := $(KBUILD_OUTPUT)/$(T)
# That's our default target when none is given on the command line # That's our default target when none is given on the command line
@ -228,7 +215,7 @@ KBUILD_OUTPUT := $(shell ( if not exist $(KBUILD_OUTPUT)\ mkdir $(KBUILD_OUTPUT)
KBUILD_OUTPUT := $(subst \,/,$(KBUILD_OUTPUT)) KBUILD_OUTPUT := $(subst \,/,$(KBUILD_OUTPUT))
else else
KBUILD_OUTPUT := $(shell mkdir -p $(KBUILD_OUTPUT) && cd $(KBUILD_OUTPUT) \ KBUILD_OUTPUT := $(shell mkdir -p $(KBUILD_OUTPUT) && cd $(KBUILD_OUTPUT) \
&& pwd) && /bin/pwd)
endif endif
$(if $(KBUILD_OUTPUT),, \ $(if $(KBUILD_OUTPUT),, \
@ -1050,32 +1037,7 @@ endif
PHONY += FORCE PHONY += FORCE
FORCE: ; FORCE: ;
### Formatting
ALL_SOURCE = $(shell find . \( -type f \( -name '*.c' -o -name '*.cpp' \) \) )
style:
@for src in $(ALL_SOURCE) $(ALL_INCLUDES); do \
echo "Formatting $$src..." ; \
clang-format -i "$$src" ; \
done
@echo "Done"
check-style:
@for src in $(ALL_SOURCE) $(ALL_INCLUDES) ; do \
var=`clang-format "$$src" | diff "$$src" - | wc -l` ; \
if [ $$var -ne 0 ] ; then \
echo "$$src does not respect the coding style (diff: $$var lines)" ; \
clang-format "$$src" | diff "$$src" -; \
exit 1 ; \
fi ; \
done
@echo "Style check passed"
PHONY += style check-style
# Declare the contents of the .PHONY variable as phony. We keep that # Declare the contents of the .PHONY variable as phony. We keep that
# information in a variable so we can use it in if_changed and friends. # information in a variable so we can use it in if_changed and friends.
.PHONY: $(PHONY) .PHONY: $(PHONY)

View File

@ -1,13 +1,11 @@
# PineBuds SDK # PineBuds Open Source SDK
This is just the SDK from the wiki (so far), with dockerfile setup to make building easier, and my reverse engineered bestool integrated. This is just the SDK from the wiki (so far), with dockerfile setup to make building easier, and my reverse engineered bestool integrated.
The docker image will build bestool for you first, then drop you into the dev container for building and flashing the buds. The docker image will build bestool for you first, then drop you into the dev container for building and flashing the buds.
NOTE: Currently, the SDK is not licensed under an 'open source' license. We are working to resolve this issue, and will be reaching out to contributors and other parties soon. For now, consider this SDK as 'All Rights Reserved'/'shared source'.
## Usage ## Usage
To use this setup to build & flash your PineBuds you will need a system with docker setup at the minimum. To use this setup to build & flash your pine buds you will need a system with docker setup at the minimum.
Docker is used to (1) make this all much more reprodicible and easier to debug and (2) so that we dont mess with your host system at all. Docker is used to (1) make this all much more reprodicible and easier to debug and (2) so that we dont mess with your host system at all.
In order to program the buds from inside of the docker container; privileged mode is used. So do be a tad more careful than usual. In order to program the buds from inside of the docker container; privileged mode is used. So do be a tad more careful than usual.
@ -20,10 +18,6 @@ In order to program the buds from inside of the docker container; privileged mod
./build.sh # This will run make and build the output program. If you have weird build errors try running clean.sh or rm -rf'ing the out folder first ./build.sh # This will run make and build the output program. If you have weird build errors try running clean.sh or rm -rf'ing the out folder first
# Now that the firmware has finished building; if there are no errors you can load it to your buds # Now that the firmware has finished building; if there are no errors you can load it to your buds
# You may want to back up the firmware currently on the buds - it will be deleted when the new firmware is loaded on:
./backup.sh
# You may need to take the buds out of the case, wait three seconds, place them back. This wakes them up and the programmer needs to catch this reboot. # You may need to take the buds out of the case, wait three seconds, place them back. This wakes them up and the programmer needs to catch this reboot.
# You can try the helper script by running # You can try the helper script by running
@ -36,12 +30,12 @@ bestool write-image out/open_source/open_source.bin --port /dev/ttyACM0
bestool write-image out/open_source/open_source.bin --port /dev/ttyACM1 bestool write-image out/open_source/open_source.bin --port /dev/ttyACM1
``` ```
## Changelist from stock open source SDK ## Changelist from stock opeen source SDK
- Long hold (5 ish seconds) the button on the back when buds are in the case to force a device reboot (so it can be programmed) - Long hold (5 ish seconds) the button on the back when buds are in the case to force a device reboot (so it can be programmed)
- Use the resistor in the buds to pick Left/Right rather than TWS master/slave pairing - Use the resistor in the buds to pick Left/Right rather than TWS master/slave pairing
- Pressing the button on the back while in the case no longer triggers DFU mode - Pressing the button on the back while in the case no longer triggers DFU mode
- Debugging baud rate raised to 2000000 to match stock firmware - Debugging baud rate raised to 200000 to match stock firmware
- Fixed TWS operation such that putting either bud into the case correctly switches to the other bud - Fixed TWS operation such that putting either bud into the case correctly switches to the other bud
- Working (mostly) audio controls using the touch button on the buds - Working (mostly) audio controls using the touch button on the buds
- Turned off showing up as a HID keyboard, as not sure _why_ you would; but it stops android nagging me about a new keyboard - Turned off showing up as a HID keyboard, as not sure _why_ you would; but it stops android nagging me about a new keyboard
@ -73,27 +67,9 @@ bestool write-image out/open_source/open_source.bin --port /dev/ttyACM1
- Quad tap : Volume Down - Quad tap : Volume Down
## Changing audio alerts ## Changing audio alerts
The audio alerts are stored in:
The default audio alerts are stored in:
`config/_default_cfg_src_/res/en/` `config/_default_cfg_src_/res/en/`
If you want to change the alert to a custom sound, just replace the sound file you'd like to change You can convert these .txt files to .wav files by using the script `convert.sh` with the -T flag, the resulting file will be named `output.wav`.
(ie `config/_default_cfg_src_/res/en/SOUND_POWER_ON.opus`) with your own audio file with the same base If you want to change the alert to a custom sound use the -W flag on your wav file and then move the resulting `SOUND.txt` file to the place you want to replace (eg. `config/_default_cfg_src_/res/en/SOUND_POWER_ON.txt`)
name (ie `config/_default_cfg_src_/res/en/SOUND_POWER_ON.mp3`) and recompile with `./build.sh`!
### Language support
The `AUDIO` environment variable can be set when running the `build.sh` script to load sound files
for languages other than the default English. For example, running `AUDIO=cn ./build.sh` will load sounds files from
`config/_default_cfg_src_/res/cn/` instead of the default `en/` folder.
The current languages supported with sound files are English (`en`) and Chinese (`cn`). Other languages
(or other sets of custom sounds) may be added by adding all the correct sound files into a
`config/_default_cfg_src_/res/<custom_sounds>/` directory and building with `AUDIO=<custom_sounds> ./build.sh`.
### Blue light when connected
The firmware can be configured to either have a blinking blue light when connected or not.
Build with `CONNECTED_BLUE_LIGHT=1 ./build.sh` to enable blinking when connected,
or `CONNECTED_BLUE_LIGHT=0 ./build.sh` (or just the default `./build.sh`) to keep the LEDs off when connected.

View File

@ -12,6 +12,9 @@ obj-y += btusbaudio/
obj-y += usbaudio/ obj-y += usbaudio/
endif endif
ifeq ($(APP_TEST_SDMMC),1)
obj-y += sdmmc/
endif
ifeq ($(ANC_APP),1) ifeq ($(ANC_APP),1)
obj-y += anc/ obj-y += anc/
@ -32,6 +35,7 @@ endif
subdir-ccflags-y += -Iapps/apptester \ subdir-ccflags-y += -Iapps/apptester \
-Iapps/audioplayers \ -Iapps/audioplayers \
-Iapps/common \ -Iapps/common \
-Iapps/sdmmc \
-Iapps/main \ -Iapps/main \
-Iapps/cmd \ -Iapps/cmd \
-Iapps/key \ -Iapps/key \

View File

@ -17,29 +17,30 @@
#define __ANC_WNR_H__ #define __ANC_WNR_H__
// #include "plat_types.h" // #include "plat_types.h"
#include <stdint.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
typedef enum { typedef enum
ANC_WNR_OPEN_MODE_STANDALONE = 0, {
ANC_WNR_OPEN_MODE_CONFIGURE, ANC_WNR_OPEN_MODE_STANDALONE = 0,
ANC_WNR_OPEN_MODE_CONFIGURE,
ANC_WNR_OPEN_MODE_QTY ANC_WNR_OPEN_MODE_QTY
} anc_wnr_open_mode_t; } anc_wnr_open_mode_t;
void anc_release_gain(void); void anc_release_gain(void);
typedef enum { typedef enum
APP_WNR_NOTIFY_DETECT_RESULT, {
APP_WNR_REQUEST_DETECT_RESULT, APP_WNR_NOTIFY_DETECT_RESULT,
APP_WNR_RESPONSE_DETECT_RESULT, APP_WNR_REQUEST_DETECT_RESULT,
APP_WNR_PROCESS_DETECT_RESULT, APP_WNR_RESPONSE_DETECT_RESULT,
APP_WNR_SET_TRIGGER, APP_WNR_PROCESS_DETECT_RESULT,
APP_WNR_EXCUTE_TRIGGER, APP_WNR_SET_TRIGGER,
APP_WNR_SHARE_MODULE_INFO, APP_WNR_EXCUTE_TRIGGER,
APP_WNR_SHARE_MODULE_INFO,
} anc_wnr_sync_ctrl_internal_event_e; } anc_wnr_sync_ctrl_internal_event_e;
int32_t anc_wnr_ctrl(int32_t sample_rate, int32_t frame_len); int32_t anc_wnr_ctrl(int32_t sample_rate, int32_t frame_len);

View File

@ -1,5 +1,6 @@
/*************************************************************************** /***************************************************************************
* *
* Copyright 2015-2019 BES. * Copyright 2015-2019 BES.
@ -16,43 +17,49 @@
* *
****************************************************************************/ ****************************************************************************/
#include "anc_assist.h" #include "anc_assist.h"
#include "anc_assist_algo.h" #include "hal_trace.h"
#include "anc_process.h"
#include "arm_math.h" #include "arm_math.h"
#include "audio_dump.h" #include "audio_dump.h"
#include "audioflinger.h"
#include "hal_aud.h"
#include "hal_codec.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "speech_cfg.h" #include "speech_cfg.h"
#include "speech_memory.h" #include "anc_process.h"
#include "speech_ssat.h" #include "audioflinger.h"
#include "anc_assist_algo.h"
#include "hal_codec.h"
#include "audioflinger.h"
#include "hal_timer.h"
#include "hal_aud.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include "hal_aud.h"
#include "anc_process.h"
#include "anc_assist_algo.h"
#include "speech_memory.h"
#include "speech_ssat.h"
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
#include "main_classify.h" #include "main_classify.h"
#endif #endif
static void _close_mic_anc_assist(); static void _close_mic_anc_assist();
static void _open_mic_anc_assist(); static void _open_mic_anc_assist();
#define _SAMPLE_RATE (16000) #define _SAMPLE_RATE (16000)
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
#define _FRAME_LEN (128) #define _FRAME_LEN (128)
#else #else
#define _FRAME_LEN (160) #define _FRAME_LEN (160)
#endif #endif
#define _CHANNEL_NUM_MAX (3) #define _CHANNEL_NUM_MAX (3)
#define SAMPLE_BYTES (sizeof(ASSIST_PCM_T)) #define SAMPLE_BYTES (sizeof(ASSIST_PCM_T))
#define AF_STREAM_BUFF_SIZE (_FRAME_LEN * SAMPLE_BYTES * _CHANNEL_NUM_MAX * 2) #define AF_STREAM_BUFF_SIZE (_FRAME_LEN * SAMPLE_BYTES * _CHANNEL_NUM_MAX * 2)
#define ANC_ADPT_STREAM_ID AUD_STREAM_ID_3 #define ANC_ADPT_STREAM_ID AUD_STREAM_ID_3
#define _FRAME_LEN_MAX (160) #define _FRAME_LEN_MAX (160)
#define _SAMPLE_BITS_MAX (32) #define _SAMPLE_BITS_MAX (32)
static uint8_t __attribute__((aligned(4))) af_stream_buff[AF_STREAM_BUFF_SIZE]; static uint8_t __attribute__((aligned(4))) af_stream_buff[AF_STREAM_BUFF_SIZE];
static ASSIST_PCM_T af_stream_mic1[_FRAME_LEN_MAX * (_SAMPLE_BITS_MAX / 8)]; static ASSIST_PCM_T af_stream_mic1[_FRAME_LEN_MAX * (_SAMPLE_BITS_MAX / 8)];
@ -62,322 +69,377 @@ int MIC_NUM = 0;
int MIC_MAP = 0; int MIC_MAP = 0;
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
#define _PLAY_SAMPLE_RATE (8000) #define _PLAY_SAMPLE_RATE (8000)
#define _PLAY_FRAME_LEN (80) #define _PLAY_FRAME_LEN (80)
#define AF_PLAY_STREAM_BUFF_SIZE (_PLAY_FRAME_LEN * SAMPLE_BYTES * 1 * 2) #define AF_PLAY_STREAM_BUFF_SIZE (_PLAY_FRAME_LEN * SAMPLE_BYTES * 1 * 2)
static uint8_t __attribute__((aligned(4))) static uint8_t __attribute__((aligned(4))) af_play_stream_buff[AF_PLAY_STREAM_BUFF_SIZE];
af_play_stream_buff[AF_PLAY_STREAM_BUFF_SIZE];
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
ClassifyState *NoiseClassify_st = NULL; ClassifyState * NoiseClassify_st = NULL;
#endif #endif
#if defined(ANC_ASSIST_PILOT_ENABLED) || defined(ANC_ASSIST_HESS_ENABLED) || \ #if defined(ANC_ASSIST_PILOT_ENABLED) || defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) || defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
defined(ANC_ASSIST_PNC_ENABLED) || \
defined(ANC_ASSIST_DEHOWLING_ENABLED) || \
defined(ANC_ASSIST_WNR_ENABLED) || \
defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
extern const struct_anc_cfg *anc_coef_list_48k[1]; extern const struct_anc_cfg * anc_coef_list_48k[1];
void anc_assist_change_curve(int curve_id) { void anc_assist_change_curve(int curve_id){
TRACE(2, "[%s] change anc curve %d", __func__, curve_id); TRACE(2,"[%s] change anc curve %d",__func__,curve_id);
anc_set_cfg(anc_coef_list_48k[0], ANC_FEEDFORWARD, ANC_GAIN_NO_DELAY); anc_set_cfg(anc_coef_list_48k[0],ANC_FEEDFORWARD,ANC_GAIN_NO_DELAY);
anc_set_cfg(anc_coef_list_48k[0], ANC_FEEDBACK, ANC_GAIN_NO_DELAY); anc_set_cfg(anc_coef_list_48k[0],ANC_FEEDBACK,ANC_GAIN_NO_DELAY);
} }
bool audio_engine_tt_is_on() { return 1; } bool audio_engine_tt_is_on(){
return 1;
}
#define _tgt_ff_gain (512) #define _tgt_ff_gain (512)
void anc_assist_set_anc_gain(float gain_ch_l, float gain_ch_r, void anc_assist_set_anc_gain(float gain_ch_l, float gain_ch_r,enum ANC_TYPE_T anc_type){
enum ANC_TYPE_T anc_type) {
TRACE(2, "[%s] set anc gain %d", __func__, (int)(100 * gain_ch_l)); TRACE(2,"[%s] set anc gain %d",__func__,(int)(100*gain_ch_l));
uint32_t tgt_ff_gain_l, tgt_ff_gain_r; uint32_t tgt_ff_gain_l,tgt_ff_gain_r;
tgt_ff_gain_l = (uint32_t)(_tgt_ff_gain * gain_ch_l); tgt_ff_gain_l = (uint32_t)(_tgt_ff_gain*gain_ch_l);
tgt_ff_gain_r = (uint32_t)(_tgt_ff_gain * gain_ch_r); tgt_ff_gain_r = (uint32_t)(_tgt_ff_gain*gain_ch_r);
anc_set_gain(tgt_ff_gain_l, tgt_ff_gain_r, anc_type); anc_set_gain(tgt_ff_gain_l,tgt_ff_gain_r,anc_type);
} }
#endif #endif
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
static LeakageDetectionState *pilot_st = NULL; static LeakageDetectionState * pilot_st = NULL;
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \
defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
static ANCAssistMultiState *anc_assist_multi_st = NULL; static ANCAssistMultiState * anc_assist_multi_st = NULL;
#endif #endif
ANC_ASSIST_MODE_T g_anc_assist_mode = ANC_ASSIST_MODE_QTY; ANC_ASSIST_MODE_T g_anc_assist_mode = ANC_ASSIST_MODE_QTY;
void anc_assist_open(ANC_ASSIST_MODE_T mode) { void anc_assist_open(ANC_ASSIST_MODE_T mode){
g_anc_assist_mode = mode; g_anc_assist_mode = mode;
// normal init
//normal init
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
pilot_st = LeakageDetection_create(160, 0); pilot_st = LeakageDetection_create(160,0);
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \ #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) anc_assist_multi_st = ANCAssistMulti_create(_SAMPLE_RATE,_FRAME_LEN,128);
anc_assist_multi_st = ANCAssistMulti_create(_SAMPLE_RATE, _FRAME_LEN, 128);
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
NoiseClassify_st = classify_create(_SAMPLE_RATE, _FRAME_LEN); NoiseClassify_st = classify_create(_SAMPLE_RATE, _FRAME_LEN);
#endif #endif
// audio_dump_init(160,sizeof(short),3); // audio_dump_init(160,sizeof(short),3);
if (mode == ANC_ASSIST_MODE_QTY) {
return; if( mode == ANC_ASSIST_MODE_QTY){
} else { return;
if (mode == ANC_ASSIST_STANDALONE || mode == ANC_ASSIST_MUSIC) {
_open_mic_anc_assist();
} }
if (mode == ANC_ASSIST_PHONE_8K) { else{
// normal init 8k if(mode == ANC_ASSIST_STANDALONE || mode == ANC_ASSIST_MUSIC ){
} else if (mode == ANC_ASSIST_PHONE_16K) { _open_mic_anc_assist();
// normal init 16k }
if(mode == ANC_ASSIST_PHONE_8K){
// normal init 8k
}
else if(mode == ANC_ASSIST_PHONE_16K){
// normal init 16k
}
} }
}
} }
void anc_assist_close() {
void anc_assist_close(){
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
LeakageDetection_destroy(pilot_st); LeakageDetection_destroy(pilot_st);
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \ #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) ANCAssistMulti_destroy(anc_assist_multi_st);
ANCAssistMulti_destroy(anc_assist_multi_st);
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
classify_destroy(NoiseClassify_st); classify_destroy(NoiseClassify_st);
#endif #endif
// ext_heap_deinit(); // ext_heap_deinit();
if (g_anc_assist_mode == ANC_ASSIST_MODE_QTY) { if( g_anc_assist_mode == ANC_ASSIST_MODE_QTY){
return; return;
} else {
if (g_anc_assist_mode == ANC_ASSIST_STANDALONE ||
g_anc_assist_mode == ANC_ASSIST_MUSIC) {
_close_mic_anc_assist();
} }
if (g_anc_assist_mode == ANC_ASSIST_PHONE_8K) { else{
// normal init 8k if(g_anc_assist_mode == ANC_ASSIST_STANDALONE || g_anc_assist_mode == ANC_ASSIST_MUSIC ){
} else if (g_anc_assist_mode == ANC_ASSIST_PHONE_16K) { _close_mic_anc_assist();
// normal init 16k }
if(g_anc_assist_mode == ANC_ASSIST_PHONE_8K){
// normal init 8k
}
else if(g_anc_assist_mode == ANC_ASSIST_PHONE_16K){
// normal init 16k
}
} }
}
} }
extern ASSIST_PCM_T ref_buf_data[80]; extern ASSIST_PCM_T ref_buf_data[80];
void anc_assist_process(uint8_t *buf, int len) { void anc_assist_process(uint8_t * buf, int len){
int32_t frame_len = len / SAMPLE_BYTES / MIC_NUM;
ASSERT(frame_len == _FRAME_LEN, "[%s] frame len(%d) is invalid.", __func__,
frame_len);
ASSIST_PCM_T *pcm_buf = (ASSIST_PCM_T *)buf;
ASSIST_PCM_T *mic1 = (ASSIST_PCM_T *)af_stream_mic1; int32_t frame_len = len / SAMPLE_BYTES / MIC_NUM;
ASSIST_PCM_T *mic2 = (ASSIST_PCM_T *)af_stream_mic2; ASSERT(frame_len == _FRAME_LEN, "[%s] frame len(%d) is invalid.", __func__, frame_len);
ASSIST_PCM_T *mic3 = (ASSIST_PCM_T *)af_stream_mic3; ASSIST_PCM_T *pcm_buf = (ASSIST_PCM_T *)buf;
for (int32_t i = 0; i < frame_len; i++) { ASSIST_PCM_T *mic1 = (ASSIST_PCM_T *)af_stream_mic1;
mic1[i] = pcm_buf[MIC_NUM * i + 0]; ASSIST_PCM_T *mic2 = (ASSIST_PCM_T *)af_stream_mic2;
mic2[i] = pcm_buf[MIC_NUM * i + 1]; ASSIST_PCM_T *mic3 = (ASSIST_PCM_T *)af_stream_mic3;
mic3[i] = pcm_buf[MIC_NUM * i + 2];
} for (int32_t i=0; i<frame_len; i++) {
// audio_dump_clear_up(); mic1[i] = pcm_buf[MIC_NUM*i + 0];
// audio_dump_add_channel_data(0,mic1,160); mic2[i] = pcm_buf[MIC_NUM*i + 1];
// audio_dump_add_channel_data(1,mic2,160); mic3[i] = pcm_buf[MIC_NUM*i + 2];
// audio_dump_add_channel_data(2,mic3,160); }
// audio_dump_run(); // audio_dump_clear_up();
// TRACE(2,"in callback"); // audio_dump_add_channel_data(0,mic1,160);
// audio_dump_add_channel_data(1,mic2,160);
// audio_dump_add_channel_data(2,mic3,160);
// audio_dump_run();
// TRACE(2,"in callback");
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
LeakageDetection_process(pilot_st, AF_ANC_OFF, mic3, ref_buf_data, frame_len); LeakageDetection_process(pilot_st,AF_ANC_OFF,mic3,ref_buf_data,frame_len);
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \ #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) ANCAssistMulti_process(anc_assist_multi_st,mic1,mic2,mic3,frame_len);
ANCAssistMulti_process(anc_assist_multi_st, mic1, mic2, mic3, frame_len);
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
static int last_classify_res = -1; static int last_classify_res = -1;
classify_process(NoiseClassify_st, mic1, last_classify_res); classify_process(NoiseClassify_st, mic1, last_classify_res);
#endif #endif
if (g_anc_assist_mode == ANC_ASSIST_PHONE_16K) { if(g_anc_assist_mode == ANC_ASSIST_PHONE_16K){
// down sample //down sample
} }
// process fft //process fft
// wnr
// pnc
// hess
// pilot adpt
// wnr
// pnc
// hess
// pilot adpt
} }
static uint32_t anc_assist_callback(uint8_t *buf, uint32_t len) {
static uint32_t anc_assist_callback(uint8_t *buf, uint32_t len){
#ifdef TEST_MIPS #ifdef TEST_MIPS
start_ticks = hal_fast_sys_timer_get(); start_ticks = hal_fast_sys_timer_get();
#endif #endif
anc_assist_process(buf, len); anc_assist_process(buf,len);
#ifdef TEST_MIPS #ifdef TEST_MIPS
end_ticks = hal_fast_sys_timer_get(); end_ticks = hal_fast_sys_timer_get();
used_mips = (end_ticks - start_ticks) * 1000 / (start_ticks - pre_ticks); used_mips = (end_ticks - start_ticks) * 1000 / (start_ticks - pre_ticks);
TRACE(2, "[%s] Usage: %d in a thousand (MIPS).", __func__, used_mips); TRACE(2,"[%s] Usage: %d in a thousand (MIPS).", __func__, used_mips);
// wnr_ticks = start_ticks; //wnr_ticks = start_ticks;
// TRACE(2,"[%s] WNR frame takes %d ms.", __func__, //TRACE(2,"[%s] WNR frame takes %d ms.", __func__, FAST_TICKS_TO_MS((start_ticks - pre_ticks)*100));
// FAST_TICKS_TO_MS((start_ticks - pre_ticks)*100)); pre_ticks = start_ticks;
pre_ticks = start_ticks;
#endif #endif
return 0; return 0;
} }
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
static uint32_t anc_assist_playback_callback(uint8_t *buf, uint32_t len) { static uint32_t anc_assist_playback_callback(uint8_t *buf, uint32_t len){
get_pilot_data(buf, len); get_pilot_data(buf,len);
// TRACE(2,"playing data %d",len); // TRACE(2,"playing data %d",len);
return 0; return 0;
} }
#endif #endif
static void _open_mic_anc_assist(void) {
int anc_assist_mic_num = 0; static void _open_mic_anc_assist(void)
{
int anc_assist_mic_num = 0;
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FB_MIC; anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FB_MIC;
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || \ #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC;
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC;
#endif #endif
#if defined(ANC_ASSIST_PNC_ENABLED) #if defined(ANC_ASSIST_PNC_ENABLED)
anc_assist_mic_num = anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC;
anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC;
#endif #endif
#if defined(ANC_ASSIST_DEHOWLING_ENABLED) #if defined(ANC_ASSIST_DEHOWLING_ENABLED)
anc_assist_mic_num = anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC;
anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC;
#endif #endif
#if defined(ANC_ASSIST_WNR_ENABLED) #if defined(ANC_ASSIST_WNR_ENABLED)
anc_assist_mic_num = anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FF2_MIC;
anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FF2_MIC;
#endif #endif
switch (anc_assist_mic_num) { switch(anc_assist_mic_num){
case (0): { case(0):
TRACE(2, "[%s] no mic is used", __func__); {
return; TRACE(2,"[%s] no mic is used",__func__);
} break; return;
case (1): { }
TRACE(2, "[%s] use fb mic only", __func__); break;
case(1):
{
TRACE(2,"[%s] use fb mic only",__func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
}
break;
case(4):
{
TRACE(2,"[%s] use ff mic only",__func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_ANC_WNR;
}
break;
case(5):
{
TRACE(2,"[%s] use ff mic and fb mic",__func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_ANC_WNR;
}
break;
case(6):
{
TRACE(2,"[%s] use ff1 mic and ff2 mic",__func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
}
break;
case(7):
{
TRACE(2,"[%s] use ff1 mic and ff2 mic and fb mic",__func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
}
break;
default:
{
TRACE(2,"[%s] invalid mic order is used",__func__);
}
break;
}
MIC_NUM = 3; MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_AF_ANC; MIC_MAP = AUD_INPUT_PATH_AF_ANC;
struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(1,"[%s] ...", __func__);
} break; memset(&stream_cfg, 0, sizeof(stream_cfg));
case (4): { stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)MIC_NUM;
TRACE(2, "[%s] use ff mic only", __func__); stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_SAMPLE_RATE;
MIC_NUM = 3; stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS;
MIC_MAP = AUD_INPUT_PATH_ANC_WNR; stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = false;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = (enum AUD_IO_PATH_T)MIC_MAP;
stream_cfg.handler = anc_assist_callback;
stream_cfg.data_size = _FRAME_LEN * SAMPLE_BYTES * 2 * MIC_NUM;
stream_cfg.data_ptr = af_stream_buff;
ASSERT(stream_cfg.channel_num == MIC_NUM, "[%s] channel number(%d) is invalid.", __func__, stream_cfg.channel_num);
TRACE(2,"[%s] sample_rate:%d, data_size:%d", __func__, stream_cfg.sample_rate, stream_cfg.data_size);
TRACE(2,"[%s] af_stream_buff = %p", __func__, af_stream_buff);
} break; af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg);
case (5): { af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
TRACE(2, "[%s] use ff mic and fb mic", __func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_ANC_WNR;
} break;
case (6): {
TRACE(2, "[%s] use ff1 mic and ff2 mic", __func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
} break;
case (7): {
TRACE(2, "[%s] use ff1 mic and ff2 mic and fb mic", __func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
} break;
default: {
TRACE(2, "[%s] invalid mic order is used", __func__);
} break;
}
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(1, "[%s] ...", __func__);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)MIC_NUM;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = false;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = (enum AUD_IO_PATH_T)MIC_MAP;
stream_cfg.handler = anc_assist_callback;
stream_cfg.data_size = _FRAME_LEN * SAMPLE_BYTES * 2 * MIC_NUM;
stream_cfg.data_ptr = af_stream_buff;
ASSERT(stream_cfg.channel_num == MIC_NUM,
"[%s] channel number(%d) is invalid.", __func__,
stream_cfg.channel_num);
TRACE(2, "[%s] sample_rate:%d, data_size:%d", __func__,
stream_cfg.sample_rate, stream_cfg.data_size);
TRACE(2, "[%s] af_stream_buff = %p", __func__, af_stream_buff);
af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
// struct AF_STREAM_CONFIG_T stream_cfg; // struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(1, "[%s] set play ...", __func__); TRACE(1,"[%s] set play ...", __func__);
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_PLAY_SAMPLE_RATE;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.vol = 15; stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_PLAY_SAMPLE_RATE;
stream_cfg.handler = anc_assist_playback_callback; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.data_ptr = af_play_stream_buff; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.data_size = sizeof(af_play_stream_buff); stream_cfg.vol = 15;
af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg); stream_cfg.handler = anc_assist_playback_callback;
af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK); stream_cfg.data_ptr = af_play_stream_buff;
stream_cfg.data_size = sizeof(af_play_stream_buff);
af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK);
#endif #endif
} }
static void _close_mic_anc_assist() {
TRACE(1, "[%s] ...", __func__);
af_stream_stop(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_close(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
if (g_anc_assist_mode == ANC_ASSIST_STANDALONE ||
g_anc_assist_mode == ANC_ASSIST_MUSIC) {
// close capture
}
// destroy
static void _close_mic_anc_assist(){
TRACE(1,"[%s] ...", __func__);
af_stream_stop(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_close(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
if(g_anc_assist_mode == ANC_ASSIST_STANDALONE || g_anc_assist_mode == ANC_ASSIST_MUSIC ){
// close capture
}
// destroy
} }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -13,8 +13,8 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "peak_detector.h"
#include "math.h" #include "math.h"
#include "peak_detector.h"
// #define PKD_FACTOR_UP (0.6) // #define PKD_FACTOR_UP (0.6)
// #define PKD_FACTOR_DOWN (2.0) // #define PKD_FACTOR_DOWN (2.0)
@ -27,93 +27,93 @@ static float pkd_factor1 = 0.0f;
static float pkd_factor2 = 0.0f; static float pkd_factor2 = 0.0f;
static float pkd_reduce_rate = 1.0f; static float pkd_reduce_rate = 1.0f;
#define FABS(x) ((x) >= 0.f ? (x) : -(x)) #define FABS(x) ( (x) >= 0.f ? (x) : -(x) )
#define Max(a, b) ((a) > (b) ? (a) : (b)) #define Max(a,b) ((a)>(b) ? (a):(b))
// Depend on codec_dac_vol // Depend on codec_dac_vol
// const float pkd_vol_multiple[18] = {0.089125, 0.0, 0.005623, 0.007943, // const float pkd_vol_multiple[18] = {0.089125, 0.0, 0.005623, 0.007943, 0.011220, 0.015849, 0.022387, 0.031623, 0.044668, 0.063096, 0.089125, 0.125893, 0.177828, 0.251189, 0.354813, 0.501187, 0.707946, 1.000000};
// 0.011220, 0.015849, 0.022387, 0.031623, 0.044668, 0.063096, 0.089125,
// 0.125893, 0.177828, 0.251189, 0.354813, 0.501187, 0.707946, 1.000000};
// static uint32_t test_num = 0; // static uint32_t test_num = 0;
// int app_bt_stream_local_volume_get(void); // int app_bt_stream_local_volume_get(void);
// y = 20log(x) // y = 20log(x)
static inline float convert_multiple_to_db(float multiple) { static inline float convert_multiple_to_db(float multiple)
return 20 * (float)log10(multiple); {
return 20*(float)log10(multiple);
} }
// x = 10^(y/20) // x = 10^(y/20)
static inline float convert_db_to_multiple(float db) { static inline float convert_db_to_multiple(float db)
return (float)pow(10, db / 20); {
return (float)pow(10, db/20);
} }
void peak_detector_init(void) { void peak_detector_init(void)
pkd_alphaR = 0.0f; {
pkd_alphaA = 0.0f; pkd_alphaR = 0.0f;
pkd_factor1 = 0.0f; pkd_alphaA = 0.0f;
pkd_factor2 = 0.0f; pkd_factor1 = 0.0f;
pkd_reduce_rate = 1.0f; pkd_factor2 = 0.0f;
// TRACE(3,"[%s] pkd_alphaR = %f, pkd_alphaA = %f", __func__, pkd_reduce_rate = 1.0f;
// (double)pkd_alphaR, (double)pkd_alphaA); // TRACE(3,"[%s] pkd_alphaR = %f, pkd_alphaA = %f", __func__, (double)pkd_alphaR, (double)pkd_alphaA);
} }
void peak_detector_setup(PEAK_DETECTOR_CFG_T *cfg) { void peak_detector_setup(PEAK_DETECTOR_CFG_T *cfg)
pkd_samp_bits = cfg->bits; {
pkd_alphaR = (float)exp(-1 / (cfg->factor_down * cfg->fs)); pkd_samp_bits = cfg->bits;
pkd_alphaA = (float)exp(-1 / (cfg->factor_up * cfg->fs)); pkd_alphaR = (float)exp(-1/(cfg->factor_down * cfg->fs));
pkd_reduce_rate = convert_db_to_multiple(cfg->reduce_dB); pkd_alphaA = (float)exp(-1/(cfg->factor_up * cfg->fs));
pkd_reduce_rate = convert_db_to_multiple(cfg->reduce_dB);
} }
static void peak_detector_run_16bits(int16_t *buf, uint32_t len, static void peak_detector_run_16bits(int16_t *buf, uint32_t len, float vol_multiple)
float vol_multiple) { {
float normal_rate = 1.0; float normal_rate = 1.0;
float tgt_rate = 1.0; float tgt_rate = 1.0;
for (uint32_t i = 0; i < len; i++) { for(uint32_t i = 0; i < len; i++)
pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1); {
pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1; pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1);
pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1;
normal_rate = pkd_factor2 / 32768; normal_rate = pkd_factor2/32768;
tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple; tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple;
if (tgt_rate > 1.0) { if(tgt_rate > 1.0)
tgt_rate = 1.0; {
tgt_rate = 1.0;
}
// rate += (tgt_rate - rate) / 10000.0;
// if(pkd_factor2>)
// {
// normal_rate = 0.25;
// }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int16_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
} }
// rate += (tgt_rate - rate) / 10000.0; // if(test_num == 500)
// if(pkd_factor2>)
// { // {
// normal_rate = 0.25; // test_num = 0;
// TRACE(0,"START>>>");
// TRACE(2,"vol_level = %d, pkd_vol_multiple = %f", vol_level, pkd_vol_multiple[vol_level]);
// TRACE(3,"buf = %d, pkd_alphaR = %f, pkd_alphaA = %f", buf[len-1], pkd_alphaR, pkd_alphaA);
// TRACE(4,"pkd_factor1 = %f, pkd_factor2 = %f, normal_rate = %f, tgt_rate = %f", pkd_factor1, pkd_factor2, normal_rate, tgt_rate);
// TRACE(0,"END<<<");
// // TRACE(7,"[%s] buf = %d, pkd_alphaR = %f, pkd_alphaA = %f, pkd_factor1 = %f, pkd_factor2 = %f, normal_rate = %f", __func__, buf[len-1], pkd_alphaR, pkd_alphaA, pkd_factor1, pkd_factor2, (1.0 - pkd_factor2/32768));
// } // }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int16_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
}
// if(test_num == 500)
// {
// test_num = 0;
// TRACE(0,"START>>>");
// TRACE(2,"vol_level = %d, pkd_vol_multiple = %f", vol_level,
// pkd_vol_multiple[vol_level]); TRACE(3,"buf = %d, pkd_alphaR = %f,
// pkd_alphaA = %f", buf[len-1], pkd_alphaR, pkd_alphaA);
// TRACE(4,"pkd_factor1 = %f, pkd_factor2 = %f, normal_rate = %f, tgt_rate =
// %f", pkd_factor1, pkd_factor2, normal_rate, tgt_rate); TRACE(0,"END<<<");
// // TRACE(7,"[%s] buf = %d, pkd_alphaR = %f, pkd_alphaA = %f, pkd_factor1 =
// %f, pkd_factor2 = %f, normal_rate = %f", __func__, buf[len-1], pkd_alphaR,
// pkd_alphaA, pkd_factor1, pkd_factor2, (1.0 - pkd_factor2/32768));
// }
#if 0 #if 0
short sample; short sample;
@ -139,54 +139,58 @@ static void peak_detector_run_16bits(int16_t *buf, uint32_t len,
#endif #endif
} }
static void peak_detector_run_24bits(int32_t *buf, uint32_t len, static void peak_detector_run_24bits(int32_t *buf, uint32_t len, float vol_multiple)
float vol_multiple) { {
float normal_rate = 1.0; float normal_rate = 1.0;
float tgt_rate = 1.0; float tgt_rate = 1.0;
for (uint32_t i = 0; i < len; i++) { for(uint32_t i = 0; i < len; i++)
pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1); {
pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1; pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1);
pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1;
normal_rate = pkd_factor2 / 32768; normal_rate = pkd_factor2/32768;
tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple; tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple;
if (tgt_rate > 1.0) { if(tgt_rate > 1.0)
tgt_rate = 1.0; {
tgt_rate = 1.0;
}
// rate += (tgt_rate - rate) / 10000.0;
// if(pkd_factor2>)
// {
// normal_rate = 0.25;
// }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int32_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
}
}
void peak_detector_run(uint8_t *buf, uint32_t len, float vol_multiple)
{
// int vol_level = 0;
if (pkd_samp_bits <= AUD_BITS_16) {
len = len / sizeof(int16_t);
peak_detector_run_16bits((int16_t *)buf, len, vol_multiple);
} else {
len = len / sizeof(int32_t);
peak_detector_run_24bits((int32_t *)buf, len, vol_multiple);
} }
// rate += (tgt_rate - rate) / 10000.0; // test_num++;
// if(pkd_factor2>) // vol_level = app_bt_stream_local_volume_get();
// {
// normal_rate = 0.25;
// }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int32_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
}
} }
void peak_detector_run(uint8_t *buf, uint32_t len, float vol_multiple) {
// int vol_level = 0;
if (pkd_samp_bits <= AUD_BITS_16) {
len = len / sizeof(int16_t);
peak_detector_run_16bits((int16_t *)buf, len, vol_multiple);
} else {
len = len / sizeof(int32_t);
peak_detector_run_24bits((int32_t *)buf, len, vol_multiple);
}
// test_num++;
// vol_level = app_bt_stream_local_volume_get();
}

View File

@ -23,6 +23,8 @@ subdir-ccflags-y += \
-Iservices/multimedia/speech/inc \ -Iservices/multimedia/speech/inc \
-Iservices/nv_section/include \ -Iservices/nv_section/include \
-Iservices/nv_section/aud_section \ -Iservices/nv_section/aud_section \
-Iplatform/drivers/usb/usb_dev/inc \
-Itests/anc_usb \
-Iutils/hwtimer_list -Iutils/hwtimer_list
CFLAGS_usb_audio_app.o += -DAUDIO_OUTPUT_VOLUME_DEFAULT=$(AUDIO_OUTPUT_VOLUME_DEFAULT) CFLAGS_usb_audio_app.o += -DAUDIO_OUTPUT_VOLUME_DEFAULT=$(AUDIO_OUTPUT_VOLUME_DEFAULT)
@ -56,6 +58,9 @@ ifeq ($(ADC_CH_SEP_BUFF),1)
ANC_USB_CFG_FLAGS += -DADC_CH_SEP_BUFF ANC_USB_CFG_FLAGS += -DADC_CH_SEP_BUFF
endif endif
include platform/drivers/usb/usb_dev/uaud_cfg_flags.mk
platform/drivers/usb/usb_dev/uaud_cfg_flags.mk: ;
ANC_USB_CFG_FLAGS += $(UAUD_CFG_FLAGS) ANC_USB_CFG_FLAGS += $(UAUD_CFG_FLAGS)

View File

@ -13,20 +13,20 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_thread.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "app_thread.h"
#include "app_audtest_pattern.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "app_audtest_pattern.h"
#include "app_utils.h"
#include "audiobuffer.h"
#include "audioflinger.h"
#include "eq_export.h"
#include "hal_aud.h" #include "hal_aud.h"
#include "audioflinger.h"
#include "audiobuffer.h"
#include "stdbool.h" #include "stdbool.h"
#include <string.h> #include <string.h>
#include "eq_export.h"
#include "app_utils.h"
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
#include "anc_usb_app.h" #include "anc_usb_app.h"
@ -35,28 +35,28 @@
//#include "dualadc_audio_app.h" //#include "dualadc_audio_app.h"
#endif #endif
#define USB_AUDIO_PLAYBACK_BUFF_SIZE (FRAME_SIZE_PLAYBACK * 4) #define USB_AUDIO_PLAYBACK_BUFF_SIZE (FRAME_SIZE_PLAYBACK * 4)
#define USB_AUDIO_CAPTURE_BUFF_SIZE (FRAME_SIZE_CAPTURE * 4) #define USB_AUDIO_CAPTURE_BUFF_SIZE (FRAME_SIZE_CAPTURE * 4)
#define USB_AUDIO_RECV_BUFF_SIZE (FRAME_SIZE_RECV * 8) #define USB_AUDIO_RECV_BUFF_SIZE (FRAME_SIZE_RECV * 8)
#define USB_AUDIO_SEND_BUFF_SIZE (FRAME_SIZE_SEND * 8) #define USB_AUDIO_SEND_BUFF_SIZE (FRAME_SIZE_SEND * 8)
#define APP_TEST_PLAYBACK_BUFF_SIZE (128 * 20) #define APP_TEST_PLAYBACK_BUFF_SIZE (128 * 20)
#define APP_TEST_CAPTURE_BUFF_SIZE (128 * 20) #define APP_TEST_CAPTURE_BUFF_SIZE (128 * 20)
#if (USB_AUDIO_PLAYBACK_BUFF_SIZE > APP_TEST_PLAYBACK_BUFF_SIZE) #if (USB_AUDIO_PLAYBACK_BUFF_SIZE > APP_TEST_PLAYBACK_BUFF_SIZE)
#define REAL_PLAYBACK_BUFF_SIZE USB_AUDIO_PLAYBACK_BUFF_SIZE #define REAL_PLAYBACK_BUFF_SIZE USB_AUDIO_PLAYBACK_BUFF_SIZE
#else #else
#define REAL_PLAYBACK_BUFF_SIZE APP_TEST_PLAYBACK_BUFF_SIZE #define REAL_PLAYBACK_BUFF_SIZE APP_TEST_PLAYBACK_BUFF_SIZE
#endif #endif
#if (USB_AUDIO_CAPTURE_BUFF_SIZE > APP_TEST_CAPTURE_BUFF_SIZE) #if (USB_AUDIO_CAPTURE_BUFF_SIZE > APP_TEST_CAPTURE_BUFF_SIZE)
#define REAL_CAPTURE_BUFF_SIZE USB_AUDIO_CAPTURE_BUFF_SIZE #define REAL_CAPTURE_BUFF_SIZE USB_AUDIO_CAPTURE_BUFF_SIZE
#else #else
#define REAL_CAPTURE_BUFF_SIZE APP_TEST_CAPTURE_BUFF_SIZE #define REAL_CAPTURE_BUFF_SIZE APP_TEST_CAPTURE_BUFF_SIZE
#endif #endif
#define ALIGNED4 ALIGNED(4) #define ALIGNED4 ALIGNED(4)
static uint8_t ALIGNED4 app_test_playback_buff[REAL_PLAYBACK_BUFF_SIZE]; static uint8_t ALIGNED4 app_test_playback_buff[REAL_PLAYBACK_BUFF_SIZE];
static uint8_t ALIGNED4 app_test_capture_buff[REAL_CAPTURE_BUFF_SIZE]; static uint8_t ALIGNED4 app_test_capture_buff[REAL_CAPTURE_BUFF_SIZE];
@ -66,225 +66,242 @@ static uint8_t ALIGNED4 app_test_recv_buff[USB_AUDIO_RECV_BUFF_SIZE];
static uint8_t ALIGNED4 app_test_send_buff[USB_AUDIO_SEND_BUFF_SIZE]; static uint8_t ALIGNED4 app_test_send_buff[USB_AUDIO_SEND_BUFF_SIZE];
#endif #endif
uint32_t pcm_1ksin_more_data(uint8_t *buf, uint32_t len) { uint32_t pcm_1ksin_more_data(uint8_t *buf, uint32_t len)
static uint32_t nextPbufIdx = 0; {
uint32_t remain_size = len; static uint32_t nextPbufIdx = 0;
uint32_t curr_size = 0; uint32_t remain_size = len;
static uint32_t pcm_preIrqTime = 0; uint32_t curr_size = 0;
; static uint32_t pcm_preIrqTime = 0;;
uint32_t stime = 0; uint32_t stime = 0;
stime = hal_sys_timer_get();
TRACE(3, "pcm_1ksin_more_data irqDur:%d readbuff:0x%08x %d\n ",
TICKS_TO_MS(stime - pcm_preIrqTime), buf, len);
pcm_preIrqTime = stime;
// TRACE(2,"[pcm_1ksin_more_data] len=%d nextBuf:%d\n", len, nextPbufIdx); stime = hal_sys_timer_get();
if (remain_size > sizeof(sinwave)) { TRACE(3,"pcm_1ksin_more_data irqDur:%d readbuff:0x%08x %d\n ", TICKS_TO_MS(stime - pcm_preIrqTime), buf, len);
do { pcm_preIrqTime = stime;
if (nextPbufIdx) {
curr_size = sizeof(sinwave) - nextPbufIdx; // TRACE(2,"[pcm_1ksin_more_data] len=%d nextBuf:%d\n", len, nextPbufIdx);
memcpy(buf, &sinwave[nextPbufIdx / 2], curr_size); if (remain_size > sizeof(sinwave))
remain_size -= curr_size; {
nextPbufIdx = 0; do{
} else if (remain_size > sizeof(sinwave)) { if (nextPbufIdx)
memcpy(buf + curr_size, sinwave, sizeof(sinwave)); {
curr_size += sizeof(sinwave); curr_size = sizeof(sinwave)-nextPbufIdx;
remain_size -= sizeof(sinwave); memcpy(buf,&sinwave[nextPbufIdx/2], curr_size);
} else { remain_size -= curr_size;
memcpy(buf + curr_size, sinwave, remain_size); nextPbufIdx = 0;
nextPbufIdx = remain_size; }
remain_size = 0; else if (remain_size>sizeof(sinwave))
} {
} while (remain_size); memcpy(buf+curr_size,sinwave,sizeof(sinwave));
} else { curr_size += sizeof(sinwave);
if ((sizeof(sinwave) - nextPbufIdx) >= len) { remain_size -= sizeof(sinwave);
memcpy(buf, &sinwave[nextPbufIdx / 2], len); }
nextPbufIdx += len; else
} else { {
curr_size = sizeof(sinwave) - nextPbufIdx; memcpy(buf+curr_size,sinwave,remain_size);
memcpy(buf, &sinwave[nextPbufIdx / 2], curr_size); nextPbufIdx = remain_size;
nextPbufIdx = len - curr_size; remain_size = 0;
memcpy(buf + curr_size, sinwave, nextPbufIdx); }
}while(remain_size);
}
else
{
if ((sizeof(sinwave) - nextPbufIdx) >= len)
{
memcpy(buf, &sinwave[nextPbufIdx/2],len);
nextPbufIdx += len;
}
else
{
curr_size = sizeof(sinwave)-nextPbufIdx;
memcpy(buf, &sinwave[nextPbufIdx/2],curr_size);
nextPbufIdx = len - curr_size;
memcpy(buf+curr_size,sinwave, nextPbufIdx);
}
} }
}
return 0; return 0;
} }
uint32_t pcm_mute_more_data(uint8_t *buf, uint32_t len) { uint32_t pcm_mute_more_data(uint8_t *buf, uint32_t len)
memset(buf, 0, len); {
return 0; memset(buf, 0 , len);
return 0;
} }
void da_output_sin1k(bool on) { void da_output_sin1k(bool on)
static bool isRun = false; {
struct AF_STREAM_CONFIG_T stream_cfg; static bool isRun = false;
memset(&stream_cfg, 0, sizeof(stream_cfg)); struct AF_STREAM_CONFIG_T stream_cfg;
memset(&stream_cfg, 0, sizeof(stream_cfg));
if (isRun == on) if (isRun==on)
return; return;
else else
isRun = on; isRun=on;
TRACE(2, "%s %d\n", __func__, on); TRACE(2,"%s %d\n", __func__, on);
if (on) { if (on){
stream_cfg.bits = AUD_BITS_16; stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_44100; stream_cfg.sample_rate = AUD_SAMPRATE_44100;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = 16; stream_cfg.vol = 16;
stream_cfg.handler = pcm_1ksin_more_data; stream_cfg.handler = pcm_1ksin_more_data;
stream_cfg.data_ptr = app_test_playback_buff; stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE; stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}else{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}
} }
void da_tester(uint8_t on) { da_output_sin1k(on); } void da_tester(uint8_t on)
{
da_output_sin1k(on);
}
extern int voicecvsd_audio_init(void); extern int voicecvsd_audio_init(void);
extern uint32_t voicecvsd_audio_more_data(uint8_t *buf, uint32_t len); extern uint32_t voicecvsd_audio_more_data(uint8_t *buf, uint32_t len);
extern int get_voicecvsd_buffer_size(void); extern int get_voicecvsd_buffer_size(void);
extern int store_voice_pcm2cvsd(unsigned char *buf, unsigned int len); extern int store_voice_pcm2cvsd(unsigned char *buf, unsigned int len);
static uint32_t pcm_data_capture(uint8_t *buf, uint32_t len) { static uint32_t pcm_data_capture(uint8_t *buf, uint32_t len)
uint32_t stime, etime; {
static uint32_t preIrqTime = 0; uint32_t stime, etime;
static uint32_t preIrqTime = 0;
stime = hal_sys_timer_get(); stime = hal_sys_timer_get();
// audio_buffer_set_stereo2mono_16bits(buf, len, 1); // audio_buffer_set_stereo2mono_16bits(buf, len, 1);
audio_buffer_set(buf, len); audio_buffer_set(buf, len);
etime = hal_sys_timer_get(); etime = hal_sys_timer_get();
TRACE(4, "%s irqDur:%d fsSpend:%d, Len:%d", __func__, TRACE(4,"%s irqDur:%d fsSpend:%d, Len:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len);
TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len); preIrqTime = stime;
preIrqTime = stime; return 0;
return 0;
} }
static uint32_t pcm_data_playback(uint8_t *buf, uint32_t len) { static uint32_t pcm_data_playback(uint8_t *buf, uint32_t len)
uint32_t stime, etime; {
static uint32_t preIrqTime = 0; uint32_t stime, etime;
stime = hal_sys_timer_get(); static uint32_t preIrqTime = 0;
// audio_buffer_get_mono2stereo_16bits(buf, len); stime = hal_sys_timer_get();
audio_buffer_get(buf, len); // audio_buffer_get_mono2stereo_16bits(buf, len);
etime = hal_sys_timer_get(); audio_buffer_get(buf, len);
TRACE(4, "%s irqDur:%d fsSpend:%d, Len:%d", __func__, etime = hal_sys_timer_get();
TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len); TRACE(4,"%s irqDur:%d fsSpend:%d, Len:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len);
preIrqTime = stime; preIrqTime = stime;
return 0; return 0;
} }
uint32_t pcm_cvsd_data_capture(uint8_t *buf, uint32_t len) { uint32_t pcm_cvsd_data_capture(uint8_t *buf, uint32_t len)
uint32_t stime, etime; {
static uint32_t preIrqTime = 0; uint32_t stime, etime;
static uint32_t preIrqTime = 0;
// TRACE(1,"%s enter", __func__); //TRACE(1,"%s enter", __func__);
stime = hal_sys_timer_get(); stime = hal_sys_timer_get();
len >>= 1; len >>= 1;
audio_stereo2mono_16bits(0, (uint16_t *)buf, (uint16_t *)buf, len); audio_stereo2mono_16bits(0, (uint16_t *)buf, (uint16_t *)buf, len);
store_voice_pcm2cvsd(buf, len); store_voice_pcm2cvsd(buf, len);
etime = hal_sys_timer_get(); etime = hal_sys_timer_get();
TRACE(4, "%s exit irqDur:%d fsSpend:%d, add:%d", __func__, TRACE(4,"%s exit irqDur:%d fsSpend:%d, add:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len);
TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len); preIrqTime = stime;
preIrqTime = stime; return 0;
return 0;
} }
uint32_t pcm_cvsd_data_playback(uint8_t *buf, uint32_t len) { uint32_t pcm_cvsd_data_playback(uint8_t *buf, uint32_t len)
int n; {
uint32_t stime, etime; int n;
static uint32_t preIrqTime = 0; uint32_t stime, etime;
static uint32_t preIrqTime = 0;
// TRACE(1,"%s enter", __func__); //TRACE(1,"%s enter", __func__);
stime = hal_sys_timer_get(); stime = hal_sys_timer_get();
pcm_1ksin_more_data(buf, len); pcm_1ksin_more_data(buf, len);
voicecvsd_audio_more_data(buf, len); voicecvsd_audio_more_data(buf, len);
n = get_voicecvsd_buffer_size(); n = get_voicecvsd_buffer_size();
etime = hal_sys_timer_get(); etime = hal_sys_timer_get();
TRACE(5, "%s exit irqDur:%d fsSpend:%d, get:%d remain:%d", __func__, TRACE(5,"%s exit irqDur:%d fsSpend:%d, get:%d remain:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len, n);
TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len, n); preIrqTime = stime;
preIrqTime = stime; return 0;
return 0;
} }
void adc_looptester(bool on, enum AUD_IO_PATH_T input_path, void adc_looptester(bool on, enum AUD_IO_PATH_T input_path, enum AUD_SAMPRATE_T sample_rate)
enum AUD_SAMPRATE_T sample_rate) { {
struct AF_STREAM_CONFIG_T stream_cfg; struct AF_STREAM_CONFIG_T stream_cfg;
static bool isRun = false; static bool isRun = false;
if (isRun == on) if (isRun==on)
return; return;
else else
isRun = on; isRun=on;
if (on) { if (on){
audio_buffer_init(); audio_buffer_init();
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16; stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = sample_rate; stream_cfg.sample_rate = sample_rate;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = input_path; stream_cfg.io_path = input_path;
stream_cfg.vol = 0x03; stream_cfg.vol = 0x03;
stream_cfg.handler = pcm_data_capture; stream_cfg.handler = pcm_data_capture;
stream_cfg.data_ptr = app_test_capture_buff; stream_cfg.data_ptr = app_test_capture_buff;
stream_cfg.data_size = APP_TEST_CAPTURE_BUFF_SIZE; stream_cfg.data_size = APP_TEST_CAPTURE_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
stream_cfg.handler = pcm_data_playback; stream_cfg.handler = pcm_data_playback;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.data_ptr = app_test_playback_buff; stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE; stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
} else { }else{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
} }
} }
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
void app_anc_usb_init(void) { void app_anc_usb_init(void)
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M); {
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M);
anc_usb_app_init(AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_96000, anc_usb_app_init(AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_96000, AUD_SAMPRATE_192000);
AUD_SAMPRATE_192000);
struct USB_AUDIO_BUF_CFG cfg; struct USB_AUDIO_BUF_CFG cfg;
memset(&cfg, 0, sizeof(cfg)); memset(&cfg, 0, sizeof(cfg));
cfg.play_buf = app_test_playback_buff; cfg.play_buf = app_test_playback_buff;
cfg.play_size = USB_AUDIO_PLAYBACK_BUFF_SIZE; cfg.play_size = USB_AUDIO_PLAYBACK_BUFF_SIZE;
cfg.cap_buf = app_test_capture_buff; cfg.cap_buf = app_test_capture_buff;
cfg.cap_size = USB_AUDIO_CAPTURE_BUFF_SIZE; cfg.cap_size = USB_AUDIO_CAPTURE_BUFF_SIZE;
cfg.recv_buf = app_test_recv_buff; cfg.recv_buf = app_test_recv_buff;
cfg.recv_size = USB_AUDIO_RECV_BUFF_SIZE; cfg.recv_size = USB_AUDIO_RECV_BUFF_SIZE;
cfg.send_buf = app_test_send_buff; cfg.send_buf = app_test_send_buff;
cfg.send_size = USB_AUDIO_SEND_BUFF_SIZE; cfg.send_size = USB_AUDIO_SEND_BUFF_SIZE;
usb_audio_app_init(&cfg); usb_audio_app_init(&cfg);
// dualadc_audio_app_init(app_test_playback_buff, //dualadc_audio_app_init(app_test_playback_buff, USB_AUDIO_PLAYBACK_BUFF_SIZE,
// USB_AUDIO_PLAYBACK_BUFF_SIZE, app_test_capture_buff, //app_test_capture_buff, USB_AUDIO_CAPTURE_BUFF_SIZE);
// USB_AUDIO_CAPTURE_BUFF_SIZE);
} }
#endif #endif

View File

@ -13,10 +13,11 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "audiobuffer.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "cqueue.h" #include "cqueue.h"
#include "string.h" #include "string.h"
#include "audiobuffer.h"
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
static osMutexId g_audio_queue_mutex_id = NULL; static osMutexId g_audio_queue_mutex_id = NULL;
@ -24,121 +25,122 @@ osMutexDef(g_audio_queue_mutex);
#endif #endif
static CQueue audio_queue; static CQueue audio_queue;
static unsigned char static unsigned char audio_queue_buf[AUDIO_BUFFER_FRAME_SIZE*AUDIO_BUFFER_FRAME_NUM];
audio_queue_buf[AUDIO_BUFFER_FRAME_SIZE * AUDIO_BUFFER_FRAME_NUM];
void audio_mono2stereo_16bits(uint16_t *dst_buf, uint16_t *src_buf, void audio_mono2stereo_16bits(uint16_t *dst_buf, uint16_t *src_buf, uint32_t src_len)
uint32_t src_len) { {
uint32_t i = 0; uint32_t i = 0;
for (i = 0; i < src_len; ++i) { for (i = 0; i < src_len; ++i) {
dst_buf[i * 2 + 0] = dst_buf[i * 2 + 1] = src_buf[i]; dst_buf[i*2 + 0] = dst_buf[i*2 + 1] = src_buf[i];
} }
} }
void audio_stereo2mono_16bits(uint8_t chnlsel, uint16_t *dst_buf, void audio_stereo2mono_16bits(uint8_t chnlsel, uint16_t *dst_buf, uint16_t *src_buf, uint32_t src_len)
uint16_t *src_buf, uint32_t src_len) { {
uint32_t i = 0; uint32_t i = 0;
for (i = 0; i < src_len; i += 2) { for (i = 0; i < src_len; i+=2) {
dst_buf[i / 2] = src_buf[i + chnlsel]; dst_buf[i/2] = src_buf[i + chnlsel];
} }
} }
void audio_buffer_init(void) { void audio_buffer_init(void)
{
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
if (g_audio_queue_mutex_id == NULL) if (g_audio_queue_mutex_id == NULL)
g_audio_queue_mutex_id = osMutexCreate((osMutex(g_audio_queue_mutex))); g_audio_queue_mutex_id = osMutexCreate((osMutex(g_audio_queue_mutex)));
#endif #endif
InitCQueue(&audio_queue, sizeof(audio_queue_buf), InitCQueue(&audio_queue, sizeof(audio_queue_buf), (unsigned char *)&audio_queue_buf);
(unsigned char *)&audio_queue_buf); memset(&audio_queue_buf, 0x00, sizeof(audio_queue_buf));
memset(&audio_queue_buf, 0x00, sizeof(audio_queue_buf));
} }
int audio_buffer_length(void) { int audio_buffer_length(void)
int len; {
int len;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
len = LengthOfCQueue(&audio_queue); len = LengthOfCQueue(&audio_queue);
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return len; return len;
} }
int audio_buffer_set(uint8_t *buff, uint16_t len) { int audio_buffer_set(uint8_t *buff, uint16_t len)
int status; {
int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
status = EnCQueue(&audio_queue, buff, len); status = EnCQueue(&audio_queue, buff, len);
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }
int audio_buffer_get(uint8_t *buff, uint16_t len) { int audio_buffer_get(uint8_t *buff, uint16_t len)
uint8_t *e1 = NULL, *e2 = NULL; {
unsigned int len1 = 0, len2 = 0; uint8_t *e1 = NULL, *e2 = NULL;
int status; unsigned int len1 = 0, len2 = 0;
int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
status = PeekCQueue(&audio_queue, len, &e1, &len1, &e2, &len2); status = PeekCQueue(&audio_queue, len, &e1, &len1, &e2, &len2);
if (len == (len1 + len2)) { if (len==(len1+len2)){
memcpy(buff, e1, len1); memcpy(buff,e1,len1);
memcpy(buff + len1, e2, len2); memcpy(buff+len1,e2,len2);
DeCQueue(&audio_queue, 0, len); DeCQueue(&audio_queue, 0, len);
DeCQueue(&audio_queue, 0, len2); DeCQueue(&audio_queue, 0, len2);
} else { }else{
memset(buff, 0x00, len); memset(buff, 0x00, len);
status = -1; status = -1;
} }
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }
int audio_buffer_set_stereo2mono_16bits(uint8_t *buff, uint16_t len, int audio_buffer_set_stereo2mono_16bits(uint8_t *buff, uint16_t len, uint8_t chnlsel)
uint8_t chnlsel) { {
int status; int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
audio_stereo2mono_16bits(chnlsel, (uint16_t *)buff, (uint16_t *)buff, audio_stereo2mono_16bits(chnlsel, (uint16_t *)buff, (uint16_t *)buff, len>>1);
len >> 1); status = EnCQueue(&audio_queue, buff, len>>1);
status = EnCQueue(&audio_queue, buff, len >> 1);
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }
int audio_buffer_get_mono2stereo_16bits(uint8_t *buff, uint16_t len) { int audio_buffer_get_mono2stereo_16bits(uint8_t *buff, uint16_t len)
uint8_t *e1 = NULL, *e2 = NULL; {
unsigned int len1 = 0, len2 = 0; uint8_t *e1 = NULL, *e2 = NULL;
int status; unsigned int len1 = 0, len2 = 0;
int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
status = PeekCQueue(&audio_queue, len >> 1, &e1, &len1, &e2, &len2); status = PeekCQueue(&audio_queue, len>>1, &e1, &len1, &e2, &len2);
if (len >> 1 == len1 + len2) { if (len>>1== len1+len2){
audio_mono2stereo_16bits((uint16_t *)buff, (uint16_t *)e1, len1 >> 1); audio_mono2stereo_16bits((uint16_t *)buff, (uint16_t *)e1, len1>>1);
audio_mono2stereo_16bits((uint16_t *)(buff + (len1 << 1)), (uint16_t *)e2, audio_mono2stereo_16bits((uint16_t *)(buff+(len1<<1)), (uint16_t *)e2, len2>>1);
len2 >> 1); DeCQueue(&audio_queue, 0, len1);
DeCQueue(&audio_queue, 0, len1); DeCQueue(&audio_queue, 0, len2);
DeCQueue(&audio_queue, 0, len2); status = len;
status = len; }else{
} else { memset(buff, 0x00, len);
memset(buff, 0x00, len); status = -1;
status = -1; }
}
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -14,116 +14,124 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include "a2dp_decoder_internal.h"
#include "cmsis.h" #include "cmsis.h"
#include "hal_location.h"
#include "heap_api.h"
#include "plat_types.h" #include "plat_types.h"
#include <string.h> #include <string.h>
#include "heap_api.h"
#include "hal_location.h"
#include "a2dp_decoder_internal.h"
static A2DP_AUDIO_CONTEXT_T *a2dp_audio_context_p = NULL; static A2DP_AUDIO_CONTEXT_T *a2dp_audio_context_p = NULL;
static A2DP_AUDIO_DECODER_LASTFRAME_INFO_T a2dp_audio_ldac_example_info; static A2DP_AUDIO_DECODER_LASTFRAME_INFO_T a2dp_audio_ldac_example_info;
static A2DP_AUDIO_OUTPUT_CONFIG_T a2dp_audio_example_output_config; static A2DP_AUDIO_OUTPUT_CONFIG_T a2dp_audio_example_output_config;
typedef struct { typedef struct {
uint16_t sequenceNumber; uint16_t sequenceNumber;
uint32_t timestamp; uint32_t timestamp;
uint8_t *buffer; uint8_t *buffer;
uint32_t buffer_len; uint32_t buffer_len;
} a2dp_audio_example_decoder_frame_t; } a2dp_audio_example_decoder_frame_t;
int a2dp_audio_example_decode_frame(uint8_t *buffer, uint32_t buffer_bytes) {
return A2DP_DECODER_NO_ERROR; int a2dp_audio_example_decode_frame(uint8_t *buffer, uint32_t buffer_bytes)
{
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_preparse_packet(btif_media_header_t *header, int a2dp_audio_example_preparse_packet(btif_media_header_t * header, uint8_t *buffer, uint32_t buffer_bytes)
uint8_t *buffer, uint32_t buffer_bytes) { {
return A2DP_DECODER_NO_ERROR; return A2DP_DECODER_NO_ERROR;
} }
static void *a2dp_audio_example_frame_malloc(uint32_t packet_len) {
a2dp_audio_example_decoder_frame_t *decoder_frame_p = NULL;
uint8_t *buffer = NULL;
buffer = (uint8_t *)a2dp_audio_heap_malloc(packet_len); static void *a2dp_audio_example_frame_malloc(uint32_t packet_len)
decoder_frame_p = {
(a2dp_audio_example_decoder_frame_t *)a2dp_audio_heap_malloc( a2dp_audio_example_decoder_frame_t *decoder_frame_p = NULL;
sizeof(a2dp_audio_example_decoder_frame_t)); uint8_t *buffer = NULL;
decoder_frame_p->buffer = buffer;
decoder_frame_p->buffer_len = packet_len; buffer = (uint8_t *)a2dp_audio_heap_malloc(packet_len);
return (void *)decoder_frame_p; decoder_frame_p = (a2dp_audio_example_decoder_frame_t *)a2dp_audio_heap_malloc(sizeof(a2dp_audio_example_decoder_frame_t));
decoder_frame_p->buffer = buffer;
decoder_frame_p->buffer_len = packet_len;
return (void *)decoder_frame_p;
} }
void a2dp_audio_example_free(void *packet) { void a2dp_audio_example_free(void *packet)
a2dp_audio_example_decoder_frame_t *decoder_frame_p = {
(a2dp_audio_example_decoder_frame_t *)packet; a2dp_audio_example_decoder_frame_t *decoder_frame_p = (a2dp_audio_example_decoder_frame_t *)packet;
a2dp_audio_heap_free(decoder_frame_p->buffer); a2dp_audio_heap_free(decoder_frame_p->buffer);
a2dp_audio_heap_free(decoder_frame_p); a2dp_audio_heap_free(decoder_frame_p);
} }
int a2dp_audio_example_store_packet(btif_media_header_t *header, int a2dp_audio_example_store_packet(btif_media_header_t * header, uint8_t *buffer, uint32_t buffer_bytes)
uint8_t *buffer, uint32_t buffer_bytes) { {
list_t *list = a2dp_audio_context_p->audio_datapath.input_raw_packet_list; list_t *list = a2dp_audio_context_p->audio_datapath.input_raw_packet_list;
a2dp_audio_example_decoder_frame_t *decoder_frame_p = a2dp_audio_example_decoder_frame_t *decoder_frame_p = (a2dp_audio_example_decoder_frame_t *)a2dp_audio_example_frame_malloc(buffer_bytes);
(a2dp_audio_example_decoder_frame_t *)a2dp_audio_example_frame_malloc(
buffer_bytes);
decoder_frame_p->sequenceNumber = header->sequenceNumber; decoder_frame_p->sequenceNumber = header->sequenceNumber;
decoder_frame_p->timestamp = header->timestamp; decoder_frame_p->timestamp = header->timestamp;
memcpy(decoder_frame_p->buffer, buffer, buffer_bytes); memcpy(decoder_frame_p->buffer, buffer, buffer_bytes);
decoder_frame_p->buffer_len = buffer_bytes; decoder_frame_p->buffer_len = buffer_bytes;
a2dp_audio_list_append(list, decoder_frame_p); a2dp_audio_list_append(list, decoder_frame_p);
return A2DP_DECODER_NO_ERROR; return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_discards_packet(uint32_t packets) { int a2dp_audio_example_discards_packet(uint32_t packets)
return A2DP_DECODER_NO_ERROR; {
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_headframe_info_get( int a2dp_audio_example_headframe_info_get(A2DP_AUDIO_HEADFRAME_INFO_T* headframe_info)
A2DP_AUDIO_HEADFRAME_INFO_T *headframe_info) { {
return A2DP_DECODER_NO_ERROR; return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_info_get(void *info) { return A2DP_DECODER_NO_ERROR; } int a2dp_audio_example_info_get(void *info)
{
int a2dp_audio_example_init(A2DP_AUDIO_OUTPUT_CONFIG_T *config, void *context) { return A2DP_DECODER_NO_ERROR;
TRACE_A2DP_DECODER_D("%s", __func__);
a2dp_audio_context_p = (A2DP_AUDIO_CONTEXT_T *)context;
memset(&a2dp_audio_ldac_example_info, 0,
sizeof(A2DP_AUDIO_DECODER_LASTFRAME_INFO_T));
memcpy(&a2dp_audio_example_output_config, config,
sizeof(A2DP_AUDIO_OUTPUT_CONFIG_T));
a2dp_audio_ldac_example_info.stream_info = &a2dp_audio_example_output_config;
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_deinit(void) { return A2DP_DECODER_NO_ERROR; } int a2dp_audio_example_init(A2DP_AUDIO_OUTPUT_CONFIG_T *config, void *context)
{
TRACE_A2DP_DECODER_D("%s", __func__);
a2dp_audio_context_p = (A2DP_AUDIO_CONTEXT_T *)context;
int a2dp_audio_example_synchronize_packet( memset(&a2dp_audio_ldac_example_info, 0, sizeof(A2DP_AUDIO_DECODER_LASTFRAME_INFO_T));
A2DP_AUDIO_SYNCFRAME_INFO_T *sync_info, uint32_t mask) { memcpy(&a2dp_audio_example_output_config, config, sizeof(A2DP_AUDIO_OUTPUT_CONFIG_T));
return A2DP_DECODER_NO_ERROR; a2dp_audio_ldac_example_info.stream_info = &a2dp_audio_example_output_config;
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_synchronize_dest_packet_mut(uint16_t packet_mut) { int a2dp_audio_example_deinit(void)
return A2DP_DECODER_NO_ERROR; {
return A2DP_DECODER_NO_ERROR;
}
int a2dp_audio_example_synchronize_packet(A2DP_AUDIO_SYNCFRAME_INFO_T *sync_info, uint32_t mask)
{
return A2DP_DECODER_NO_ERROR;
}
int a2dp_audio_example_synchronize_dest_packet_mut(uint16_t packet_mut)
{
return A2DP_DECODER_NO_ERROR;
} }
A2DP_AUDIO_DECODER_T a2dp_audio_example_decoder_config = { A2DP_AUDIO_DECODER_T a2dp_audio_example_decoder_config = {
{44100, 2, 16}, {44100, 2, 16},
0, 0,
a2dp_audio_example_init, a2dp_audio_example_init,
a2dp_audio_example_deinit, a2dp_audio_example_deinit,
a2dp_audio_example_decode_frame, a2dp_audio_example_decode_frame,
a2dp_audio_example_preparse_packet, a2dp_audio_example_preparse_packet,
a2dp_audio_example_store_packet, a2dp_audio_example_store_packet,
a2dp_audio_example_discards_packet, a2dp_audio_example_discards_packet,
a2dp_audio_example_synchronize_packet, a2dp_audio_example_synchronize_packet,
a2dp_audio_example_synchronize_dest_packet_mut, a2dp_audio_example_synchronize_dest_packet_mut,
a2dp_audio_example_headframe_info_get, a2dp_audio_example_headframe_info_get,
a2dp_audio_example_info_get, a2dp_audio_example_info_get,
a2dp_audio_example_free, a2dp_audio_example_free,
}; } ;

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -17,18 +17,14 @@
* Usage: * Usage:
* 1. Enable SCO_CP_ACCEL ?= 1 to enable dual core in sco * 1. Enable SCO_CP_ACCEL ?= 1 to enable dual core in sco
* 2. Enable SCO_TRACE_CP_ACCEL ?= 1 to see debug log. * 2. Enable SCO_TRACE_CP_ACCEL ?= 1 to see debug log.
* 3. Change channel number if the algo(run in cp) input is more than one * 3. Change channel number if the algo(run in cp) input is more than one channel: sco_cp_init(speech_tx_frame_len, 1);
*channel: sco_cp_init(speech_tx_frame_len, 1); * 4. The code between SCO_CP_ACCEL_ALGO_START(); and SCO_CP_ACCEL_ALGO_END(); will run in CP core.
* 4. The code between SCO_CP_ACCEL_ALGO_START(); and SCO_CP_ACCEL_ALGO_END(); * 5. These algorithms will work in AP. Need to move this algorithms from overlay to fast ram.
*will run in CP core.
* 5. These algorithms will work in AP. Need to move this algorithms from
*overlay to fast ram.
* *
* NOTE: * NOTE:
* 1. spx fft and hw fft will share buffer, so just one core can use these * 1. spx fft and hw fft will share buffer, so just one core can use these fft.
*fft. * 2. audio_dump_add_channel_data function can not work correctly in CP core, because
* 2. audio_dump_add_channel_data function can not work correctly in CP core, * audio_dump_add_channel_data is possible called after audio_dump_run();
*because audio_dump_add_channel_data is possible called after audio_dump_run();
* 3. AP and CP just can use 85% * 3. AP and CP just can use 85%
* *
* *
@ -37,30 +33,30 @@
* 1. FFT, RAM, CODE overlay * 1. FFT, RAM, CODE overlay
**/ **/
#if defined(SCO_CP_ACCEL) #if defined(SCO_CP_ACCEL)
#include "cmsis_os.h"
#include "cp_accel.h" #include "cp_accel.h"
#include "hal_location.h" #include "hal_location.h"
#include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_timer.h"
#include "cmsis_os.h"
#include "speech_cfg.h"
#include "math.h" #include "math.h"
#include "norflash_api.h" #include "norflash_api.h"
#include "speech_cfg.h"
// malloc data from pool in init function // malloc data from pool in init function
#define FRAME_LEN_MAX (256) #define FRAME_LEN_MAX (256)
#define CHANNEL_NUM_MAX (2) #define CHANNEL_NUM_MAX (2)
enum CP_SCO_STATE_T { enum CP_SCO_STATE_T {
CP_SCO_STATE_NONE = 0, CP_SCO_STATE_NONE = 0,
CP_SCO_STATE_IDLE, CP_SCO_STATE_IDLE,
CP_SCO_STATE_WORKING, CP_SCO_STATE_WORKING,
}; };
enum SCO_CP_CMD_T { enum SCO_CP_CMD_T {
SCO_CP_CMD_PRO = 0, SCO_CP_CMD_PRO = 0,
SCO_CP_CMD_OTHER, SCO_CP_CMD_OTHER,
SCO_CP_CMD_QTY, SCO_CP_CMD_QTY,
}; };
static CP_DATA_LOC enum CP_SCO_STATE_T g_cp_state = CP_SCO_STATE_NONE; static CP_DATA_LOC enum CP_SCO_STATE_T g_cp_state = CP_SCO_STATE_NONE;
@ -78,43 +74,45 @@ static CP_BSS_LOC int g_channel_num;
static int g_require_cnt = 0; static int g_require_cnt = 0;
static int g_run_cnt = 0; static int g_run_cnt = 0;
int sco_cp_process(short *pcm_buf, short *ref_buf, int *_pcm_len) { int sco_cp_process(short *pcm_buf, short *ref_buf, int *_pcm_len)
int32_t pcm_len = *_pcm_len; {
uint32_t wait_cnt = 0; int32_t pcm_len = *_pcm_len;
uint32_t wait_cnt = 0;
ASSERT(g_frame_len * g_channel_num == pcm_len, ASSERT(g_frame_len * g_channel_num == pcm_len, "[%s] g_frame_len(%d) * g_channel_num(%d) != pcm_len(%d)", __func__, g_frame_len, g_channel_num, pcm_len);
"[%s] g_frame_len(%d) * g_channel_num(%d) != pcm_len(%d)", __func__,
g_frame_len, g_channel_num, pcm_len);
// Check CP has new data to get and can get data from buffer // Check CP has new data to get and can get data from buffer
#if defined(SCO_TRACE_CP_ACCEL) #if defined(SCO_TRACE_CP_ACCEL)
TRACE(4, "[%s] g_require_cnt: %d, status: %d, pcm_len: %d", __func__, TRACE(4,"[%s] g_require_cnt: %d, status: %d, pcm_len: %d", __func__, g_require_cnt, g_cp_state, pcm_len);
g_require_cnt, g_cp_state, pcm_len);
#endif #endif
while (g_cp_state == CP_SCO_STATE_WORKING) { while (g_cp_state == CP_SCO_STATE_WORKING)
hal_sys_timer_delay_us(10); {
hal_sys_timer_delay_us(10);
if (wait_cnt++ > 300000) { // 3s if (wait_cnt++ > 300000) { // 3s
ASSERT(0, "cp is hung %d", g_cp_state); ASSERT(0, "cp is hung %d", g_cp_state);
}
} }
}
if (g_cp_state == CP_SCO_STATE_IDLE) { if (g_cp_state == CP_SCO_STATE_IDLE)
speech_copy_int16(g_in_pcm_buf, pcm_buf, pcm_len); {
if (ref_buf) { speech_copy_int16(g_in_pcm_buf, pcm_buf, pcm_len);
speech_copy_int16(g_in_ref_buf, ref_buf, pcm_len / g_channel_num); if (ref_buf)
{
speech_copy_int16(g_in_ref_buf, ref_buf, pcm_len / g_channel_num);
}
speech_copy_int16(pcm_buf, g_out_pcm_buf, g_pcm_len);
*_pcm_len = g_pcm_len;
g_pcm_len = pcm_len;
g_require_cnt++;
g_cp_state = CP_SCO_STATE_WORKING;
cp_accel_send_event_mcu2cp(CP_BUILD_ID(CP_TASK_SCO, CP_EVENT_SCO_PROCESSING));
} }
speech_copy_int16(pcm_buf, g_out_pcm_buf, g_pcm_len); else
*_pcm_len = g_pcm_len; {
g_pcm_len = pcm_len; // Multi channels to one channel
g_require_cnt++;
g_cp_state = CP_SCO_STATE_WORKING;
cp_accel_send_event_mcu2cp(
CP_BUILD_ID(CP_TASK_SCO, CP_EVENT_SCO_PROCESSING));
} else {
// Multi channels to one channel
#if 0 #if 0
for (int i = 0; i < pcm_len / g_channel_num; i++) for (int i = 0; i < pcm_len / g_channel_num; i++)
{ {
@ -124,25 +122,26 @@ int sco_cp_process(short *pcm_buf, short *ref_buf, int *_pcm_len) {
*_pcm_len = pcm_len / g_channel_num; *_pcm_len = pcm_len / g_channel_num;
#endif #endif
// Check abs(g_require_cnt - g_run_cnt) > threshold, reset or assert // Check abs(g_require_cnt - g_run_cnt) > threshold, reset or assert
TRACE(2, "[%s] ERROR: status = %d", __func__, g_cp_state); TRACE(2,"[%s] ERROR: status = %d", __func__, g_cp_state);
} }
return 0; return 0;
} }
extern int sco_cp_algo(short *pcm_buf, short *ref_buf, int *_pcm_len); extern int sco_cp_algo(short *pcm_buf, short *ref_buf, int *_pcm_len);
CP_TEXT_SRAM_LOC CP_TEXT_SRAM_LOC
static unsigned int sco_cp_main(uint8_t event) { static unsigned int sco_cp_main(uint8_t event)
{
#if defined(SCO_TRACE_CP_ACCEL) #if defined(SCO_TRACE_CP_ACCEL)
TRACE(2, "[%s] g_run_cnt: %d", __func__, g_run_cnt); TRACE(2,"[%s] g_run_cnt: %d", __func__, g_run_cnt);
#endif #endif
// LOCK BUFFER // LOCK BUFFER
// process pcm // process pcm
#if 0 #if 0
// speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len); // speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len);
@ -151,81 +150,79 @@ static unsigned int sco_cp_main(uint8_t event) {
g_out_pcm_buf[i] = (short)(sinf(2 * 3.1415926 * i / 16 ) * 10000); g_out_pcm_buf[i] = (short)(sinf(2 * 3.1415926 * i / 16 ) * 10000);
} }
#else #else
sco_cp_algo(g_in_pcm_buf, g_in_ref_buf, &g_pcm_len); sco_cp_algo(g_in_pcm_buf, g_in_ref_buf, &g_pcm_len);
speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len); speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len);
#endif #endif
// set status // set status
g_run_cnt++; g_run_cnt++;
g_cp_state = CP_SCO_STATE_IDLE; g_cp_state = CP_SCO_STATE_IDLE;
#if defined(SCO_TRACE_CP_ACCEL) #if defined(SCO_TRACE_CP_ACCEL)
TRACE(1, "[%s] CP_SCO_STATE_IDLE", __func__); TRACE(1,"[%s] CP_SCO_STATE_IDLE", __func__);
#endif #endif
// UNLOCK BUFFER // UNLOCK BUFFER
return 0; return 0;
} }
static struct cp_task_desc TASK_DESC_SCO = {CP_ACCEL_STATE_CLOSED, sco_cp_main, static struct cp_task_desc TASK_DESC_SCO = {CP_ACCEL_STATE_CLOSED, sco_cp_main, NULL, NULL, NULL};
NULL, NULL, NULL}; int sco_cp_init(int frame_len, int channel_num)
int sco_cp_init(int frame_len, int channel_num) { {
TRACE(3, "[%s] frame_len: %d, channel_num: %d", __func__, frame_len, TRACE(3,"[%s] frame_len: %d, channel_num: %d", __func__, frame_len, channel_num);
channel_num); ASSERT(frame_len <= FRAME_LEN_MAX, "[%s] frame_len(%d) > FRAME_LEN_MAX", __func__, frame_len);
ASSERT(frame_len <= FRAME_LEN_MAX, "[%s] frame_len(%d) > FRAME_LEN_MAX", ASSERT(channel_num <= CHANNEL_NUM_MAX, "[%s] channel_num(%d) > CHANNEL_NUM_MAX", __func__, channel_num);
__func__, frame_len);
ASSERT(channel_num <= CHANNEL_NUM_MAX,
"[%s] channel_num(%d) > CHANNEL_NUM_MAX", __func__, channel_num);
g_require_cnt = 0; g_require_cnt = 0;
g_run_cnt = 0; g_run_cnt = 0;
norflash_api_flush_disable(NORFLASH_API_USER_CP, norflash_api_flush_disable(NORFLASH_API_USER_CP,(uint32_t)cp_accel_init_done);
(uint32_t)cp_accel_init_done); cp_accel_open(CP_TASK_SCO, &TASK_DESC_SCO);
cp_accel_open(CP_TASK_SCO, &TASK_DESC_SCO);
uint32_t cnt = 0; uint32_t cnt=0;
while (cp_accel_init_done() == false) { while(cp_accel_init_done() == false) {
hal_sys_timer_delay_us(100); hal_sys_timer_delay_us(100);
cnt++; cnt++;
if (cnt % 10 == 0) { if (cnt % 10 == 0) {
if (cnt == 10 * 200) { // 200ms if (cnt == 10 * 200) { // 200ms
ASSERT(0, "[%s] ERROR: Can not init cp!!!", __func__); ASSERT(0, "[%s] ERROR: Can not init cp!!!", __func__);
} else { } else {
TRACE(1, "[%s] Wait CP init done...%d(ms)", __func__, cnt / 10); TRACE(1, "[%s] Wait CP init done...%d(ms)", __func__, cnt/10);
} }
}
} }
} norflash_api_flush_enable(NORFLASH_API_USER_CP);
norflash_api_flush_enable(NORFLASH_API_USER_CP);
#if 0 #if 0
speech_heap_cp_start(); speech_heap_cp_start();
speech_heap_add_block(g_cp_heap_buf, sizeof(g_cp_heap_buf)); speech_heap_add_block(g_cp_heap_buf, sizeof(g_cp_heap_buf));
speech_heap_cp_end(); speech_heap_cp_end();
#endif #endif
g_frame_len = frame_len; g_frame_len = frame_len;
g_channel_num = channel_num; g_channel_num = channel_num;
g_pcm_len = frame_len; // Initialize output pcm_len g_pcm_len = frame_len; // Initialize output pcm_len
speech_set_int16(g_in_pcm_buf, 0, g_frame_len * g_channel_num); speech_set_int16(g_in_pcm_buf, 0, g_frame_len * g_channel_num);
speech_set_int16(g_out_pcm_buf, 0, g_frame_len * g_channel_num); speech_set_int16(g_out_pcm_buf, 0, g_frame_len * g_channel_num);
speech_set_int16(g_in_ref_buf, 0, g_frame_len); speech_set_int16(g_in_ref_buf, 0, g_frame_len);
g_cp_state = CP_SCO_STATE_IDLE; g_cp_state = CP_SCO_STATE_IDLE;
TRACE(2, "[%s] status = %d", __func__, g_cp_state); TRACE(2,"[%s] status = %d", __func__, g_cp_state);
return 0;
return 0;
} }
int sco_cp_deinit(void) { int sco_cp_deinit(void)
TRACE(1, "[%s] ...", __func__); {
TRACE(1,"[%s] ...", __func__);
cp_accel_close(CP_TASK_SCO); cp_accel_close(CP_TASK_SCO);
g_cp_state = CP_SCO_STATE_NONE; g_cp_state = CP_SCO_STATE_NONE;
return 0; return 0;
} }
#endif #endif

View File

@ -1,9 +1,9 @@
#include "audio_dump.h"
#include "bt_sco_chain.h" #include "bt_sco_chain.h"
#include "hal_trace.h"
#include "speech_cfg.h"
#include "speech_memory.h" #include "speech_memory.h"
#include "speech_utils.h" #include "speech_utils.h"
#include "hal_trace.h"
#include "audio_dump.h"
#include "speech_cfg.h"
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
int32_t *aec_echo_buf = NULL; int32_t *aec_echo_buf = NULL;
@ -27,134 +27,129 @@ static short *aec_echo_buf_ptr;
SpeechDcFilterState *speech_tx_dc_filter_st = NULL; SpeechDcFilterState *speech_tx_dc_filter_st = NULL;
#endif #endif
int speech_init(int tx_sample_rate, int rx_sample_rate, int tx_frame_ms, int speech_init(int tx_sample_rate, int rx_sample_rate,
int rx_frame_ms, int sco_frame_ms, uint8_t *buf, int len) { int tx_frame_ms, int rx_frame_ms,
// we shoule keep a minmum buffer for speech heap int sco_frame_ms,
// MSBC_16K_SAMPLE_RATE = 0, 560 bytes uint8_t *buf, int len)
// MSBC_16K_SAMPLE_RATE = 1, 2568 bytes {
speech_heap_init(buf, SPEECH_HEAP_RESERVE_SIZE); // we shoule keep a minmum buffer for speech heap
// MSBC_16K_SAMPLE_RATE = 0, 560 bytes
// MSBC_16K_SAMPLE_RATE = 1, 2568 bytes
speech_heap_init(buf, SPEECH_HEAP_RESERVE_SIZE);
uint8_t *free_buf = buf + SPEECH_HEAP_RESERVE_SIZE; uint8_t *free_buf = buf + SPEECH_HEAP_RESERVE_SIZE;
int free_len = len - SPEECH_HEAP_RESERVE_SIZE; int free_len = len - SPEECH_HEAP_RESERVE_SIZE;
// use free_buf for your algorithm // use free_buf for your algorithm
memset(free_buf, 0, free_len); memset(free_buf, 0, free_len);
int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms); int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms);
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
aec_echo_buf = (int32_t *)speech_calloc(frame_len, sizeof(int32_t)); aec_echo_buf = (int32_t *)speech_calloc(frame_len, sizeof(int32_t));
#else #else
aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short)); aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short));
#endif #endif
aec_echo_buf_ptr = aec_echo_buf; aec_echo_buf_ptr = aec_echo_buf;
#if defined(SPEECH_TX_DC_FILTER) #if defined(SPEECH_TX_DC_FILTER)
int channel_num = SPEECH_CODEC_CAPTURE_CHANNEL_NUM; int channel_num = SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
int data_separation = 0; int data_separation = 0;
SpeechDcFilterConfig dc_filter_cfg = { SpeechDcFilterConfig dc_filter_cfg = {
.bypass = 0, .bypass = 0,
.gain = 0.f, .gain = 0.f,
}; };
speech_tx_dc_filter_st = speech_tx_dc_filter_st = speech_dc_filter_create(tx_sample_rate, frame_len, &dc_filter_cfg);
speech_dc_filter_create(tx_sample_rate, frame_len, &dc_filter_cfg); speech_dc_filter_ctl(speech_tx_dc_filter_st, SPEECH_DC_FILTER_SET_CHANNEL_NUM, &channel_num);
speech_dc_filter_ctl(speech_tx_dc_filter_st, SPEECH_DC_FILTER_SET_CHANNEL_NUM, speech_dc_filter_ctl(speech_tx_dc_filter_st, SPEECH_DC_FILTER_SET_DATA_SEPARATION, &data_separation);
&channel_num);
speech_dc_filter_ctl(speech_tx_dc_filter_st,
SPEECH_DC_FILTER_SET_DATA_SEPARATION, &data_separation);
#endif #endif
audio_dump_init(frame_len, sizeof(int16_t), 3); audio_dump_init(frame_len, sizeof(int16_t), 3);
return 0; return 0;
} }
int speech_deinit(void) { int speech_deinit(void)
{
#if defined(SPEECH_TX_DC_FILTER) #if defined(SPEECH_TX_DC_FILTER)
speech_dc_filter_destroy(speech_tx_dc_filter_st); speech_dc_filter_destroy(speech_tx_dc_filter_st);
#endif #endif
speech_free(aec_echo_buf_ptr); speech_free(aec_echo_buf_ptr);
size_t total = 0, used = 0, max_used = 0; size_t total = 0, used = 0, max_used = 0;
speech_memory_info(&total, &used, &max_used); speech_memory_info(&total, &used, &max_used);
TRACE(3, "SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total, TRACE(3,"SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total, used, max_used);
used, max_used); ASSERT(used == 0, "[%s] used != 0", __func__);
ASSERT(used == 0, "[%s] used != 0", __func__);
return 0; return 0;
} }
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len); extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len);
#endif #endif
int speech_tx_process(void *_pcm_buf, void *_ref_buf, int *_pcm_len) { int speech_tx_process(void *_pcm_buf, void *_ref_buf, int *_pcm_len)
{
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
int32_t *pcm_buf = (int32_t *)_pcm_buf; int32_t *pcm_buf = (int32_t *)_pcm_buf;
int32_t *ref_buf = (int32_t *)_ref_buf; int32_t *ref_buf = (int32_t *)_ref_buf;
#else #else
int16_t *pcm_buf = (int16_t *)_pcm_buf; int16_t *pcm_buf = (int16_t *)_pcm_buf;
int16_t *ref_buf = (int16_t *)_ref_buf; int16_t *ref_buf = (int16_t *)_ref_buf;
#endif #endif
int pcm_len = *_pcm_len; int pcm_len = *_pcm_len;
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
uint8_t *bone_buf = NULL; uint8_t *bone_buf = NULL;
uint32_t bone_len = 0; uint32_t bone_len = 0;
bt_sco_get_tdm_buffer(&bone_buf, &bone_len); bt_sco_get_tdm_buffer(&bone_buf, &bone_len);
#endif #endif
audio_dump_clear_up(); audio_dump_clear_up();
audio_dump_add_channel_data(0, ref_buf, audio_dump_add_channel_data(0, ref_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM); audio_dump_add_channel_data_from_multi_channels(1, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0);
audio_dump_add_channel_data_from_multi_channels( audio_dump_add_channel_data_from_multi_channels(2, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1);
1, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0);
audio_dump_add_channel_data_from_multi_channels(
2, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1);
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
audio_dump_add_channel_data(3, bone_buf, audio_dump_add_channel_data(3, bone_buf, pcm16_len/SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
#endif #endif
audio_dump_run(); audio_dump_run();
#if defined(SPEECH_TX_DC_FILTER) #if defined(SPEECH_TX_DC_FILTER)
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
speech_dc_filter_process_int24(speech_tx_dc_filter_st, pcm_buf, pcm_len); speech_dc_filter_process_int24(speech_tx_dc_filter_st, pcm_buf, pcm_len);
#else #else
speech_dc_filter_process(speech_tx_dc_filter_st, pcm_buf, pcm_len); speech_dc_filter_process(speech_tx_dc_filter_st, pcm_buf, pcm_len);
#endif #endif
#endif #endif
// Add your algrithm here and disable #if macro // Add your algrithm here and disable #if macro
#if 1 #if 1
for (int i = 0, j = 0; i < pcm_len; for (int i = 0, j = 0; i < pcm_len; i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) {
i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) { // choose main microphone data
// choose main microphone data pcm_buf[j] = pcm_buf[i];
pcm_buf[j] = pcm_buf[i]; // choose reference data, i.e. loopback
// choose reference data, i.e. loopback //pcm16_buf[j] = ref16_buf[j];
// pcm16_buf[j] = ref16_buf[j]; }
} pcm_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
pcm_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
#endif #endif
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
memcpy(pcm_buf, bone_buf, bone_len); memcpy(pcm_buf, bone_buf, bone_len);
#endif #endif
*_pcm_len = pcm_len; *_pcm_len = pcm_len;
return 0; return 0;
} }
int speech_rx_process(void *pcm_buf, int *pcm_len) { int speech_rx_process(void *pcm_buf, int *pcm_len)
// Add your algorithm here {
return 0; // Add your algorithm here
return 0;
} }

View File

@ -1,12 +1,12 @@
#include "audio_dump.h"
#include "bt_sco_chain.h" #include "bt_sco_chain.h"
#include "hal_trace.h"
#include "speech_memory.h" #include "speech_memory.h"
#include "speech_utils.h" #include "speech_utils.h"
#include "spf-postapi.h" #include "hal_trace.h"
#include "audio_dump.h"
#include "vcp-api.h" #include "vcp-api.h"
#include "spf-postapi.h"
#define ALANGO_TRACE(s, ...) TRACE(1, "%s: " s, __FUNCTION__, ##__VA_ARGS__) #define ALANGO_TRACE(s, ...) TRACE(1,"%s: " s, __FUNCTION__, ## __VA_ARGS__)
short *aec_echo_buf = NULL; short *aec_echo_buf = NULL;
@ -17,7 +17,7 @@ static void *mem;
extern void *voicebtpcm_get_ext_buff(int size); extern void *voicebtpcm_get_ext_buff(int size);
extern char *vcp_errorv(err_t err); extern char* vcp_errorv(err_t err);
extern PROFILE_TYPE(t) alango_profile; extern PROFILE_TYPE(t) alango_profile;
@ -28,130 +28,121 @@ mem_reg_t reg[NUM_MEM_REGIONS];
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
static int16_t *deinterleaved_buf = NULL; static int16_t *deinterleaved_buf = NULL;
static void deinterleave_audio(int16_t *dst, int16_t *src, uint32_t len, static void deinterleave_audio(int16_t *dst, int16_t *src, uint32_t len, uint32_t ch_num)
uint32_t ch_num) { {
uint32_t samples_per_channel = len / ch_num; uint32_t samples_per_channel = len / ch_num;
for (uint32_t i = 0; i < samples_per_channel; i++) { for (uint32_t i = 0; i < samples_per_channel; i++) {
for (uint32_t j = 0; j < ch_num; j++) { for (uint32_t j = 0; j < ch_num; j++) {
dst[samples_per_channel * j + i] = src[ch_num * i + j]; dst[samples_per_channel * j + i] = src[ch_num * i + j];
}
} }
}
} }
#endif #endif
int speech_init(int tx_sample_rate, int rx_sample_rate, int tx_frame_ms, int speech_init(int tx_sample_rate, int rx_sample_rate,
int rx_frame_ms, int sco_frame_ms, uint8_t *buf, int len) { int tx_frame_ms, int rx_frame_ms,
speech_heap_init(buf, len); int sco_frame_ms,
uint8_t *buf, int len)
{
speech_heap_init(buf, len);
int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms); int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms);
aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short)); aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short));
aec_echo_buf_ptr = aec_echo_buf; aec_echo_buf_ptr = aec_echo_buf;
// init alango // init alango
// check profile // check profile
curr_profile = &alango_profile; curr_profile = &alango_profile;
err_t err = vcp_check_profile(curr_profile); err_t err = vcp_check_profile(curr_profile);
if (err.err) { if (err.err) {
if (err.err == ERR_INVALID_CRC) if (err.err == ERR_INVALID_CRC)
ALANGO_TRACE(0, "Profile error: Invalid CRC!"); ALANGO_TRACE(0,"Profile error: Invalid CRC!");
else else
ALANGO_TRACE(1, "Profile error: %d", err.err); ALANGO_TRACE(1,"Profile error: %d", err.err);
} }
ASSERT(frame_len % curr_profile->p_gen->frlen == 0, ASSERT(frame_len % curr_profile->p_gen->frlen == 0, "Profile error: frame_len(%d) should be divided by frlen(%d)", frame_len, curr_profile->p_gen->frlen);
"Profile error: frame_len(%d) should be divided by frlen(%d)",
frame_len, curr_profile->p_gen->frlen);
unsigned int smem = vcp_get_hook_size(); unsigned int smem = vcp_get_hook_size();
mem = speech_malloc(smem); mem = speech_malloc(smem);
vcp_get_mem_size(curr_profile, reg, mem); vcp_get_mem_size(curr_profile, reg, mem);
ALANGO_TRACE(0, "Hello, I am VCP8!"); ALANGO_TRACE(0,"Hello, I am VCP8!");
for (int i = 0; i < NUM_MEM_REGIONS; i++) { for (int i = 0; i < NUM_MEM_REGIONS; i++) {
reg[i].mem = (void *)speech_malloc(reg[i].size); reg[i].mem = (void *)speech_malloc(reg[i].size);
ALANGO_TRACE(2, "I need %d bytes of memory in memory region %d to work.\n", ALANGO_TRACE(2,"I need %d bytes of memory in memory region %d to work.\n", reg[i].size, i + 1);
reg[i].size, i + 1); }
}
err = vcp_init_debug(curr_profile, reg); err = vcp_init_debug(curr_profile, reg);
if (err.err == ERR_NOT_ENOUGH_MEMORY) { if (err.err == ERR_NOT_ENOUGH_MEMORY) {
ALANGO_TRACE(2, "%d more bytes needed in region %d!\n", -reg[err.pid].size, ALANGO_TRACE(2,"%d more bytes needed in region %d!\n", -reg[err.pid].size, err.pid);
err.pid); } else if (err.err == ERR_UNKNOWN) {
} else if (err.err == ERR_UNKNOWN) { ALANGO_TRACE(0,"vcp_init_debug() returns UNKNOWN error\n!");
ALANGO_TRACE(0, "vcp_init_debug() returns UNKNOWN error\n!"); } else if (err.err != ERR_NO_ERROR) {
} else if (err.err != ERR_NO_ERROR) { ALANGO_TRACE(2,"vcp_init_debug() returns error %d, pid %d!\n", err.err, err.pid);
ALANGO_TRACE(2, "vcp_init_debug() returns error %d, pid %d!\n", err.err, }
err.pid);
}
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
deinterleaved_buf = deinterleaved_buf = speech_malloc(curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM * sizeof(int16_t));
speech_malloc(curr_profile->p_gen->frlen *
SPEECH_CODEC_CAPTURE_CHANNEL_NUM * sizeof(int16_t));
#endif #endif
audio_dump_init(frame_len, sizeof(int16_t), 3); audio_dump_init(frame_len, sizeof(int16_t), 3);
return 0; return 0;
} }
int speech_deinit(void) { int speech_deinit(void)
speech_free(aec_echo_buf_ptr); {
speech_free(mem); speech_free(aec_echo_buf_ptr);
speech_free(mem);
for (int i = 0; i < NUM_MEM_REGIONS; i++) for (int i = 0; i < NUM_MEM_REGIONS; i++)
speech_free(reg[i].mem); speech_free(reg[i].mem);
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
speech_free(deinterleaved_buf); speech_free(deinterleaved_buf);
#endif #endif
size_t total = 0, used = 0, max_used = 0; size_t total = 0, used = 0, max_used = 0;
speech_memory_info(&total, &used, &max_used); speech_memory_info(&total, &used, &max_used);
TRACE(3, "SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total, TRACE(3,"SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total, used, max_used);
used, max_used); ASSERT(used == 0, "[%s] used != 0", __func__);
ASSERT(used == 0, "[%s] used != 0", __func__);
return 0; return 0;
} }
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len); extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len);
#endif #endif
int speech_tx_process(void *pcm_buf, void *ref_buf, int *pcm_len) { int speech_tx_process(void *pcm_buf, void *ref_buf, int *pcm_len)
int16_t *pcm16_buf = (int16_t *)pcm_buf; {
int16_t *ref16_buf = (int16_t *)ref_buf; int16_t *pcm16_buf = (int16_t *)pcm_buf;
int pcm16_len = *pcm_len; int16_t *ref16_buf = (int16_t *)ref_buf;
int pcm16_len = *pcm_len;
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
uint8_t *bone_buf = NULL; uint8_t *bone_buf = NULL;
uint32_t bone_len = 0; uint32_t bone_len = 0;
bt_sco_get_tdm_buffer(&bone_buf, &bone_len); bt_sco_get_tdm_buffer(&bone_buf, &bone_len);
#endif #endif
audio_dump_clear_up(); audio_dump_clear_up();
audio_dump_add_channel_data(0, ref_buf, audio_dump_add_channel_data(0, ref_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM); audio_dump_add_channel_data_from_multi_channels(1, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0);
audio_dump_add_channel_data_from_multi_channels( audio_dump_add_channel_data_from_multi_channels(2, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1);
1, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0);
audio_dump_add_channel_data_from_multi_channels(
2, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1);
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
audio_dump_add_channel_data(3, bone_buf, audio_dump_add_channel_data(3, bone_buf, pcm16_len/SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
#endif #endif
audio_dump_run(); audio_dump_run();
// Add your algrithm here and disable #if macro // Add your algrithm here and disable #if macro
#if 0 #if 0
for (int i = 0, j = 0; i < pcm16_len; i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) { for (int i = 0, j = 0; i < pcm16_len; i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) {
// choose main microphone data // choose main microphone data
@ -161,48 +152,41 @@ int speech_tx_process(void *pcm_buf, void *ref_buf, int *pcm_len) {
} }
pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM; pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
#else #else
for (int i = 0, j = 0; i < pcm16_len; for (int i = 0, j = 0; i < pcm16_len; i += curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j += curr_profile->p_gen->frlen) {
i += curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
j += curr_profile->p_gen->frlen) {
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
deinterleave_audio(deinterleaved_buf, &pcm16_buf[i], deinterleave_audio(deinterleaved_buf, &pcm16_buf[i], curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
curr_profile->p_gen->frlen * err_t err = vcp_process_tx(reg, deinterleaved_buf, &ref16_buf[j], &pcm16_buf[j]);
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, //memcpy(&pcm16_buf[j], deinterleaved_buf, curr_profile->p_gen->frlen * sizeof(int16_t));
SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
err_t err =
vcp_process_tx(reg, deinterleaved_buf, &ref16_buf[j], &pcm16_buf[j]);
// memcpy(&pcm16_buf[j], deinterleaved_buf, curr_profile->p_gen->frlen *
// sizeof(int16_t));
#else #else
err_t err = err_t err = vcp_process_tx(reg, &pcm16_buf[i], &ref16_buf[j], &pcm16_buf[j]);
vcp_process_tx(reg, &pcm16_buf[i], &ref16_buf[j], &pcm16_buf[j]);
#endif #endif
if (err.err != ERR_NO_ERROR) { if (err.err != ERR_NO_ERROR) {
ALANGO_TRACE(1, "vcp_process_tx error: %d", err.err); ALANGO_TRACE(1,"vcp_process_tx error: %d", err.err);
}
} }
} pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
#endif #endif
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
memcpy(pcm_buf, bone_buf, bone_len); memcpy(pcm_buf, bone_buf, bone_len);
#endif #endif
*pcm_len = pcm16_len; *pcm_len = pcm16_len;
return 0; return 0;
} }
int speech_rx_process(void *pcm_buf, int *pcm_len) { int speech_rx_process(void *pcm_buf, int *pcm_len)
int16_t *pcm16_buf = (int16_t *)pcm_buf; {
int pcm16_len = *pcm_len; int16_t *pcm16_buf = (int16_t *)pcm_buf;
int pcm16_len = *pcm_len;
for (int i = 0; i < pcm16_len; i += curr_profile->p_gen->frlen) { for (int i = 0; i < pcm16_len; i += curr_profile->p_gen->frlen) {
err_t err = vcp_process_rx(reg, &pcm16_buf[i], &pcm16_buf[i]); err_t err = vcp_process_rx(reg, &pcm16_buf[i], &pcm16_buf[i]);
if (err.err != ERR_NO_ERROR) { if (err.err != ERR_NO_ERROR) {
ALANGO_TRACE(1, "vcp_process_tx error: %d", err.err); ALANGO_TRACE(1,"vcp_process_tx error: %d", err.err);
}
} }
}
return 0; return 0;
} }

View File

@ -13,8 +13,8 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "aud_section.h"
#include "bt_sco_chain_cfg.h" #include "bt_sco_chain_cfg.h"
#include "aud_section.h"
#include "hal_trace.h" #include "hal_trace.h"
static bool speech_tuning_status = false; static bool speech_tuning_status = false;
@ -23,178 +23,202 @@ extern int speech_store_config(const SpeechConfig *cfg);
#ifdef AUDIO_SECTION_ENABLE #ifdef AUDIO_SECTION_ENABLE
typedef struct { typedef struct {
uint8_t reserved[AUDIO_SECTION_CFG_RESERVED_LEN]; uint8_t reserved[AUDIO_SECTION_CFG_RESERVED_LEN];
SpeechConfig cfg; SpeechConfig cfg;
} AUDIO_SECTION_SPEECH_CFG_T; } AUDIO_SECTION_SPEECH_CFG_T;
static AUDIO_SECTION_SPEECH_CFG_T audio_section_speech_cfg; static AUDIO_SECTION_SPEECH_CFG_T audio_section_speech_cfg;
int store_speech_cfg_into_audio_section(SpeechConfig *cfg) { int store_speech_cfg_into_audio_section(SpeechConfig *cfg)
int res = 0; {
int res = 0;
memcpy(&audio_section_speech_cfg.cfg, cfg, sizeof(SpeechConfig)); memcpy(&audio_section_speech_cfg.cfg, cfg, sizeof(SpeechConfig));
res = audio_section_store_cfg(AUDIO_SECTION_DEVICE_SPEECH, res = audio_section_store_cfg(AUDIO_SECTION_DEVICE_SPEECH,
(uint8_t *)&audio_section_speech_cfg, (uint8_t *)&audio_section_speech_cfg,
sizeof(AUDIO_SECTION_SPEECH_CFG_T)); sizeof(AUDIO_SECTION_SPEECH_CFG_T));
if (res) {
TRACE(2, "[%s] ERROR: res = %d", __func__, res);
} else {
TRACE(1, "[%s] Store speech cfg into audio section!!!", __func__);
}
return res; if(res)
} {
TRACE(2,"[%s] ERROR: res = %d", __func__, res);
void *load_speech_cfg_from_audio_section(void) { }
int res = 0; else
res = audio_section_load_cfg(AUDIO_SECTION_DEVICE_SPEECH, {
(uint8_t *)&audio_section_speech_cfg, TRACE(1,"[%s] Store speech cfg into audio section!!!", __func__);
sizeof(AUDIO_SECTION_SPEECH_CFG_T));
void *res_ptr = NULL;
if (res) {
TRACE(2, "[%s] ERROR: res = %d", __func__, res);
res_ptr = NULL;
} else {
TRACE(1, "[%s] Load speech cfg from audio section!!!", __func__);
res_ptr = (void *)&audio_section_speech_cfg.cfg;
}
return res_ptr;
}
#endif
int speech_tuning_set_status(bool en) {
speech_tuning_status = en;
return 0;
}
bool speech_tuning_get_status(void) { return speech_tuning_status; }
uint32_t speech_tuning_check(unsigned char *buf, uint32_t len) {
uint32_t res = 0;
// Check valid
uint32_t config_size = sizeof(SpeechConfig);
if (config_size != len) {
TRACE(2, "[speech tuning] len(%d) != config_size(%d)", len, config_size);
res = 1;
} else {
TRACE(1, "[speech tuning] len(%d) is OK", len);
// SpeechConfig POSSIBLY_UNUSED *cfg = (SpeechConfig *)buf;
// Test parameters
//#if defined(SPEECH_TX_2MIC_NS2)
// TRACE(1,"[speech tuning] TX: delay_taps(x100): %d",
// (int)(cfg->tx_2mic_ns2.delay_taps * 100));
//#endif
//#if defined(SPEECH_TX_NOISE_GATE)
// TRACE(1,"[speech tuning] TX: data_threshold: %d",
// cfg->tx_noise_gate.data_threshold);
//#endif
//#if defined(SPEECH_TX_EQ)
// TRACE(1,"[speech tuning] TX: eq num: %d", cfg->tx_eq.num);
//#endif
//#if defined(SPEECH_RX_EQ)
// TRACE(1,"[speech tuning] RX: eq num: %d", cfg->rx_eq.num);
//#endif
}
return res;
}
uint32_t speech_tuning_rx_callback(unsigned char *buf, uint32_t len) {
uint32_t res = 0;
res = speech_tuning_check(buf, len);
if (res) {
TRACE(1, "[speech tuning] ERROR: Send check res = %d", res);
TRACE(0, "[Speech Tuning] res : 1; info : Send len(%d) != config_size(%d);",
len, sizeof(SpeechConfig));
} else {
// Save cfg
speech_store_config((SpeechConfig *)buf);
// Set status
speech_tuning_set_status(true);
TRACE(0, "[speech tuning] OK: Send cfg");
TRACE(0, "[Speech Tuning] res : 0;");
}
return res;
}
#ifdef AUDIO_SECTION_ENABLE
uint32_t speech_tuning_burn_rx_callback(unsigned char *buf, uint32_t len) {
uint32_t res = 0;
res = speech_tuning_check(buf, len);
if (res) {
TRACE(1, "[speech tuning] ERROR: Burn check res = %d", res);
TRACE(0, "[Speech Tuning] res : 1; info : Burn len(%d) != config_size(%d);",
len, sizeof(SpeechConfig));
} else {
res = store_speech_cfg_into_audio_section((SpeechConfig *)buf);
if (res) {
TRACE(1, "[speech tuning] ERROR: Store res = %d", res);
res += 100;
TRACE(0, "[Speech Tuning] res : 2; info : Do not enable "
"AUDIO_SECTION_ENABLE;");
} else {
TRACE(0, "[speech tuning] OK: Store cfg");
TRACE(0, "[Speech Tuning] res : 0;");
} }
}
return res; return res;
}
void *load_speech_cfg_from_audio_section(void)
{
int res = 0;
res = audio_section_load_cfg(AUDIO_SECTION_DEVICE_SPEECH,
(uint8_t *)&audio_section_speech_cfg,
sizeof(AUDIO_SECTION_SPEECH_CFG_T));
void *res_ptr = NULL;
if (res)
{
TRACE(2,"[%s] ERROR: res = %d", __func__, res);
res_ptr = NULL;
}
else
{
TRACE(1,"[%s] Load speech cfg from audio section!!!", __func__);
res_ptr = (void *)&audio_section_speech_cfg.cfg;
}
return res_ptr;
} }
#endif #endif
int speech_tuning_init(void) { int speech_tuning_set_status(bool en)
{
speech_tuning_status = en;
return 0;
}
bool speech_tuning_get_status(void)
{
return speech_tuning_status;
}
uint32_t speech_tuning_check(unsigned char *buf, uint32_t len)
{
uint32_t res = 0;
// Check valid
uint32_t config_size = sizeof(SpeechConfig);
if (config_size != len)
{
TRACE(2,"[speech tuning] len(%d) != config_size(%d)", len, config_size);
res = 1;
}
else
{
TRACE(1,"[speech tuning] len(%d) is OK", len);
//SpeechConfig POSSIBLY_UNUSED *cfg = (SpeechConfig *)buf;
// Test parameters
//#if defined(SPEECH_TX_2MIC_NS2)
// TRACE(1,"[speech tuning] TX: delay_taps(x100): %d", (int)(cfg->tx_2mic_ns2.delay_taps * 100));
//#endif
//#if defined(SPEECH_TX_NOISE_GATE)
// TRACE(1,"[speech tuning] TX: data_threshold: %d", cfg->tx_noise_gate.data_threshold);
//#endif
//#if defined(SPEECH_TX_EQ)
// TRACE(1,"[speech tuning] TX: eq num: %d", cfg->tx_eq.num);
//#endif
//#if defined(SPEECH_RX_EQ)
// TRACE(1,"[speech tuning] RX: eq num: %d", cfg->rx_eq.num);
//#endif
}
return res;
}
uint32_t speech_tuning_rx_callback(unsigned char *buf, uint32_t len)
{
uint32_t res = 0;
res = speech_tuning_check(buf, len);
if (res)
{
TRACE(1,"[speech tuning] ERROR: Send check res = %d", res);
TRACE(0,"[Speech Tuning] res : 1; info : Send len(%d) != config_size(%d);", len, sizeof(SpeechConfig));
}
else
{
// Save cfg
speech_store_config((SpeechConfig *)buf);
// Set status
speech_tuning_set_status(true);
TRACE(0,"[speech tuning] OK: Send cfg");
TRACE(0,"[Speech Tuning] res : 0;");
}
return res;
}
#ifdef AUDIO_SECTION_ENABLE
uint32_t speech_tuning_burn_rx_callback(unsigned char *buf, uint32_t len)
{
uint32_t res = 0;
res = speech_tuning_check(buf, len);
if (res)
{
TRACE(1,"[speech tuning] ERROR: Burn check res = %d", res);
TRACE(0,"[Speech Tuning] res : 1; info : Burn len(%d) != config_size(%d);", len, sizeof(SpeechConfig));
}
else
{
res = store_speech_cfg_into_audio_section((SpeechConfig *)buf);
if(res)
{
TRACE(1,"[speech tuning] ERROR: Store res = %d", res);
res += 100;
TRACE(0,"[Speech Tuning] res : 2; info : Do not enable AUDIO_SECTION_ENABLE;");
}
else
{
TRACE(0,"[speech tuning] OK: Store cfg");
TRACE(0,"[Speech Tuning] res : 0;");
}
}
return res;
}
#endif
int speech_tuning_init(void)
{
#if defined(HAL_TRACE_RX_ENABLE) && !defined(SPEECH_TX_THIRDPARTY) #if defined(HAL_TRACE_RX_ENABLE) && !defined(SPEECH_TX_THIRDPARTY)
hal_trace_rx_register("Speech Tuning", hal_trace_rx_register("Speech Tuning", (HAL_TRACE_RX_CALLBACK_T)speech_tuning_rx_callback);
(HAL_TRACE_RX_CALLBACK_T)speech_tuning_rx_callback);
#ifdef AUDIO_SECTION_ENABLE #ifdef AUDIO_SECTION_ENABLE
hal_trace_rx_register( hal_trace_rx_register("Speech Tuning Burn", (HAL_TRACE_RX_CALLBACK_T)speech_tuning_burn_rx_callback);
"Speech Tuning Burn",
(HAL_TRACE_RX_CALLBACK_T)speech_tuning_burn_rx_callback);
#endif #endif
#endif #endif
speech_tuning_set_status(false); speech_tuning_set_status(false);
return 0; return 0;
} }
int speech_tuning_open(void) { int speech_tuning_open(void)
{
#ifdef AUDIO_SECTION_ENABLE #ifdef AUDIO_SECTION_ENABLE
SpeechConfig *speech_cfg_load = NULL; SpeechConfig *speech_cfg_load = NULL;
speech_cfg_load = (SpeechConfig *)load_speech_cfg_from_audio_section(); speech_cfg_load = (SpeechConfig *)load_speech_cfg_from_audio_section();
if (speech_cfg_load) { if (speech_cfg_load)
speech_store_config(speech_cfg_load); {
} speech_store_config(speech_cfg_load);
}
#endif #endif
speech_tuning_set_status(false); speech_tuning_set_status(false);
return 0; return 0;
} }
int speech_tuning_close(void) { int speech_tuning_close(void)
speech_tuning_set_status(false); {
speech_tuning_set_status(false);
return 0; return 0;
} }

View File

@ -17,22 +17,23 @@
#include "mbed.h" #include "mbed.h"
#endif #endif
// Standard C Included Files // Standard C Included Files
#include <string.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <stdio.h>
#ifdef MBED #ifdef MBED
//#include "rtos.h" //#include "rtos.h"
#endif #endif
#ifdef MBED #ifdef MBED
#include "SDFileSystem.h" #include "SDFileSystem.h"
#endif #endif
#include "app_audio.h"
#include "cqueue.h" #include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_uart.h" #include "app_audio.h"
// BT // BT
@ -43,15 +44,16 @@ osMutexDef(g_voicecvsd_queue_mutex);
/* cvsd queue */ /* cvsd queue */
#define VOICECVSD_TEMP_BUFFER_SIZE 128 #define VOICECVSD_TEMP_BUFFER_SIZE 128
#define VOICECVSD_QUEUE_SIZE (VOICECVSD_TEMP_BUFFER_SIZE * 20) #define VOICECVSD_QUEUE_SIZE (VOICECVSD_TEMP_BUFFER_SIZE*20)
CQueue voicecvsd_queue; CQueue voicecvsd_queue;
static enum APP_AUDIO_CACHE_T voicecvsd_cache_status = APP_AUDIO_CACHE_QTY; static enum APP_AUDIO_CACHE_T voicecvsd_cache_status = APP_AUDIO_CACHE_QTY;
#define LOCK_VOICECVSD_QUEUE() \ #define LOCK_VOICECVSD_QUEUE() \
osMutexWait(g_voicecvsd_queue_mutex_id, osWaitForever) osMutexWait(g_voicecvsd_queue_mutex_id, osWaitForever)
#define UNLOCK_VOICECVSD_QUEUE() osMutexRelease(g_voicecvsd_queue_mutex_id) #define UNLOCK_VOICECVSD_QUEUE() \
osMutexRelease(g_voicecvsd_queue_mutex_id)
void xLOCK_VOICECVSD_QUEUE(void) void xLOCK_VOICECVSD_QUEUE(void)
{ {

View File

@ -14,32 +14,34 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include "cqueue.h" #include <string.h>
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_uart.h"
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <stdio.h>
#include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h"
#include "hal_trace.h"
uint8_t digmic_buf[100 * 1024]; uint8_t digmic_buf[100*1024];
uint32_t digmic_buf_len = 0; uint32_t digmic_buf_len = 0;
uint32_t dig_mic_audio_more_data(uint8_t *buf, uint32_t len) { uint32_t dig_mic_audio_more_data(uint8_t *buf, uint32_t len)
TRACE(2, "%s:%d\n", __func__, __LINE__); {
memcpy(buf, digmic_buf, len); TRACE(2,"%s:%d\n", __func__, __LINE__);
memcpy(buf, digmic_buf, len);
return len; return len;
} }
uint32_t dig_mic_audio_data_come(uint8_t *buf, uint32_t len) { uint32_t dig_mic_audio_data_come(uint8_t *buf, uint32_t len)
TRACE(2, "%s:%d\n", __func__, __LINE__); {
TRACE(2,"%s:%d\n", __func__, __LINE__);
memcpy(digmic_buf + digmic_buf_len, buf, len); memcpy(digmic_buf + digmic_buf_len, buf, len);
#if 1 #if 1
digmic_buf_len = (digmic_buf_len + len) % (100 * 1024); digmic_buf_len = (digmic_buf_len + len)%(100*1024);
#endif #endif
return len; return len;
} }

View File

@ -14,15 +14,15 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include "cqueue.h" #include <string.h>
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_uart.h"
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <stdio.h>
#include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h"
#include "hal_trace.h"
#ifdef RTOS #ifdef RTOS
#include "cmsis_os.h" #include "cmsis_os.h"
#endif #endif
@ -33,102 +33,106 @@ osMutexDef(g_flac_queue_mutex);
/* flac queue */ /* flac queue */
#define FLAC_TEMP_BUFFER_SIZE 2048 #define FLAC_TEMP_BUFFER_SIZE 2048
#define FLAC_QUEUE_SIZE (FLAC_TEMP_BUFFER_SIZE * 4) #define FLAC_QUEUE_SIZE (FLAC_TEMP_BUFFER_SIZE*4)
unsigned char flac_queue_buf[FLAC_QUEUE_SIZE]; unsigned char flac_queue_buf[FLAC_QUEUE_SIZE];
CQueue flac_queue; CQueue flac_queue;
static uint32_t ok_to_decode = 0; static uint32_t ok_to_decode = 0;
#define LOCK_FLAC_QUEUE() osMutexWait(g_flac_queue_mutex_id, osWaitForever) #define LOCK_FLAC_QUEUE() \
osMutexWait(g_flac_queue_mutex_id, osWaitForever)
#define UNLOCK_FLAC_QUEUE() osMutexRelease(g_flac_queue_mutex_id) #define UNLOCK_FLAC_QUEUE() \
osMutexRelease(g_flac_queue_mutex_id)
static void copy_one_trace_to_two_track_16bits(uint16_t *src_buf, static void copy_one_trace_to_two_track_16bits(uint16_t *src_buf, uint16_t *dst_buf, uint32_t src_len)
uint16_t *dst_buf, {
uint32_t src_len) { uint32_t i = 0;
uint32_t i = 0; for (i = 0; i < src_len; ++i) {
for (i = 0; i < src_len; ++i) { dst_buf[i*2 + 0] = dst_buf[i*2 + 1] = src_buf[i];
dst_buf[i * 2 + 0] = dst_buf[i * 2 + 1] = src_buf[i]; }
}
} }
int store_flac_buffer(unsigned char *buf, unsigned int len) { int store_flac_buffer(unsigned char *buf, unsigned int len)
LOCK_FLAC_QUEUE(); {
EnCQueue(&flac_queue, buf, len); LOCK_FLAC_QUEUE();
if (LengthOfCQueue(&flac_queue) > FLAC_TEMP_BUFFER_SIZE * 2) { EnCQueue(&flac_queue, buf, len);
ok_to_decode = 1; if (LengthOfCQueue(&flac_queue) > FLAC_TEMP_BUFFER_SIZE*2) {
} ok_to_decode = 1;
UNLOCK_FLAC_QUEUE(); }
UNLOCK_FLAC_QUEUE();
return 0; return 0;
} }
int decode_flac_frame(unsigned char *pcm_buffer, unsigned int pcm_len) { int decode_flac_frame(unsigned char *pcm_buffer, unsigned int pcm_len)
uint32_t r = 0, got_len = 0; {
unsigned char *e1 = NULL, *e2 = NULL; uint32_t r = 0, got_len = 0;
unsigned int len1 = 0, len2 = 0; unsigned char *e1 = NULL, *e2 = NULL;
unsigned int len1 = 0, len2 = 0;
get_again: get_again:
LOCK_FLAC_QUEUE(); LOCK_FLAC_QUEUE();
r = PeekCQueue(&flac_queue, (pcm_len - got_len) / 2, &e1, &len1, &e2, &len2); r = PeekCQueue(&flac_queue, (pcm_len - got_len)/2, &e1, &len1, &e2, &len2);
UNLOCK_FLAC_QUEUE(); UNLOCK_FLAC_QUEUE();
if (r == CQ_ERR || len1 == 0) { if(r == CQ_ERR || len1 == 0) {
osDelay(2); osDelay(2);
goto get_again; goto get_again;
} }
// memcpy(pcm_buffer + got_len, e1, len1); //memcpy(pcm_buffer + got_len, e1, len1);
copy_one_trace_to_two_track_16bits( copy_one_trace_to_two_track_16bits((uint16_t *)e1, (uint16_t *)(pcm_buffer + got_len), len1/2);
(uint16_t *)e1, (uint16_t *)(pcm_buffer + got_len), len1 / 2);
LOCK_FLAC_QUEUE();
DeCQueue(&flac_queue, 0, len1);
UNLOCK_FLAC_QUEUE();
got_len += len1 * 2;
if (len2 != 0) {
// memcpy(pcm_buffer + got_len, e2, len2);
copy_one_trace_to_two_track_16bits(
(uint16_t *)e2, (uint16_t *)(pcm_buffer + got_len), len2 / 2);
LOCK_FLAC_QUEUE(); LOCK_FLAC_QUEUE();
DeCQueue(&flac_queue, 0, len2); DeCQueue(&flac_queue, 0, len1);
UNLOCK_FLAC_QUEUE(); UNLOCK_FLAC_QUEUE();
}
got_len += len2 * 2; got_len += len1*2;
if (got_len < pcm_len) if (len2 != 0) {
goto get_again; //memcpy(pcm_buffer + got_len, e2, len2);
copy_one_trace_to_two_track_16bits((uint16_t *)e2, (uint16_t *)(pcm_buffer + got_len), len2/2);
return pcm_len; LOCK_FLAC_QUEUE();
DeCQueue(&flac_queue, 0, len2);
UNLOCK_FLAC_QUEUE();
}
got_len += len2*2;
if (got_len < pcm_len)
goto get_again;
return pcm_len;
} }
uint32_t flac_audio_data_come(uint8_t *buf, uint32_t len) { uint32_t flac_audio_data_come(uint8_t *buf, uint32_t len)
TRACE(1, "data come %d\n", len); {
TRACE(1,"data come %d\n", len);
return 0;
}
uint32_t flac_audio_more_data(uint8_t *buf, uint32_t len) {
uint32_t l = 0;
// uint32_t cur_ticks = 0, ticks = 0;
if (ok_to_decode == 0)
return 0; return 0;
// ticks = hal_sys_timer_get();
l = decode_flac_frame(buf, len);
// cur_ticks = hal_sys_timer_get();
// TRACE(1,"flac %d t\n", (cur_ticks-ticks));
return l;
} }
int flac_audio_init(void) { uint32_t flac_audio_more_data(uint8_t *buf, uint32_t len)
g_flac_queue_mutex_id = osMutexCreate((osMutex(g_flac_queue_mutex))); {
/* flac queue*/ uint32_t l = 0;
InitCQueue(&flac_queue, FLAC_QUEUE_SIZE, (unsigned char *)&flac_queue_buf); //uint32_t cur_ticks = 0, ticks = 0;
return 0; if (ok_to_decode == 0)
return 0;
//ticks = hal_sys_timer_get();
l = decode_flac_frame(buf, len);
//cur_ticks = hal_sys_timer_get();
// TRACE(1,"flac %d t\n", (cur_ticks-ticks));
return l;
}
int flac_audio_init(void)
{
g_flac_queue_mutex_id = osMutexCreate((osMutex(g_flac_queue_mutex)));
/* flac queue*/
InitCQueue(&flac_queue, FLAC_QUEUE_SIZE, (unsigned char *)&flac_queue_buf);
return 0;
} }

View File

@ -15,151 +15,154 @@
****************************************************************************/ ****************************************************************************/
#ifdef CHIP_BEST1000 #ifdef CHIP_BEST1000
#include "app_audio.h"
#include "app_overlay.h"
#include "app_utils.h"
#include "audiobuffer.h"
#include "audioflinger.h"
#include "cmsis.h" #include "cmsis.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "cqueue.h" #include "hal_trace.h"
#include "fmdec.h" #include "fmdec.h"
#include "hal_analogif.h"
#include "hal_chipid.h"
#include "hal_cmu.h"
#include "hal_dma.h" #include "hal_dma.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_cmu.h"
#include "pmu.h" #include "hal_analogif.h"
#include "hal_chipid.h"
#include "audioflinger.h"
#include "audiobuffer.h"
#include "cqueue.h"
#include "app_audio.h"
#include "app_utils.h"
#include "app_overlay.h"
#include "string.h" #include "string.h"
#include "pmu.h"
// #define FM_DEBUG 1 //#define FM_DEBUG 1
#define FM_DIGITAL_REG(a) *(volatile uint32_t *)(a) #define FM_DIGITAL_REG(a) *(volatile uint32_t *)(a)
#define fm_read_rf_reg(reg, val) hal_analogif_reg_read(reg, val) #define fm_read_rf_reg(reg,val) hal_analogif_reg_read(reg,val)
#define fm_write_rf_reg(reg, val) hal_analogif_reg_write(reg, val) #define fm_write_rf_reg(reg,val) hal_analogif_reg_write(reg,val)
#define FM_FRAME_NUM 4 #define FM_FRAME_NUM 4
#define FM_SAMPLE_NUM NUMOFSAMPLE #define FM_SAMPLE_NUM NUMOFSAMPLE
#ifdef ATAN2_HARDWARE #ifdef ATAN2_HARDWARE
#ifdef FM_NEWMODE #ifdef FM_NEWMODE
#define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM * FM_SAMPLE_NUM * 4) #define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM*FM_SAMPLE_NUM*4)
#else #else
#define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM * FM_SAMPLE_NUM / 2 * 4) #define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM*FM_SAMPLE_NUM/2*4)
#endif #endif
#else #else
#define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM * FM_SAMPLE_NUM * 4) #define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM*FM_SAMPLE_NUM*4)
#endif #endif
#define FM_AUDIO_BUFFER_SIZE (4096) #define FM_AUDIO_BUFFER_SIZE (4096)
extern int app_bt_stream_local_volume_get(void); extern int app_bt_stream_local_volume_get(void);
static int32_t *fm_sample_buffer_p; static int32_t *fm_sample_buffer_p;
static void fm_handler(uint8_t chan, uint32_t remains, uint32_t error, static void fm_handler(uint8_t chan, uint32_t remains, uint32_t error, struct HAL_DMA_DESC_T *lli)
struct HAL_DMA_DESC_T *lli) { {
static int cnt = 0; static int cnt = 0;
int16_t fm_decbuf[(FM_SAMPLE_NUM / 9)]; int16_t fm_decbuf[(FM_SAMPLE_NUM/9)];
FmDemodulate( FmDemodulate((int16_t *)(fm_sample_buffer_p +((cnt%FM_FRAME_NUM)*FM_SAMPLE_NUM)), fm_decbuf,FM_SAMPLE_NUM);
(int16_t *)(fm_sample_buffer_p + ((cnt % FM_FRAME_NUM) * FM_SAMPLE_NUM)), cnt++;
fm_decbuf, FM_SAMPLE_NUM); app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM/9)<<1);
cnt++; FmDemodulate((int16_t *)(fm_sample_buffer_p +((cnt%FM_FRAME_NUM)*FM_SAMPLE_NUM)), fm_decbuf,FM_SAMPLE_NUM);
app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM / 9) << 1); cnt++;
FmDemodulate( app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM/9)<<1);
(int16_t *)(fm_sample_buffer_p + ((cnt % FM_FRAME_NUM) * FM_SAMPLE_NUM)),
fm_decbuf, FM_SAMPLE_NUM);
cnt++;
app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM / 9) << 1);
#ifdef FM_DEBUG #ifdef FM_DEBUG
{ {
static uint32_t preTicks; static uint32_t preTicks;
uint32_t diff_ticks = 0; uint32_t diff_ticks = 0;
uint32_t cur_ticks; uint32_t cur_ticks;
cur_ticks = hal_sys_timer_get(); cur_ticks = hal_sys_timer_get();
if (!preTicks) { if (!preTicks){
preTicks = cur_ticks; preTicks = cur_ticks;
} else { }else{
diff_ticks = TICKS_TO_MS(cur_ticks - preTicks); diff_ticks = TICKS_TO_MS(cur_ticks - preTicks);
preTicks = cur_ticks; preTicks = cur_ticks;
}
TRACE(3,"[fm_handler] diff=%d add:%d remain:%d input", diff_ticks, (FM_SAMPLE_NUM/9)<<1, app_audio_pcmbuff_length());
} }
TRACE(3, "[fm_handler] diff=%d add:%d remain:%d input", diff_ticks,
(FM_SAMPLE_NUM / 9) << 1, app_audio_pcmbuff_length());
}
#endif #endif
} }
uint32_t fm_pcm_more_data(uint8_t *buf, uint32_t len) { uint32_t fm_pcm_more_data(uint8_t *buf, uint32_t len)
app_audio_pcmbuff_get(buf, len); {
app_audio_pcmbuff_get(buf, len);
#ifdef FM_DEBUG #ifdef FM_DEBUG
{ {
static uint32_t preTicks; static uint32_t preTicks;
uint32_t diff_ticks = 0; uint32_t diff_ticks = 0;
uint32_t cur_ticks = hal_sys_timer_get(); uint32_t cur_ticks= hal_sys_timer_get();
if (!preTicks) { if (!preTicks){
preTicks = cur_ticks; preTicks = cur_ticks;
} else { }else{
diff_ticks = TICKS_TO_MS(cur_ticks - preTicks); diff_ticks = TICKS_TO_MS(cur_ticks - preTicks);
preTicks = cur_ticks; preTicks = cur_ticks;
}
TRACE(5,"[fm_pcm_more_data] diff=%d get:%d remain:%d output isr:0x%08x cnt:%d", diff_ticks, len/2, app_audio_pcmbuff_length(), FM_DIGITAL_REG(0x40160020), FM_DIGITAL_REG(0x40160028));
} }
TRACE(
5,
"[fm_pcm_more_data] diff=%d get:%d remain:%d output isr:0x%08x cnt:%d",
diff_ticks, len / 2, app_audio_pcmbuff_length(),
FM_DIGITAL_REG(0x40160020), FM_DIGITAL_REG(0x40160028));
}
#endif #endif
return 0; return 0;
} }
uint32_t fm_capture_more_data(uint8_t *buf, uint32_t len) { uint32_t fm_capture_more_data(uint8_t *buf, uint32_t len)
fm_handler(0, 0, 0, NULL); {
return len; fm_handler(0,0,0,NULL);
return len;
} }
void fm_radio_digit_init(void) { void fm_radio_digit_init(void)
FM_DIGITAL_REG(0xd0350244) = (FM_DIGITAL_REG(0xd0350244) & ~0x01fff) | {
0x20f; //-890k -> 0 if_shift, for 110.5292m adc FM_DIGITAL_REG(0xd0350244) = (FM_DIGITAL_REG(0xd0350244) & ~0x01fff) | 0x20f; //-890k -> 0 if_shift, for 110.5292m adc
// FM_DIGITAL_REG(0x40180e0c) = 0x34;
//FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) | 0x18000;
// FM_DIGITAL_REG(0x40180e0c) = 0x34;
// FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) |
// 0x18000;
#ifdef ATAN2_HARDWARE #ifdef ATAN2_HARDWARE
FM_DIGITAL_REG(0xd0330038) |= (1 << 11);
FM_DIGITAL_REG(0xd0330038) |= (1 << 17); FM_DIGITAL_REG(0xd0330038) |= (1 << 11);
FM_DIGITAL_REG(0xd0350248) = 0x80c00000; FM_DIGITAL_REG(0xd0330038) |= (1 << 17);
// FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0xd0350248) = 0x80c00000;
// FM_DIGITAL_REG(0x40160000) = 0x21; // FM_DIGITAL_REG(0x40160030) = 1;
// FM_DIGITAL_REG(0x40160000) = 0x21;
#else #else
FM_DIGITAL_REG(0xd0330038) |= (1 << 11);
FM_DIGITAL_REG(0xd0350248) = 0x80c00000;
// FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0xd0330038) |= (1 << 11);
// FM_DIGITAL_REG(0x40160000) = 1; FM_DIGITAL_REG(0xd0350248) = 0x80c00000;
// FM_DIGITAL_REG(0x40160030) = 1;
// FM_DIGITAL_REG(0x40160000) = 1;
#endif #endif
#ifdef SINGLECHANLE #ifdef SINGLECHANLE
// 0x4000a010 bit2 д0 <20><>channel dac //0x4000a010 bit2 写0 单channel dac
FM_DIGITAL_REG(0x4000a010) = (1 << 5) | (1 << 4); FM_DIGITAL_REG(0x4000a010) = (1 << 5) |(1<<4);
#else #else
FM_DIGITAL_REG(0x4000a010) = (1 << 5) | (1 << 2) | (1 << 4); FM_DIGITAL_REG(0x4000a010) = (1 << 5) | (1 << 2)|(1<<4);
#endif #endif
FM_DIGITAL_REG(0x4000a020) = ~0UL;
FM_DIGITAL_REG(0x4000a02c) = 4;
FM_DIGITAL_REG(0x4000a030) = 4;
FM_DIGITAL_REG(0x4000a034) = (1 << 2) | (1 << 1) | (1 << 0);
// Start DAC FM_DIGITAL_REG(0x4000a020) = ~0UL;
// FM_DIGITAL_REG(0x4000a010) |= (1 << 1); FM_DIGITAL_REG(0x4000a02c) = 4;
FM_DIGITAL_REG(0x4000a030) = 4;
FM_DIGITAL_REG(0x4000a034) = (1 << 2) | (1 << 1) | (1 << 0);
// Start DAC
// FM_DIGITAL_REG(0x4000a010) |= (1 << 1);
#if 0 #if 0
//52M //52M
@ -182,318 +185,345 @@ void fm_radio_digit_init(void) {
FM_DIGITAL_REG(0x40000064) = (FM_DIGITAL_REG(0x40000064) & ~0xFF) | 0x7A | (1 << 10) | (1<<30); FM_DIGITAL_REG(0x40000064) = (FM_DIGITAL_REG(0x40000064) & ~0xFF) | 0x7A | (1 << 10) | (1<<30);
#endif #endif
FM_DIGITAL_REG(0x4000a040) = 0xc0810000; FM_DIGITAL_REG(0x4000a040) = 0xc0810000;
FM_DIGITAL_REG(0x4000a044) = 0x08040c04; FM_DIGITAL_REG(0x4000a044) = 0x08040c04;
FM_DIGITAL_REG(0x4000a048) = 0x0e01f268; FM_DIGITAL_REG(0x4000a048) = 0x0e01f268;
FM_DIGITAL_REG(0x4000a04c) = 0x00005100; FM_DIGITAL_REG(0x4000a04c) = 0x00005100;
// FM_DIGITAL_REG(0x40010010) = 0; // FM_DIGITAL_REG(0x40010010) = 0;
// FM_DIGITAL_REG(0x40010014) = 0x03a80005; // FM_DIGITAL_REG(0x40010014) = 0x03a80005;
// FM_DIGITAL_REG(0x40010018) = 0x00200019; //FM_DIGITAL_REG(0x40010018) = 0x00200019;
FM_DIGITAL_REG(0x4000a050) = 0x24200000; // for adc_div_3_6 bypass FM_DIGITAL_REG(0x4000a050) = 0x24200000; //for adc_div_3_6 bypass
FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x780) | FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x780) | 0x380; // for channel 1 adc volume, bit10~7
0x380; // for channel 1 adc volume, bit10~7 FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) | 0x18000; // for dual channel adc/dac
FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) |
0x18000; // for dual channel adc/dac
#ifdef SINGLECHANLE #ifdef SINGLECHANLE
// 0x4000a050 bit16 д0 <20><>channel dac for codec //0x4000a050 bit16 写0 单channel dac for codec
FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~(1 << 16)); FM_DIGITAL_REG(0x4000a050) =(FM_DIGITAL_REG(0x4000a050) & ~ (1 << 16));
#endif #endif
FM_DIGITAL_REG(0x4000a048) = (FM_DIGITAL_REG(0x4000a048) & ~0x00000f00) |
0x40000900; // set for sdm gain
FM_DIGITAL_REG(0x4000a044) = (FM_DIGITAL_REG(0x4000a044) & ~0x60000000) |
0x60000000; // for adc en, and dac en
// Start DAC FM_DIGITAL_REG(0x4000a048) = (FM_DIGITAL_REG(0x4000a048) & ~0x00000f00) | 0x40000900; //set for sdm gain
FM_DIGITAL_REG(0x4000a010) |= (1 << 1); FM_DIGITAL_REG(0x4000a044) = (FM_DIGITAL_REG(0x4000a044) & ~0x60000000) | 0x60000000; //for adc en, and dac en
// Delay 2 ms // Start DAC
// for (volatile int kk = 0; kk < 1000/64; kk++); FM_DIGITAL_REG(0x4000a010) |= (1 << 1);
osDelay(2);
// Delay 2 ms
// for (volatile int kk = 0; kk < 1000/64; kk++);
osDelay(2);
//hal_sys_timer_delay(MS_TO_TICKS(2));
// Start ADC
// FM_DIGITAL_REG(0x4000a010) |= (1 << 0);
// hal_sys_timer_delay(MS_TO_TICKS(2));
// Start ADC
// FM_DIGITAL_REG(0x4000a010) |= (1 << 0);
#ifdef ATAN2_HARDWARE #ifdef ATAN2_HARDWARE
#ifdef FM_NEWMODE #ifdef FM_NEWMODE
FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0x40160030) = 1;
FM_DIGITAL_REG(0x40160000) = 0x1; FM_DIGITAL_REG(0x40160000) = 0x1;
#else #else
FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0x40160030) = 1;
FM_DIGITAL_REG(0x40160000) = 0x21; FM_DIGITAL_REG(0x40160000) = 0x21;
#endif #endif
#else #else
// start FM //start FM
FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0x40160030) = 1;
FM_DIGITAL_REG(0x40160000) = 1; FM_DIGITAL_REG(0x40160000) =1;
#endif #endif
} }
int fm_radio_analog_init(void) { int fm_radio_analog_init(void)
int ret; {
int ret;
/*
// fm initial /*
rfspi_wvalue( 8'h2c , 16'b0111_0000_0101_1100 ) ; // dig_vtoi_en
rfspi_wvalue( 8'h01 , 16'b1010_1101_1111_1111 ) ; // power on fm lna
rfspi_wvalue( 8'h02 , 16'b1000_0000_1001_0100 ) ; // reg_fm_lna_pu_mixersw
rfspi_wvalue( 8'h1a , 16'b0101_0000_1011_0000 ) ; // // fm initial
reg_bt_vco_fm_buff_vctrl_dr=1 rfspi_wvalue( 8'h2c , 16'b0111_0000_0101_1100 ) ; // dig_vtoi_en
rfspi_wvalue( 8'h01 , 16'b1010_1101_1111_1111 ) ; // power on fm lna
rfspi_wvalue( 8'h02 , 16'b1000_0000_1001_0100 ) ; // reg_fm_lna_pu_mixersw
rfspi_wvalue( 8'h18 , 16'b0000_0110_1000_0000 ) ; // power on vco rfspi_wvalue( 8'h1a , 16'b0101_0000_1011_0000 ) ; // reg_bt_vco_fm_buff_vctrl_dr=1
rfspi_wvalue( 8'h19 , 16'b0110_0100_0100_0000 ) ; // reg_bt_vco_fm_buff_vctrl rfspi_wvalue( 8'h18 , 16'b0000_0110_1000_0000 ) ; // power on vco
rfspi_wvalue( 8'h1d , 16'b0111_1000_1010_0100 ) ; // reg_bt_rfpll_pu_dr
rfspi_wvalue( 8'h1c , 16'b0000_0000_1100_1000 ) ; // reg_bt_vco_fm_lo_en
reg_bt_vco_fm_div_ctrl=8
rfspi_wvalue( 8'h0a , 16'b0001_0010_0010_1111 ) ; // reg_btfm_flt_fm_en rfspi_wvalue( 8'h19 , 16'b0110_0100_0100_0000 ) ; // reg_bt_vco_fm_buff_vctrl
rfspi_wvalue( 8'h1d , 16'b0111_1000_1010_0100 ) ; // reg_bt_rfpll_pu_dr
rfspi_wvalue( 8'h1c , 16'b0000_0000_1100_1000 ) ; // reg_bt_vco_fm_lo_en reg_bt_vco_fm_div_ctrl=8
rfspi_wvalue( 8'h2d , 16'b0000_0111_1000_0010 ) ; // bb ldo on rfspi_wvalue( 8'h0a , 16'b0001_0010_0010_1111 ) ; // reg_btfm_flt_fm_en
reg_bb_ldo_pu_vddr15a_dr rfspi_wvalue( 8'h07 , 16'b0000_0010_1011_1001 ) ; //
reg_btfm_flt_pu_dr
rfspi_wvalue( 8'h2a , 16'b0001_0110_1100_0000 ) ; // reg_bt_rfpll_sdm_freq_dr rfspi_wvalue( 8'h2d , 16'b0000_0111_1000_0010 ) ; // bb ldo on reg_bb_ldo_pu_vddr15a_dr
rfspi_wvalue( 8'h26 , 16'b0000_0000_0000_0000 ) ; // vco freq[31:16] ( 2400 + rfspi_wvalue( 8'h07 , 16'b0000_0010_1011_1001 ) ; // reg_btfm_flt_pu_dr
x )*2^25/26MHZ*N (2400+x= frf) rfspi_wvalue( 8'h25 , 16'b0000_0000_0000_0000 )
; // vco freq[15:00] fm_freq = frf/(4*reg_bt_vco_fm_div_ctrl) rfspi_wvalue(
8'h17 , 16'b1000_0000_0000_0000 ) ; // reg_bt_vco_calen
*/ rfspi_wvalue( 8'h2a , 16'b0001_0110_1100_0000 ) ; // reg_bt_rfpll_sdm_freq_dr
rfspi_wvalue( 8'h26 , 16'b0000_0000_0000_0000 ) ; // vco freq[31:16] ( 2400 + x )*2^25/26MHZ*N (2400+x= frf)
rfspi_wvalue( 8'h25 , 16'b0000_0000_0000_0000 ) ; // vco freq[15:00] fm_freq = frf/(4*reg_bt_vco_fm_div_ctrl)
rfspi_wvalue( 8'h17 , 16'b1000_0000_0000_0000 ) ; // reg_bt_vco_calen
fm_write_rf_reg(0x2c, 0b0111000001011100); // dig_vtoi_en */
fm_write_rf_reg(0x01, 0b1010110111111111); // power on fm lna
fm_write_rf_reg(0x02, 0b1000000010010100); // reg_fm_lna_pu_mixersw
fm_write_rf_reg(0x1a, 0b0101000010110000); // reg_bt_vco_fm_buff_vctrl_dr=1
fm_write_rf_reg(0x18, 0b0000011010000000); // power on vco
fm_write_rf_reg(0x19, 0b0110010001000000); // reg_bt_vco_fm_buff_vctrl
fm_write_rf_reg(0x1d, 0b0111100010100100); // reg_bt_rfpll_pu_dr
fm_write_rf_reg(
0x1c, 0b0000000011001000); // reg_bt_vco_fm_lo_en reg_bt_vco_fm_div_ctrl=8
fm_write_rf_reg(0x0a, 0b0001001000101111); // reg_btfm_flt_fm_en
fm_write_rf_reg(0x2d,
0b0000011110000010); // bb ldo on reg_bb_ldo_pu_vddr15a_dr
fm_write_rf_reg(0x07, 0b0000001010111001); // reg_btfm_flt_pu_dr
fm_write_rf_reg(0x2a, 0b0001011011000000); // reg_bt_rfpll_sdm_freq_dr fm_write_rf_reg( 0x2c , 0b0111000001011100 ) ; // dig_vtoi_en
fm_write_rf_reg(0x26, 0b0000000000000000); // vco freq[31:16] ( 2400 + x fm_write_rf_reg( 0x01 , 0b1010110111111111 ) ; // power on fm lna
// )*2^25/26MHZ*N (2400+x= frf) fm_write_rf_reg( 0x02 , 0b1000000010010100 ) ; // reg_fm_lna_pu_mixersw
fm_write_rf_reg(0x25, 0b0000000000000000); // vco freq[15:00] fm_freq =
// frf/(4*reg_bt_vco_fm_div_ctrl)
fm_write_rf_reg(0x17, 0b1000000000000000); // reg_bt_vco_calen
// adcҲҪ<D2B2><D2AA><EFBFBD>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA> cmu fm_write_rf_reg( 0x1a , 0b0101000010110000 ) ; // reg_bt_vco_fm_buff_vctrl_dr=1
// 0x40000060[29] = 1 <20><><EFBFBD><EFBFBD>ȶ<EFBFBD><C8B6><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѱ<EFBFBD><D1B1>bit<69><74><EFBFBD><EFBFBD>ˡ<EFBFBD>
// <20><>Ҫ<EFBFBD><D2AA><EFBFBD>õ<EFBFBD>spi<70>Ĵ<EFBFBD><C4B4><EFBFBD><EFBFBD><EFBFBD>ana interface: fm_write_rf_reg( 0x18 , 0b0000011010000000 ) ; // power on vco
// 0x05 = 0xFCB1 // Audio Pll fm_write_rf_reg( 0x19 , 0b0110010001000000 ) ; // reg_bt_vco_fm_buff_vctrl
// 0x06 = 0x881C fm_write_rf_reg( 0x1d , 0b0111100010100100 ) ; // reg_bt_rfpll_pu_dr
// 0x31 = 0x0100 // audio_freq_en fm_write_rf_reg( 0x1c , 0b0000000011001000 ) ; // reg_bt_vco_fm_lo_en reg_bt_vco_fm_div_ctrl=8
// 0x37 = 0x1000 // codec_bbpll1_fm_adc_clk_en
// 0x31 = 0x0130 // codec_tx_en_ldac codec_tx_en_rdac
ret = fm_write_rf_reg(0x05, 0xfcb1); fm_write_rf_reg( 0x0a , 0b0001001000101111 ) ; // reg_btfm_flt_fm_en
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x06, 0x881c);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x3a, 0xe644); fm_write_rf_reg( 0x2d , 0b0000011110000010 ) ; // bb ldo on reg_bb_ldo_pu_vddr15a_dr
if (ret) { fm_write_rf_reg( 0x07 , 0b0000001010111001 ) ; // reg_btfm_flt_pu_dr
return ret;
}
ret = fm_write_rf_reg(0x31, 0x0100);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x37, 0x1000);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x31, 0x01f0);
if (ret) {
return ret;
}
// delay 32ms fm_write_rf_reg( 0x2a , 0b0001011011000000 ) ; // reg_bt_rfpll_sdm_freq_dr
osDelay(32); fm_write_rf_reg( 0x26 , 0b0000000000000000 ) ; // vco freq[31:16] ( 2400 + x )*2^25/26MHZ*N (2400+x= frf)
fm_write_rf_reg( 0x25 , 0b0000000000000000 ) ; // vco freq[15:00] fm_freq = frf/(4*reg_bt_vco_fm_div_ctrl)
fm_write_rf_reg( 0x17 , 0b1000000000000000 ) ; // reg_bt_vco_calen
ret = fm_write_rf_reg(0x31, 0x0130);
if (ret) {
return ret;
}
//[FM_RX]
fm_write_rf_reg(0x01, 0x91ff); // pu fm
fm_write_rf_reg(0x2d, 0x07fa); // ldo on
fm_write_rf_reg(0x2e, 0x6aaa); // tune fm filter IF
fm_write_rf_reg(0x02, 0xe694);
fm_write_rf_reg(0x03, 0xfe3a);
fm_write_rf_reg(0x04, 0x52a8);
fm_write_rf_reg(0x07, 0x02b9);
fm_write_rf_reg(0x0a, 0x1a2c);
fm_write_rf_reg(0x0b, 0x402b);
fm_write_rf_reg(0x0c, 0x7584);
fm_write_rf_reg(0x0e, 0x0000);
fm_write_rf_reg(0x0f, 0x2e18);
fm_write_rf_reg(0x10, 0x02b4);
fm_write_rf_reg(0x13, 0x0a48);
//[vco init]
fm_write_rf_reg(0x18, 0x077f);
fm_write_rf_reg(0x19, 0x3ff8);
fm_write_rf_reg(0x1a, 0xc090);
fm_write_rf_reg(0x1b, 0x0f88);
fm_write_rf_reg(0x1c, 0x04c6); //[3:0] 5,6,7,8 --> vco/2
return 0;
//adc也要开的话需要配 cmu
//0x40000060[29] = 1 最好先读再写否则把别的bit冲掉了。
//需要配置的spi寄存器ana interface:
//0x05 = 0xFCB1 // Audio Pll
//0x06 = 0x881C
//0x31 = 0x0100 // audio_freq_en
//0x37 = 0x1000 // codec_bbpll1_fm_adc_clk_en
//0x31 = 0x0130 // codec_tx_en_ldac codec_tx_en_rdac
ret = fm_write_rf_reg(0x05 , 0xfcb1);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x06 , 0x881c);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x3a , 0xe644);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x31 , 0x0100);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x37 , 0x1000);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x31 , 0x01f0);
if (ret) {
return ret;
}
//delay 32ms
osDelay(32);
ret = fm_write_rf_reg(0x31 , 0x0130);
if (ret) {
return ret;
}
//[FM_RX]
fm_write_rf_reg(0x01,0x91ff); //pu fm
fm_write_rf_reg(0x2d,0x07fa); //ldo on
fm_write_rf_reg(0x2e,0x6aaa); //tune fm filter IF
fm_write_rf_reg(0x02,0xe694);
fm_write_rf_reg(0x03,0xfe3a);
fm_write_rf_reg(0x04,0x52a8);
fm_write_rf_reg(0x07,0x02b9);
fm_write_rf_reg(0x0a,0x1a2c);
fm_write_rf_reg(0x0b,0x402b);
fm_write_rf_reg(0x0c,0x7584);
fm_write_rf_reg(0x0e,0x0000);
fm_write_rf_reg(0x0f,0x2e18);
fm_write_rf_reg(0x10,0x02b4);
fm_write_rf_reg(0x13,0x0a48);
//[vco init]
fm_write_rf_reg(0x18,0x077f);
fm_write_rf_reg(0x19,0x3ff8);
fm_write_rf_reg(0x1a,0xc090);
fm_write_rf_reg(0x1b,0x0f88);
fm_write_rf_reg(0x1c,0x04c6); //[3:0] 5,6,7,8 --> vco/2
return 0;
} }
void fm_radio_poweron(void) void fm_radio_poweron(void)
{ {
hal_cmu_reset_clear(HAL_CMU_MOD_BTCPU); hal_cmu_reset_clear(HAL_CMU_MOD_BTCPU);
osDelay(2000); osDelay(2000);
{ {
// wakp interface //wakp interface
unsigned short read_val; unsigned short read_val;
fm_read_rf_reg(0x50, &read_val); fm_read_rf_reg(0x50, &read_val);
} }
pmu_fm_config(1); pmu_fm_config(1);
fm_write_rf_reg(0x0c, 0x3584); fm_write_rf_reg(0x0c, 0x3584);
if (hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_2 || if(hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_2 || hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_3) ////
hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_3) //// {
{ FM_DIGITAL_REG(0xc00003b4)=0x00060020;//turn off bt sleep
FM_DIGITAL_REG(0xc00003b4) = 0x00060020; // turn off bt sleep }
} else if (hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_4) { else if(hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_4)
FM_DIGITAL_REG(0xc00003b0) = 0x00060020; // turn off bt sleep {
} else { FM_DIGITAL_REG(0xc00003b0)=0x00060020;//turn off bt sleep
FM_DIGITAL_REG(0xc00003ac) = 0x00060020; // turn off bt sleep }
} else
FM_DIGITAL_REG(0xd0330038) = 0x00008D0D; {
FM_DIGITAL_REG(0xd0340020) = 0x010E01C0; // open ana rxon for open adc clk FM_DIGITAL_REG(0xc00003ac)=0x00060020;//turn off bt sleep
// fm_write_rf_reg(0x02, 0xe694); }
FM_DIGITAL_REG(0xd0330038) = 0x00008D0D;
FM_DIGITAL_REG(0xd0340020)=0x010E01C0;// open ana rxon for open adc clk
//fm_write_rf_reg(0x02, 0xe694);
} }
void *fm_radio_get_ext_buff(int size) { void* fm_radio_get_ext_buff(int size)
uint8_t *pBuff = NULL; {
size = size + size % 4; uint8_t *pBuff = NULL;
app_audio_mempool_get_buff(&pBuff, size); size = size+size%4;
return (void *)pBuff; app_audio_mempool_get_buff(&pBuff, size);
return (void*)pBuff;
} }
int fm_radio_player(bool on) { int fm_radio_player(bool on)
static struct AF_STREAM_CONFIG_T stream_cfg; {
static bool isRun = false; static struct AF_STREAM_CONFIG_T stream_cfg;
uint8_t *buff = NULL; static bool isRun = false;
uint8_t *buff = NULL;
TRACE(2, "fm_radio_player work:%d op:%d", isRun, on); TRACE(2,"fm_radio_player work:%d op:%d", isRun, on);
if (isRun == on) if (isRun==on)
return 0;
if (on){
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M);
app_audio_mempool_init();
fm_radio_poweron();
fm_radio_analog_init();
fm_radio_digit_init();
osDelay(200);
buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE*2);
app_audio_pcmbuff_init(buff, FM_AUDIO_BUFFER_SIZE*2);
fm_sample_buffer_p = (int32_t *)fm_radio_get_ext_buff(FM_SAMPLE_BUFFER_SIZE);
#if FPGA==0
app_overlay_select(APP_OVERLAY_FM);
#endif
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.vol = app_bt_stream_local_volume_get();
stream_cfg.handler = fm_capture_more_data;
stream_cfg.data_ptr = (uint8_t *)fm_sample_buffer_p;
stream_cfg.data_size = FM_SAMPLE_BUFFER_SIZE;
stream_cfg.device = AUD_STREAM_USE_DPD_RX;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
memset(&stream_cfg, 0, sizeof(stream_cfg));
buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE);
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
#if FPGA==0
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
#else
stream_cfg.device = AUD_STREAM_USE_EXT_CODEC;
#endif
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = app_bt_stream_local_volume_get();
stream_cfg.handler = fm_pcm_more_data;
stream_cfg.data_ptr = buff;
stream_cfg.data_size = FM_AUDIO_BUFFER_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}else{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
}
isRun=on;
return 0; return 0;
if (on) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M);
app_audio_mempool_init();
fm_radio_poweron();
fm_radio_analog_init();
fm_radio_digit_init();
osDelay(200);
buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE * 2);
app_audio_pcmbuff_init(buff, FM_AUDIO_BUFFER_SIZE * 2);
fm_sample_buffer_p =
(int32_t *)fm_radio_get_ext_buff(FM_SAMPLE_BUFFER_SIZE);
app_overlay_select(APP_OVERLAY_FM);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.vol = app_bt_stream_local_volume_get();
stream_cfg.handler = fm_capture_more_data;
stream_cfg.data_ptr = (uint8_t *)fm_sample_buffer_p;
stream_cfg.data_size = FM_SAMPLE_BUFFER_SIZE;
stream_cfg.device = AUD_STREAM_USE_DPD_RX;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
memset(&stream_cfg, 0, sizeof(stream_cfg));
buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE);
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = app_bt_stream_local_volume_get();
stream_cfg.handler = fm_pcm_more_data;
stream_cfg.data_ptr = buff;
stream_cfg.data_size = FM_AUDIO_BUFFER_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
}
isRun = on;
return 0;
} }
int fm_tune(uint32_t freqkhz) { int fm_tune(uint32_t freqkhz)
uint32_t reg; {
unsigned long long tmp = 0; uint32_t reg;
unsigned long long tmp = 0;
//[rfpll_cal]
fm_write_rf_reg(0x21, 0x3979); // ref sel 52MHz
fm_write_rf_reg(0x22, 0x7A22); // doubler setting
fm_write_rf_reg(0x23, 0x0380);
fm_write_rf_reg(0x2b, 0x32a0); // sdm
fm_write_rf_reg(0x2a, 0x12d1); // cal ini
//(freq(Mhz)-0.89(Mhz))*(2^28)*3/26 //[rfpll_cal]
tmp = freqkhz; fm_write_rf_reg(0x21,0x3979); // ref sel 52MHz
reg = (((tmp - 890)) << 27) * 3 / 13 / 1000; fm_write_rf_reg(0x22,0x7A22); // doubler setting
fm_write_rf_reg(0x23,0x0380);
fm_write_rf_reg(0x2b,0x32a0); // sdm
fm_write_rf_reg(0x2a,0x12d1); // cal ini
fm_write_rf_reg(0x25, (reg & 0xffff0000) >> 16); //(freq(Mhz)-0.89(Mhz))*(2^28)*3/26
fm_write_rf_reg(0x26, reg & 0x0000ffff); tmp = freqkhz;
reg =(((tmp-890))<<27)*3/13/1000;
fm_write_rf_reg(0x1d, 0x58e4); // pll_cal_en fm_write_rf_reg(0x25, (reg&0xffff0000)>>16);
fm_write_rf_reg(0xf7, 0x5597); // rst and enable pll_cal clk fm_write_rf_reg(0x26, reg&0x0000ffff);
fm_write_rf_reg(0xf7, 0x55d7); // rst and enable pll_cal clk
fm_write_rf_reg(0x1d, 0x7ae4); // pll cal start
fm_write_rf_reg(0xff, 0x0000); // wait 100us
osDelay(20); fm_write_rf_reg(0x1d,0x58e4); // pll_cal_en
fm_write_rf_reg(0xf7,0x5597); // rst and enable pll_cal clk
fm_write_rf_reg(0xf7,0x55d7); // rst and enable pll_cal clk
fm_write_rf_reg(0x1d,0x7ae4); // pll cal start
fm_write_rf_reg(0xff,0x0000); // wait 100us
fm_write_rf_reg(0x1d, 0x7ac4); // close pll loop osDelay(20);
return 0;
fm_write_rf_reg(0x1d,0x7ac4); // close pll loop
return 0;
} }
void fm_test_main(void) { void fm_test_main(void)
fm_radio_player(true); {
osDelay(20); fm_radio_player(true);
fm_tune(90500); osDelay(20);
fm_tune(90500);
} }
#endif #endif

View File

@ -14,19 +14,20 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include "cmsis_os.h" #include <string.h>
#include "cqueue.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_uart.h"
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <stdio.h>
#include "cmsis_os.h"
#include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h"
#include "hal_trace.h"
// BT // BT
#if 0 #if 0
/* mutex */ /* mutex */
osMutexId g_voicemsbc_queue_mutex_id; osMutexId g_voicemsbc_queue_mutex_id;
@ -34,15 +35,16 @@ osMutexDef(g_voicemsbc_queue_mutex);
/* msbc queue */ /* msbc queue */
#define VOICEMSBC_TEMP_BUFFER_SIZE 128 #define VOICEMSBC_TEMP_BUFFER_SIZE 128
#define VOICEMSBC_QUEUE_SIZE (VOICEMSBC_TEMP_BUFFER_SIZE * 100) #define VOICEMSBC_QUEUE_SIZE (VOICEMSBC_TEMP_BUFFER_SIZE*100)
unsigned char voicemsbc_queue_buf[VOICEMSBC_QUEUE_SIZE]; unsigned char voicemsbc_queue_buf[VOICEMSBC_QUEUE_SIZE];
CQueue voicemsbc_queue; CQueue voicemsbc_queue;
static uint32_t ok_to_decode = 0; static uint32_t ok_to_decode = 0;
#define LOCK_VOICEMSBC_QUEUE() \ #define LOCK_VOICEMSBC_QUEUE() \
osMutexWait(g_voicemsbc_queue_mutex_id, osWaitForever) osMutexWait(g_voicemsbc_queue_mutex_id, osWaitForever)
#define UNLOCK_VOICEMSBC_QUEUE() osMutexRelease(g_voicemsbc_queue_mutex_id) #define UNLOCK_VOICEMSBC_QUEUE() \
osMutexRelease(g_voicemsbc_queue_mutex_id)
static void dump_buffer_to_psram(char *buf, unsigned int len) static void dump_buffer_to_psram(char *buf, unsigned int len)
{ {

View File

@ -1,10 +1,9 @@
#include "plc_utils.h"
#include "hal_trace.h"
#include <stdbool.h> #include <stdbool.h>
#include <string.h> #include <string.h>
#include "plc_utils.h"
#include "hal_trace.h"
#if defined(CHIP_BEST1400) || defined(CHIP_BEST1402) || \ #if defined(CHIP_BEST1400) || defined(CHIP_BEST1402) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
#define MSBC_MUTE_PATTERN (0x55) #define MSBC_MUTE_PATTERN (0x55)
#else #else
#define MSBC_MUTE_PATTERN (0x00) #define MSBC_MUTE_PATTERN (0x00)
@ -20,8 +19,9 @@
//#define ENABLE_PAD_CHECK //#define ENABLE_PAD_CHECK
/* /*
* if msbc frame is filled by 10+ samples in the trail, crc maybe not detect * if msbc frame is filled by 10+ samples in the trail, crc maybe not detect this
* this satuation. Do not check this by default * satuation.
* Do not check this by default
*/ */
//#define ENABLE_TRAILING_ZERO_CHECK //#define ENABLE_TRAILING_ZERO_CHECK
@ -58,256 +58,271 @@ static const uint8_t sbc_crc_tbl[256] = {
0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43, 0xB2, 0xAF, 0x88, 0x95, 0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43, 0xB2, 0xAF, 0x88, 0x95,
0xC6, 0xDB, 0xFC, 0xE1, 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09, 0xC6, 0xDB, 0xFC, 0xE1, 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09,
0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C, 0x97, 0x8A, 0xAD, 0xB0, 0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C, 0x97, 0x8A, 0xAD, 0xB0,
0xE3, 0xFE, 0xD9, 0xC4}; 0xE3, 0xFE, 0xD9, 0xC4
};
#endif #endif
static int sco_parse_synchronization_header(uint8_t *buf, uint8_t *sn) { static int sco_parse_synchronization_header(uint8_t *buf, uint8_t *sn)
uint8_t sn1, sn2; {
uint8_t sn1, sn2;
#ifdef ENABLE_CRC_CHECK #ifdef ENABLE_CRC_CHECK
uint8_t fcs = 0x0F; uint8_t fcs = 0x0F;
uint8_t crc = 0; uint8_t crc = 0;
uint8_t i, sb, bit, shift; uint8_t i, sb, bit, shift;
uint8_t ind = 6, bitOffset = 24; uint8_t ind = 6, bitOffset = 24;
#endif #endif
*sn = 0xff; *sn = 0xff;
#if defined(MSBC_SYNC_HACKER) #if defined(MSBC_SYNC_HACKER)
if (((buf[0] != 0x01) && (buf[0] != 0x00)) || ((buf[1] & 0x0f) != 0x08) || if (((buf[0] != 0x01) && (buf[0] != 0x00)) ||
(buf[2] != 0xad)) { ((buf[1] & 0x0f) != 0x08) ||
return -1; (buf[2] != 0xad)) {
} return -1;
}
#else #else
if ((buf[0] != 0x01) || ((buf[1] & 0x0f) != 0x08) || (buf[2] != 0xad)) { if ((buf[0] != 0x01) ||
return -1; ((buf[1] & 0x0f) != 0x08) ||
} (buf[2] != 0xad)) {
return -1;
}
#endif #endif
sn1 = (buf[1] & 0x30) >> 4; sn1 = (buf[1] & 0x30) >> 4;
sn2 = (buf[1] & 0xc0) >> 6; sn2 = (buf[1] & 0xc0) >> 6;
if ((sn1 != 0) && (sn1 != 0x3)) { if ((sn1 != 0) && (sn1 != 0x3)) {
return -2; return -2;
} }
if ((sn2 != 0) && (sn2 != 0x3)) { if ((sn2 != 0) && (sn2 != 0x3)) {
return -3; return -3;
} }
#ifdef ENABLE_CRC_CHECK #ifdef ENABLE_CRC_CHECK
fcs = sbc_crc_tbl[fcs ^ buf[3]]; fcs = sbc_crc_tbl[fcs ^ buf[3]];
if (buf[3] != 0x00) if (buf[3] != 0x00)
return -4; return -4;
fcs = sbc_crc_tbl[fcs ^ buf[4]]; fcs = sbc_crc_tbl[fcs ^ buf[4]];
if (buf[4] != 0x00) if (buf[4] != 0x00)
return -4; return -4;
crc = buf[5]; crc = buf[5];
for (sb = 0; sb < 8; sb++) { for (sb = 0; sb < 8; sb++) {
if (bitOffset % 8) { if (bitOffset % 8) {
/* Sum the whole byte */ /* Sum the whole byte */
fcs = sbc_crc_tbl[fcs ^ buf[ind]]; fcs = sbc_crc_tbl[fcs ^ buf[ind]];
ind = ind + 1; ind = ind + 1;
} else {
if (sb == 7) {
/* Sum the next 4 bits */
/* Just sum the most significant 4 bits */
shift = 7;
for (i = 0; i < 4; i++) {
bit = (uint8_t)((0x01 & (buf[ind] >> shift--)) ^ (fcs >> 7));
if (bit) {
fcs = (uint8_t)(((fcs << 1) | bit) ^ 0x1C);
} else {
fcs = (uint8_t)((fcs << 1));
}
} }
} else {
} if (sb == 7) {
/* Sum the next 4 bits */
bitOffset += 4; /* Just sum the most significant 4 bits */
} shift = 7;
// TRACE(2,"msbc crc:%d fcs:%d", crc,fcs); for (i = 0; i < 4; i++) {
if (crc != fcs) bit = (uint8_t)((0x01 & (buf[ind] >> shift--)) ^ (fcs >> 7));
return -4; if (bit) {
fcs = (uint8_t)(((fcs << 1) | bit) ^ 0x1C);
}
else {
fcs = (uint8_t)((fcs << 1));
}
}
}
}
bitOffset += 4;
}
//TRACE(2,"msbc crc:%d fcs:%d", crc,fcs);
if (crc != fcs)
return -4;
#endif #endif
*sn = (sn1 & 0x01) | (sn2 & 0x02); *sn = (sn1 & 0x01) | (sn2 & 0x02);
#ifdef ENABLE_PAD_CHECK #ifdef ENABLE_PAD_CHECK
// when pad error detected, we should return sn // when pad error detected, we should return sn
if (buf[MSBC_PKTSIZE - 1] != 0x0) { if (buf[MSBC_PKTSIZE - 1] != 0x0) {
return -5; return -5;
} }
#endif #endif
return 0; return 0;
} }
#ifdef ENABLE_BLE_CONFLICT_CHECK #ifdef ENABLE_BLE_CONFLICT_CHECK
static bool memcmp_U8(uint8_t *x, uint8_t *y, uint16_t size) { static bool memcmp_U8(uint8_t *x, uint8_t *y, uint16_t size)
for (int i = 0; i < size; i++) { {
if (x[i] != y[i]) for (int i = 0; i < size; i++) {
return true; if (x[i] != y[i])
} return true;
}
return false; return false;
} }
// when signal is mute, msbc data remains the same except seq num. We should // when signal is mute, msbc data remains the same except seq num. We should check history flag,
// check history flag, otherwise a single conflict may be detected twice // otherwise a single conflict may be detected twice
static bool update_ble_sco_conflict(PacketLossState *st, uint8_t *last_pkt, static bool update_ble_sco_conflict(PacketLossState* st, uint8_t *last_pkt, uint8_t *pkt)
uint8_t *pkt) { {
// do not check padding byte as it maybe useless when msbc_offset is 1 // do not check padding byte as it maybe useless when msbc_offset is 1
bool ret = (st->prev_ble_sco_conflict_flag[1] == false && bool ret = (st->prev_ble_sco_conflict_flag[1] == false && memcmp_U8(last_pkt, pkt, MSBC_PKTSIZE - 1) == false);
memcmp_U8(last_pkt, pkt, MSBC_PKTSIZE - 1) == false);
memcpy(&last_pkt[0], &last_pkt[MSBC_PKTSIZE], MSBC_PKTSIZE); memcpy(&last_pkt[0], &last_pkt[MSBC_PKTSIZE], MSBC_PKTSIZE);
memcpy(&last_pkt[MSBC_PKTSIZE], pkt, MSBC_PKTSIZE); memcpy(&last_pkt[MSBC_PKTSIZE], pkt, MSBC_PKTSIZE);
return ret; return ret;
} }
static bool check_ble_sco_conflict(PacketLossState *st, bool ret) { static bool check_ble_sco_conflict(PacketLossState* st, bool ret)
st->prev_ble_sco_conflict_flag[1] = st->prev_ble_sco_conflict_flag[0]; {
st->prev_ble_sco_conflict_flag[0] = ret; st->prev_ble_sco_conflict_flag[1] = st->prev_ble_sco_conflict_flag[0];
st->prev_ble_sco_conflict_flag[0] = ret;
return ret; return ret;
} }
#endif #endif
static bool msbc_check_controller_mute_pattern(uint8_t *pkt, uint8_t pattern) { static bool msbc_check_controller_mute_pattern(uint8_t *pkt, uint8_t pattern)
// do not check padding byte as it maybe useless when msbc_offset is 1 {
for (int i = 0; i < MSBC_PKTSIZE - 1; i++) // do not check padding byte as it maybe useless when msbc_offset is 1
if (pkt[i] != pattern) for (int i = 0; i < MSBC_PKTSIZE - 1; i++)
return false; if (pkt[i] != pattern)
return false;
return true; return true;
} }
#ifdef ENABLE_TRAILING_ZERO_CHECK #ifdef ENABLE_TRAILING_ZERO_CHECK
static int msbc_check_pkt_trailing_zeros(uint8_t *pkt) { static int msbc_check_pkt_trailing_zeros(uint8_t *pkt)
int idx = MSBC_PKTSIZE; {
int idx = MSBC_PKTSIZE;
for (int i = MSBC_PKTSIZE - 1; i >= 0; i--) { for (int i = MSBC_PKTSIZE - 1; i >= 0; i--) {
if (pkt[i] != 0) { if (pkt[i] != 0) {
idx = i; idx = i;
break; break;
}
} }
}
return (MSBC_PKTSIZE - 1 - idx); return (MSBC_PKTSIZE - 1 - idx);
} }
#endif #endif
static uint8_t get_next_sequence_num(uint8_t seq_num) { static uint8_t get_next_sequence_num(uint8_t seq_num)
return (seq_num + 1 == 4) ? 0 : (seq_num + 1); {
return (seq_num + 1 == 4) ? 0 : (seq_num + 1);
} }
void packet_loss_detection_init(PacketLossState *st) { void packet_loss_detection_init(PacketLossState *st)
st->last_seq_num = 0xff; {
st->last_seq_num = 0xff;
memset(st->last_pkt, 0, sizeof(st->last_pkt)); memset(st->last_pkt, 0, sizeof(st->last_pkt));
memset(st->prev_ble_sco_conflict_flag, 0, memset(st->prev_ble_sco_conflict_flag, 0, sizeof(st->prev_ble_sco_conflict_flag));
sizeof(st->prev_ble_sco_conflict_flag)); memset(st->hist, 0, sizeof(st->hist));
memset(st->hist, 0, sizeof(st->hist));
} }
plc_type_t packet_loss_detection_process(PacketLossState *st, plc_type_t packet_loss_detection_process(PacketLossState *st, uint8_t *sbc_buf)
uint8_t *sbc_buf) { {
plc_type_t plc_type = PLC_TYPE_PASS; plc_type_t plc_type = PLC_TYPE_PASS;
#ifdef ENABLE_BLE_CONFLICT_CHECK #ifdef ENABLE_BLE_CONFLICT_CHECK
bool ble_sco_conflict = update_ble_sco_conflict(st, st->last_pkt, sbc_buf); bool ble_sco_conflict = update_ble_sco_conflict(st, st->last_pkt, sbc_buf);
#endif #endif
uint8_t seq_num; uint8_t seq_num;
if (msbc_check_controller_mute_pattern(sbc_buf, MSBC_MUTE_PATTERN) == true) { if (msbc_check_controller_mute_pattern(sbc_buf, MSBC_MUTE_PATTERN) == true) {
plc_type = PLC_TYPE_CONTROLLER_MUTE; plc_type = PLC_TYPE_CONTROLLER_MUTE;
st->last_seq_num = 0xff; st->last_seq_num = 0xff;
} }
#ifdef ENABLE_BLE_CONFLICT_CHECK #ifdef ENABLE_BLE_CONFLICT_CHECK
else if (check_ble_sco_conflict(st, ble_sco_conflict) == true) { else if (check_ble_sco_conflict(st, ble_sco_conflict) == true) {
plc_type = PLC_TYPE_BLE_CONFLICT; plc_type = PLC_TYPE_BLE_CONFLICT;
st->last_seq_num = 0xff; st->last_seq_num = 0xff;
}
#endif
else {
int err = sco_parse_synchronization_header(sbc_buf, &seq_num);
if (err < 0 && err >= -3) {
plc_type = PLC_TYPE_HEADER_ERROR;
st->last_seq_num = 0xff;
}
#ifdef ENABLE_CRC_CHECK
else if (err == -4) {
plc_type = PLC_TYPE_CRC_ERROR;
st->last_seq_num = 0xff;
}
#endif
#ifdef ENABLE_PAD_CHECK
else if (err == -5) {
plc_type = PLC_TYPE_PAD_ERROR;
st->last_seq_num = seq_num;
}
#endif
#ifdef ENABLE_TRAILING_ZERO_CHECK
else if (msbc_check_pkt_trailing_zeros(sbc_buf) > 10) {
plc_type = PLC_TYPE_DATA_MISSING;
st->last_seq_num = 0xff;
} }
#endif #endif
else { else {
#ifdef ENABLE_SEQ_CHECK int err = sco_parse_synchronization_header(sbc_buf, &seq_num);
if (st->last_seq_num == 0xff) { if (err < 0 && err >= -3) {
if (seq_num == 0xff) { plc_type = PLC_TYPE_HEADER_ERROR;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE; st->last_seq_num = 0xff;
} else {
plc_type = PLC_TYPE_PASS;
} }
st->last_seq_num = seq_num; #ifdef ENABLE_CRC_CHECK
} else { else if (err == -4) {
if (seq_num == 0xff) { plc_type = PLC_TYPE_CRC_ERROR;
st->last_seq_num = 0xff; st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
} else if (seq_num == get_next_sequence_num(st->last_seq_num)) {
st->last_seq_num = seq_num;
plc_type = PLC_TYPE_PASS;
} else {
st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
} }
}
#else
plc_type = PLC_TYPE_PASS;
#endif #endif
#ifdef ENABLE_PAD_CHECK
else if (err == -5) {
plc_type = PLC_TYPE_PAD_ERROR;
st->last_seq_num = seq_num;
}
#endif
#ifdef ENABLE_TRAILING_ZERO_CHECK
else if (msbc_check_pkt_trailing_zeros(sbc_buf) > 10) {
plc_type = PLC_TYPE_DATA_MISSING;
st->last_seq_num = 0xff;
}
#endif
else {
#ifdef ENABLE_SEQ_CHECK
if (st->last_seq_num == 0xff) {
if (seq_num == 0xff) {
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
}
else {
plc_type = PLC_TYPE_PASS;
}
st->last_seq_num = seq_num;
}
else {
if (seq_num == 0xff) {
st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
}
else if (seq_num == get_next_sequence_num(st->last_seq_num)) {
st->last_seq_num = seq_num;
plc_type = PLC_TYPE_PASS;
}
else {
st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
}
}
#else
plc_type = PLC_TYPE_PASS;
#endif
}
} }
}
packet_loss_detection_update_histogram(st, plc_type); packet_loss_detection_update_histogram(st, plc_type);
return plc_type; return plc_type;
} }
void packet_loss_detection_update_histogram(PacketLossState *st, void packet_loss_detection_update_histogram(PacketLossState *st, plc_type_t plc_type)
plc_type_t plc_type) { {
if (plc_type < 0 || plc_type >= PLC_TYPE_NUM) { if (plc_type < 0 || plc_type >= PLC_TYPE_NUM) {
TRACE(2, "[%s] plc type %d is invalid", __FUNCTION__, plc_type); TRACE(2,"[%s] plc type %d is invalid", __FUNCTION__, plc_type);
return; return;
} }
// The packet is detected as PLC_TYPE_PASS, but causes a decoder error. // The packet is detected as PLC_TYPE_PASS, but causes a decoder error.
if (plc_type == PLC_TYPE_DECODER_ERROR) { if (plc_type == PLC_TYPE_DECODER_ERROR) {
st->hist[0] -= 1; st->hist[0] -= 1;
} }
st->hist[plc_type] += 1; st->hist[plc_type] += 1;
} }
void packet_loss_detection_report(PacketLossState *st) { void packet_loss_detection_report(PacketLossState *st)
uint32_t packet_loss_num = 0; {
uint32_t packet_loss_num = 0;
for (uint8_t i = 1; i < PLC_TYPE_NUM; i++) { for (uint8_t i = 1; i < PLC_TYPE_NUM; i++) {
TRACE(3, "[%s] plc type %d occurs %d times", __FUNCTION__, i, st->hist[i]); TRACE(3,"[%s] plc type %d occurs %d times", __FUNCTION__, i, st->hist[i]);
packet_loss_num += st->hist[i]; packet_loss_num += st->hist[i];
} }
uint32_t packet_total_num = st->hist[0] + packet_loss_num; uint32_t packet_total_num = st->hist[0] + packet_loss_num;
TRACE(4, "[%s] packet loss percent %d/10000(%d/%d)", __FUNCTION__, TRACE(4,"[%s] packet loss percent %d/10000(%d/%d)", __FUNCTION__,
(int32_t)(10000.f * packet_loss_num / packet_total_num), (int32_t)(10000.f * packet_loss_num/ packet_total_num), packet_loss_num, packet_total_num);
packet_loss_num, packet_total_num);
} }

File diff suppressed because it is too large Load Diff

View File

@ -15,28 +15,28 @@
****************************************************************************/ ****************************************************************************/
/* rbpcmbuf source */ /* rbpcmbuf source */
/* pcmbuf management & af control & mixer */ /* pcmbuf management & af control & mixer */
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h> #include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <unistd.h> #include <unistd.h>
#ifdef MBED #ifdef MBED
#include "mbed.h" #include "mbed.h"
#include "rtos.h" #include "rtos.h"
#endif #endif
#include "app_audio.h"
#include "app_utils.h"
#include "audioflinger.h" #include "audioflinger.h"
#include "cqueue.h" #include "cqueue.h"
#include "app_audio.h"
#include "app_utils.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "rbpcmbuf.h"
#include "rbplay.h" #include "rbplay.h"
#include "rbpcmbuf.h"
#include "utils.h" #include "utils.h"
#define RB_PCMBUF_DMA_BUFFER_SIZE (1024 * 12) #define RB_PCMBUF_DMA_BUFFER_SIZE (1024*12)
#define RB_PCMBUF_MEDIA_BUFFER_SIZE (1024 * 12) #define RB_PCMBUF_MEDIA_BUFFER_SIZE (1024*12)
#define RB_DECODE_OUT_BUFFER_SIZE 1024 #define RB_DECODE_OUT_BUFFER_SIZE 1024
static uint8_t *rb_decode_out_buff; static uint8_t *rb_decode_out_buff;
@ -46,93 +46,95 @@ static CQueue rb_pcmbuf_media_buf_queue;
static osMutexId _rb_media_buf_queue_mutex_id = NULL; static osMutexId _rb_media_buf_queue_mutex_id = NULL;
static osMutexDef(_rb_media_buf_queue_mutex); static osMutexDef(_rb_media_buf_queue_mutex);
#define LOCK_MEDIA_BUF_QUEUE() \ #define LOCK_MEDIA_BUF_QUEUE() \
if (osErrorISR == \ if(osErrorISR == osMutexWait(_rb_media_buf_queue_mutex_id, osWaitForever)) {\
osMutexWait(_rb_media_buf_queue_mutex_id, osWaitForever)) { \ error("%s LOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!!\n",__func__);\
error("%s LOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!!\n", __func__); \ }\
}
#define UNLOCK_MEDIA_BUF_QUEUE() \ #define UNLOCK_MEDIA_BUF_QUEUE() \
if (osErrorISR == osMutexRelease(_rb_media_buf_queue_mutex_id)) { \ if(osErrorISR == osMutexRelease(_rb_media_buf_queue_mutex_id)){ \
error("%s UNLOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!\n"); \ error("%s UNLOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!\n"); \
} } \
static uint32_t rbplay_more_data(uint8_t *buf, uint32_t len) { static uint32_t rbplay_more_data(uint8_t *buf, uint32_t len)
CQItemType *e1 = NULL; {
CQItemType *e2 = NULL; CQItemType *e1 = NULL;
unsigned int len1 = 0; CQItemType *e2 = NULL;
unsigned int len2 = 0; unsigned int len1 = 0;
unsigned int len2 = 0;
LOCK_MEDIA_BUF_QUEUE();
int ret = PeekCQueue(&rb_pcmbuf_media_buf_queue, len, &e1, &len1, &e2, &len2);
UNLOCK_MEDIA_BUF_QUEUE();
if (ret == CQ_OK) {
if (len1 > 0)
memcpy(buf, e1, len1);
if (len2 > 0)
memcpy(buf + len1, e2, len - len1);
LOCK_MEDIA_BUF_QUEUE(); LOCK_MEDIA_BUF_QUEUE();
DeCQueue(&rb_pcmbuf_media_buf_queue, 0, len); int ret = PeekCQueue(&rb_pcmbuf_media_buf_queue, len, &e1, &len1, &e2, &len2);
UNLOCK_MEDIA_BUF_QUEUE(); UNLOCK_MEDIA_BUF_QUEUE();
} else {
warn("RBplay cache underflow");
}
return len; if (ret == CQ_OK) {
if (len1 > 0)
memcpy(buf, e1, len1);
if (len2 > 0)
memcpy(buf + len1, e2, len - len1);
LOCK_MEDIA_BUF_QUEUE();
DeCQueue(&rb_pcmbuf_media_buf_queue, 0, len);
UNLOCK_MEDIA_BUF_QUEUE();
} else {
warn("RBplay cache underflow");
}
return len;
} }
extern uint8_t rb_ctl_get_vol(void); extern uint8_t rb_ctl_get_vol(void);
void rb_pcmbuf_init(void) { void rb_pcmbuf_init(void)
info("pcmbuff init"); {
if (!_rb_media_buf_queue_mutex_id) info("pcmbuff init");
_rb_media_buf_queue_mutex_id = if(!_rb_media_buf_queue_mutex_id)
osMutexCreate((osMutex(_rb_media_buf_queue_mutex))); _rb_media_buf_queue_mutex_id = osMutexCreate((osMutex(_rb_media_buf_queue_mutex)));
app_audio_mempool_init(); app_audio_mempool_init();
app_audio_mempool_get_buff(&rb_pcmbuf_media_buf, RB_PCMBUF_MEDIA_BUFFER_SIZE); app_audio_mempool_get_buff(&rb_pcmbuf_media_buf, RB_PCMBUF_MEDIA_BUFFER_SIZE);
InitCQueue(&rb_pcmbuf_media_buf_queue, RB_PCMBUF_MEDIA_BUFFER_SIZE, InitCQueue(&rb_pcmbuf_media_buf_queue, RB_PCMBUF_MEDIA_BUFFER_SIZE, (unsigned char *)rb_pcmbuf_media_buf);
(unsigned char *)rb_pcmbuf_media_buf);
app_audio_mempool_get_buff(&rbplay_dma_buffer, RB_PCMBUF_DMA_BUFFER_SIZE); app_audio_mempool_get_buff(&rbplay_dma_buffer, RB_PCMBUF_DMA_BUFFER_SIZE);
app_audio_mempool_get_buff(&rb_decode_out_buff, RB_DECODE_OUT_BUFFER_SIZE); app_audio_mempool_get_buff(&rb_decode_out_buff, RB_DECODE_OUT_BUFFER_SIZE);
struct AF_STREAM_CONFIG_T stream_cfg; struct AF_STREAM_CONFIG_T stream_cfg;
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16; stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_44100; stream_cfg.sample_rate = AUD_SAMPRATE_44100;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = rb_ctl_get_vol(); stream_cfg.vol = rb_ctl_get_vol();
stream_cfg.handler = rbplay_more_data; stream_cfg.handler = rbplay_more_data;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(rbplay_dma_buffer); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(rbplay_dma_buffer);
stream_cfg.data_size = RB_PCMBUF_DMA_BUFFER_SIZE; stream_cfg.data_size = RB_PCMBUF_DMA_BUFFER_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg); af_stream_open(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_start(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK);
} }
void *rb_pcmbuf_request_buffer(int *size) { void *rb_pcmbuf_request_buffer(int *size)
*size = RB_DECODE_OUT_BUFFER_SIZE / 4; {
return rb_decode_out_buff; *size = RB_DECODE_OUT_BUFFER_SIZE / 4;
return rb_decode_out_buff;
} }
void rb_pcmbuf_write(unsigned int size) { void rb_pcmbuf_write(unsigned int size)
int ret; {
do { int ret ;
LOCK_MEDIA_BUF_QUEUE(); do {
ret = EnCQueue(&rb_pcmbuf_media_buf_queue, (CQItemType *)rb_decode_out_buff, LOCK_MEDIA_BUF_QUEUE();
size * (2 * 2)); ret = EnCQueue(&rb_pcmbuf_media_buf_queue, (CQItemType *)rb_decode_out_buff, size*(2*2));
UNLOCK_MEDIA_BUF_QUEUE(); UNLOCK_MEDIA_BUF_QUEUE();
osThreadYield(); osThreadYield();
} while (ret == CQ_ERR); } while (ret == CQ_ERR);
} }
void rb_pcmbuf_stop(void) { void rb_pcmbuf_stop(void)
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); {
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_stop(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK);
} }

View File

@ -16,34 +16,34 @@
/* rbplay source */ /* rbplay source */
/* playback control & rockbox codec porting & codec thread */ /* playback control & rockbox codec porting & codec thread */
#include <ctype.h> #include <string.h>
#include <fcntl.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <stdio.h>
#include <fcntl.h>
#include <ctype.h>
#include <unistd.h> #include <unistd.h>
#ifdef MBED #ifdef MBED
#include "mbed.h" #include "mbed.h"
#include "rtos.h" #include "rtos.h"
#endif #endif
#include "app_overlay.h" #include "metadata.h"
#include "apps.h"
#include "audioflinger.h"
#include "codecs.h" #include "codecs.h"
#include "eq_export.h" #include "eq_export.h"
#include "hal_overlay.h" #include "hal_overlay.h"
#include "app_overlay.h"
#include "audioflinger.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "metadata.h" #include "apps.h"
#include "app_key.h" #include "rbpcmbuf.h"
#include "rbplaysd.h"
#include "app_thread.h" #include "app_thread.h"
#include "app_utils.h" #include "app_utils.h"
#include "rbpcmbuf.h" #include "app_key.h"
#include "rbplay.h" #include "rbplay.h"
#include "rbplaysd.h"
#include "utils.h" #include "utils.h"
#ifdef __TWS__ #ifdef __TWS__
@ -51,30 +51,28 @@
#endif #endif
// TODO: remove // TODO: remove
#define BT_STREAM_RBCODEC 0x10 // from rockbox decoder #define BT_STREAM_RBCODEC 0x10 //from rockbox decoder
extern "C" { extern "C" {
void flac_codec_main(int r); void flac_codec_main(int r);
void flac_codec_run(void); void flac_codec_run(void);
void wav_codec_main(int r); void wav_codec_main(int r);
void wav_codec_run(void); void wav_codec_run(void);
void mpa_codec_main(int r); void mpa_codec_main(int r);
void mpa_codec_run(void); void mpa_codec_run(void);
void ape_codec_main(int r); void ape_codec_main(int r);
void ape_codec_run(void); void ape_codec_run(void);
void sbc_codec_main(int r); void sbc_codec_main(int r);
void sbc_codec_run(void); void sbc_codec_run(void);
} }
extern void rb_pcm_player_open(enum AUD_BITS_T bits, extern void rb_pcm_player_open(enum AUD_BITS_T bits,enum AUD_SAMPRATE_T sample_rate,enum AUD_CHANNEL_NUM_T channel_num,uint8_t vol) ;
enum AUD_SAMPRATE_T sample_rate,
enum AUD_CHANNEL_NUM_T channel_num, uint8_t vol);
#if defined(__TWS__) #if defined(__TWS__)
typedef struct _rb_tws_codec_info { typedef struct _rb_tws_codec_info{
uint8_t update_codec_info; uint8_t update_codec_info;
int32_t sample_freq; int32_t sample_freq;
uint8_t channel_num; uint8_t channel_num;
} rb_tws_codec_info; } rb_tws_codec_info;
rb_tws_codec_info codec_info = {1, 44100, 2}; rb_tws_codec_info codec_info = {1, 44100, 2};
@ -84,18 +82,17 @@ static osThreadId rb_decode_tid = NULL;
static osThreadId rb_caller_tid = NULL; static osThreadId rb_caller_tid = NULL;
typedef struct { typedef struct {
uint32_t evt; uint32_t evt;
uint32_t arg; uint32_t arg;
} RBTHREAD_MSG_BLOCK; } RBTHREAD_MSG_BLOCK;
#define RBTHREAD_MAILBOX_MAX (10) #define RBTHREAD_MAILBOX_MAX (10)
osMailQDef(rb_decode_mailbox, RBTHREAD_MAILBOX_MAX, RBTHREAD_MSG_BLOCK); osMailQDef (rb_decode_mailbox, RBTHREAD_MAILBOX_MAX, RBTHREAD_MSG_BLOCK);
int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK *msg_src); int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK* msg_src);
static osMailQId rb_decode_mailbox = NULL; static osMailQId rb_decode_mailbox = NULL;
static void rb_decode_thread(void const *argument); static void rb_decode_thread(void const *argument);
osThreadDef(rb_decode_thread, osPriorityAboveNormal, 1, 1024 * 2, osThreadDef(rb_decode_thread, osPriorityAboveNormal, 1, 1024 * 2, "rb_decorder");
"rb_decorder");
// rbcodec info // rbcodec info
static int song_fd; static int song_fd;
@ -118,203 +115,226 @@ uint16_t g_rbplayer_curr_song_idx = 0;
extern void app_rbplay_exit(void); extern void app_rbplay_exit(void);
extern void bt_change_to_iic(APP_KEY_STATUS *status, void *param); extern void bt_change_to_iic(APP_KEY_STATUS *status, void *param);
extern void rb_thread_send_switch(bool next); extern void rb_thread_send_switch(bool next);
extern void rb_thread_send_status_change(void); extern void rb_thread_send_status_change(void );
enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void); enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void);
static void rb_player_sync_close_done(void) { thread_tid_waiter = NULL; } static void rb_player_sync_close_done(void)
{
thread_tid_waiter = NULL;
}
extern void rb_check_stream_reconfig(int32_t freq, uint8_t ch); extern void rb_check_stream_reconfig(int32_t freq, uint8_t ch);
static void f_codec_pcmbuf_insert_callback(const void *ch1, const void *ch2, static void f_codec_pcmbuf_insert_callback(
int count) { const void *ch1, const void *ch2, int count)
struct dsp_buffer src; {
struct dsp_buffer dst; struct dsp_buffer src;
struct dsp_buffer dst;
src.remcount = count; src.remcount = count;
src.pin[0] = (const unsigned char *)ch1; src.pin[0] = (const unsigned char *)ch1;
src.pin[1] = (const unsigned char *)ch2; src.pin[1] = (const unsigned char *)ch2;
src.proc_mask = 0; src.proc_mask = 0;
if (rb_codec_running() == 0) if (rb_codec_running() == 0)
return; return ;
#ifndef __TWS__ #ifndef __TWS__
while (src.remcount > 0) { while (src.remcount > 0) {
dst.remcount = 0; dst.remcount = 0;
dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount); dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount);
if (dst.p16out == NULL) { if (dst.p16out == NULL) {
warn("No pcm buffer"); warn("No pcm buffer");
osThreadYield(); osThreadYield();
} else { } else {
dsp_process(ci->dsp, &src, &dst); dsp_process(ci->dsp, &src, &dst);
if (dst.remcount > 0) { if (dst.remcount > 0) {
rb_pcmbuf_write(dst.remcount); rb_pcmbuf_write(dst.remcount);
} }
}
} }
}
#else #else
if (codec_info.update_codec_info) { if(codec_info.update_codec_info){
rb_set_sbc_encoder_freq_ch( rb_set_sbc_encoder_freq_ch(codec_info.sample_freq, codec_info.channel_num); //should call this to set trigger timer
codec_info.sample_freq, rb_check_stream_reconfig(codec_info.sample_freq, codec_info.channel_num);
codec_info.channel_num); // should call this to set trigger timer codec_info.update_codec_info = 0;
rb_check_stream_reconfig(codec_info.sample_freq, codec_info.channel_num);
codec_info.update_codec_info = 0;
}
if (tws_local_player_need_tran_2_slave()) {
rb_tws_start_master_player(BT_STREAM_RBCODEC);
}
while (1) {
uint8_t *pcm_buff = NULL;
dst.remcount = 0;
dst.bufcount = MIN(src.remcount, 128); /* Arbitrary min request */
dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount);
pcm_buff = (uint8_t *)dst.p16out;
ASSERT(pcm_buff, "Should request buffer");
dsp_process(ci->dsp, &src, &dst);
if (dst.remcount > 0) {
while (rb_push_pcm_in_tws_buffer(pcm_buff, dst.remcount * 2 * 2) == 0) {
osDelay(2);
}
} }
if (src.remcount <= 0) { if(tws_local_player_need_tran_2_slave()){
return; /* No input remains and DSP purged */ rb_tws_start_master_player(BT_STREAM_RBCODEC);
}
while(1){
uint8_t * pcm_buff = NULL;
dst.remcount = 0;
dst.bufcount = MIN(src.remcount, 128); /* Arbitrary min request */
dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount);
pcm_buff = (uint8_t *)dst.p16out;
ASSERT(pcm_buff, "Should request buffer");
dsp_process(ci->dsp, &src, &dst);
if (dst.remcount > 0) {
while(rb_push_pcm_in_tws_buffer(pcm_buff, dst.remcount*2*2) == 0){
osDelay(2);
}
}
if (src.remcount <= 0) {
return; /* No input remains and DSP purged */
}
} }
}
#endif #endif
} }
static void f_audio_codec_update_elapsed(unsigned long elapsed) { static void f_audio_codec_update_elapsed(unsigned long elapsed)
// info("Update elapsed: %d", elapsed); {
return; //info("Update elapsed: %d", elapsed);
return;
} }
static size_t f_codec_filebuf_callback(void *ptr, size_t size) { static size_t f_codec_filebuf_callback(void *ptr, size_t size)
ssize_t ret; {
ret = read(song_fd, ptr, size); ssize_t ret;
if (ret < 0) { ret = read(song_fd, ptr, size);
error("File read error: %d", ret); if(ret < 0) {
} error("File read error: %d",ret);
}
return ret;
return ret;
} }
static void *f_codec_request_buffer_callback(size_t *realsize, size_t reqsize) { static void * f_codec_request_buffer_callback(size_t *realsize, size_t reqsize)
return NULL; {
}
static void *f_codec_advance_buffer_callback(size_t amount) {
off_t ret = lseek(song_fd, (off_t)(ci->curpos + amount), SEEK_SET);
if (ret < 0) {
error("File seek fail");
return NULL; return NULL;
}
ci->curpos += amount;
return (void *)ci;
} }
static bool f_codec_seek_buffer_callback(size_t newpos) { static void * f_codec_advance_buffer_callback(size_t amount)
off_t ret = lseek(song_fd, (off_t)newpos, SEEK_SET); {
if (ret < 0) { off_t ret = lseek(song_fd, (off_t)(ci->curpos + amount), SEEK_SET);
error("File seek fail"); if(ret < 0) {
return false; error("File seek fail");
} return NULL;
}
ci->curpos += amount;
return (void *)ci;
ci->curpos = newpos;
return true;
} }
static void f_codec_seek_complete_callback(void) { static bool f_codec_seek_buffer_callback(size_t newpos)
info("Seek complete"); {
dsp_configure(ci->dsp, DSP_FLUSH, 0); off_t ret = lseek(song_fd, (off_t)newpos, SEEK_SET);
if(ret < 0) {
error("File seek fail");
return false;
}
ci->curpos = newpos;
return true;
} }
static void f_audio_codec_update_offset(size_t offset) {} static void f_codec_seek_complete_callback(void)
{
info("Seek complete");
dsp_configure(ci->dsp, DSP_FLUSH, 0);
}
static void f_codec_configure_callback(int setting, intptr_t value) { static void f_audio_codec_update_offset(size_t offset)
dsp_configure(ci->dsp, setting, value); {
}
static void f_codec_configure_callback(int setting, intptr_t value)
{
dsp_configure(ci->dsp, setting, value);
#ifdef __TWS__ #ifdef __TWS__
if (setting == DSP_SET_FREQUENCY) { if(setting == DSP_SET_FREQUENCY){
if (codec_info.sample_freq != value) if(codec_info.sample_freq != value)
codec_info.update_codec_info = 1; codec_info.update_codec_info = 1;
codec_info.sample_freq = value; codec_info.sample_freq = value;
} else if (setting == DSP_SET_STEREO_MODE) { }
if (codec_info.channel_num != (value == STEREO_MONO ? 1 : 2)) else if(setting == DSP_SET_STEREO_MODE){
codec_info.update_codec_info = 1; if(codec_info.channel_num != (value == STEREO_MONO ? 1 : 2))
codec_info.channel_num = value == STEREO_MONO ? 1 : 2; codec_info.update_codec_info = 1;
} codec_info.channel_num = value == STEREO_MONO ? 1 : 2;
}
#endif #endif
} }
static enum codec_command_action f_codec_get_command_callback(intptr_t *param) { static enum codec_command_action f_codec_get_command_callback(intptr_t *param)
if (rb_decode_halt_flag == 1) {
return CODEC_ACTION_HALT; if (rb_decode_halt_flag == 1)
return CODEC_ACTION_HALT ;
return CODEC_ACTION_NULL; return CODEC_ACTION_NULL;
} }
static bool f_codec_loop_track_callback(void) { return false; } static bool f_codec_loop_track_callback(void)
{
static void init_ci_file(void) { return false;
ci->codec_get_buffer = 0;
ci->pcmbuf_insert = f_codec_pcmbuf_insert_callback;
ci->set_elapsed = f_audio_codec_update_elapsed;
ci->read_filebuf = f_codec_filebuf_callback;
ci->request_buffer = f_codec_request_buffer_callback;
ci->advance_buffer = f_codec_advance_buffer_callback;
ci->seek_buffer = f_codec_seek_buffer_callback;
ci->seek_complete = f_codec_seek_complete_callback;
ci->set_offset = f_audio_codec_update_offset;
ci->configure = f_codec_configure_callback;
ci->get_command = f_codec_get_command_callback;
ci->loop_track = f_codec_loop_track_callback;
} }
static void rb_play_init(void) { static void init_ci_file(void)
init_dsp(); {
ci->codec_get_buffer = 0;
ci->pcmbuf_insert = f_codec_pcmbuf_insert_callback;
ci->set_elapsed = f_audio_codec_update_elapsed;
ci->read_filebuf = f_codec_filebuf_callback;
ci->request_buffer = f_codec_request_buffer_callback;
ci->advance_buffer = f_codec_advance_buffer_callback;
ci->seek_buffer = f_codec_seek_buffer_callback;
ci->seek_complete = f_codec_seek_complete_callback;
ci->set_offset = f_audio_codec_update_offset;
ci->configure = f_codec_configure_callback;
ci->get_command = f_codec_get_command_callback;
ci->loop_track = f_codec_loop_track_callback;
}
init_ci_file(); static void rb_play_init(void)
{
init_dsp();
init_ci_file();
#ifndef __TWS__ #ifndef __TWS__
rb_pcmbuf_init(); rb_pcmbuf_init();
#endif #endif
} }
void rb_play_codec_init(void) { void rb_play_codec_init(void)
RBTHREAD_MSG_BLOCK msg; {
msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_INIT; RBTHREAD_MSG_BLOCK msg;
msg.arg = (uint32_t)0; msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_INIT;
rb_decode_mailbox_put(&msg); msg.arg = (uint32_t)0;
rb_decode_mailbox_put(&msg);
} }
void rb_play_codec_run(void) { void rb_play_codec_run(void)
RBTHREAD_MSG_BLOCK msg; {
msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_RUN; RBTHREAD_MSG_BLOCK msg;
msg.arg = (uint32_t)0; msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_RUN;
rb_decode_mailbox_put(&msg); msg.arg = (uint32_t)0;
rb_decode_mailbox_put(&msg);
} }
static int rb_codec_init_desc(void) { static int rb_codec_init_desc(void )
info("Init decode format: %d", song_format); {
info("Init decode format: %d", song_format);
switch (song_format) { switch (song_format) {
case AFMT_MPA_L1: case AFMT_MPA_L1:
case AFMT_MPA_L2: case AFMT_MPA_L2:
case AFMT_MPA_L3: case AFMT_MPA_L3:
app_overlay_select(APP_OVERLAY_MPA); app_overlay_select(APP_OVERLAY_MPA);
mpa_codec_main(CODEC_LOAD); mpa_codec_main(CODEC_LOAD);
break; break;
// TODO: add APP_OVERLAY_APE // TODO: add APP_OVERLAY_APE
#if 0 #if 0
case AFMT_APE: case AFMT_APE:
app_overlay_select(APP_OVERLAY_APE); app_overlay_select(APP_OVERLAY_APE);
@ -333,25 +353,26 @@ static int rb_codec_init_desc(void) {
wav_codec_main(CODEC_LOAD); wav_codec_main(CODEC_LOAD);
break; break;
#endif #endif
default: default:
error("unkown codec type init\n"); error("unkown codec type init\n");
break; break;
} }
return 0; return 0;
} }
static int rb_codec_loop_on(void) { static int rb_codec_loop_on(void)
{
#ifdef __TWS__ #ifdef __TWS__
// set start transfer to slave //set start transfer to slave
tws_local_player_set_tran_2_slave_flag(1); tws_local_player_set_tran_2_slave_flag(1);
#endif #endif
switch (song_format) { switch (song_format) {
case AFMT_MPA_L1: case AFMT_MPA_L1:
case AFMT_MPA_L2: case AFMT_MPA_L2:
case AFMT_MPA_L3: case AFMT_MPA_L3:
mpa_codec_run(); mpa_codec_run();
break; break;
#if 0 #if 0
case AFMT_SBC: case AFMT_SBC:
sbc_codec_run(); sbc_codec_run();
@ -366,210 +387,229 @@ static int rb_codec_loop_on(void) {
ape_codec_run(); ape_codec_run();
break; break;
#endif #endif
default: default:
error("unkown codec type run\n"); error("unkown codec type run\n");
break; break;
}
return 0;
}
static int rb_thread_process_evt(RB_CTRL_CMD_T evt) {
info("Decode event:%d", evt);
switch (evt) {
case RB_CTRL_CMD_CODEC_INIT:
rb_decode_halt_flag = 0;
rb_play_init();
/* get id3 */
/* init ci info */
ci->filesize = filesize(song_fd);
ci->id3 = current_id3;
ci->curpos = 0;
dsp_configure(ci->dsp, DSP_RESET, 0);
dsp_configure(ci->dsp, DSP_FLUSH, 0);
rb_codec_init_desc();
break;
case RB_CTRL_CMD_CODEC_RUN:
rbplay_loop_on = 1;
info("Play start");
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, rb_player_get_work_freq());
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
rb_codec_loop_on();
#if defined(__BTIF_AUTOPOWEROFF__)
app_start_10_second_timer(APP_POWEROFF_TIMER_ID);
#endif
song_fd = 0;
rb_decode_halt_flag = 1;
if (thread_tid_waiter) {
rb_player_sync_close_done();
} else {
rb_thread_send_status_change();
rb_thread_send_switch(true);
} }
#ifdef __TWS__
// should update codec info after play one music
codec_info.update_codec_info = 1;
#endif
rbplay_loop_on = 0;
info("Play end");
break;
default:
error("Unkown rb cmd %d\n", evt);
break;
}
return 0;
}
int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK *msg_src) {
osStatus status;
RBTHREAD_MSG_BLOCK *msg_p = NULL;
msg_p = (RBTHREAD_MSG_BLOCK *)osMailAlloc(rb_decode_mailbox, 0);
if (!msg_p) {
TRACE(3, "%s fail, evt:%d,arg=%d \n", __func__, msg_src->evt, msg_src->arg);
return -1;
}
msg_p->evt = msg_src->evt;
msg_p->arg = msg_src->arg;
status = osMailPut(rb_decode_mailbox, msg_p);
return (int)status;
}
int rb_decode_mailbox_free(RBTHREAD_MSG_BLOCK *msg_p) {
osStatus status;
status = osMailFree(rb_decode_mailbox, msg_p);
return (int)status;
}
int rb_decode_mailbox_get(RBTHREAD_MSG_BLOCK **msg_p) {
osEvent evt;
evt = osMailGet(rb_decode_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (RBTHREAD_MSG_BLOCK *)evt.value.p;
return 0; return 0;
}
return -1;
} }
static void rb_decode_thread(void const *argument) { static int rb_thread_process_evt(RB_CTRL_CMD_T evt)
RB_CTRL_CMD_T action; {
RBTHREAD_MSG_BLOCK *msg_p; info("Decode event:%d", evt);
while (1) { switch(evt) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_32K); case RB_CTRL_CMD_CODEC_INIT:
// evt = osSignalWait(0, osWaitForever); rb_decode_halt_flag = 0;
if (0 == rb_decode_mailbox_get(&msg_p)) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_104M);
action = (RB_CTRL_CMD_T)msg_p->evt; rb_play_init();
rb_caller_tid = (osThreadId)msg_p->arg;
TRACE(3, "[%s] action:%d ,tid,0x%x", __func__, action, rb_caller_tid); /* get id3 */
rb_thread_process_evt(action); /* init ci info */
ci->filesize = filesize(song_fd);
ci->id3 = current_id3;
ci->curpos = 0;
rb_decode_mailbox_free(msg_p); dsp_configure(ci->dsp, DSP_RESET, 0);
if (rb_caller_tid) dsp_configure(ci->dsp, DSP_FLUSH, 0);
osSignalSet(rb_decode_tid, 0x1203);
rb_caller_tid = NULL;
}
}
}
int app_rbplay_open(void) { rb_codec_init_desc();
if (rb_decode_tid != NULL) { break;
warn("Decode thread reopen"); case RB_CTRL_CMD_CODEC_RUN:
return -1; rbplay_loop_on = 1;
}
rb_decode_mailbox = osMailCreate(osMailQ(rb_decode_mailbox), NULL); info("Play start");
if (rb_decode_mailbox == NULL) { app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, rb_player_get_work_freq());
error("Failed to Create rb_decode_mailbox"); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
return -1; rb_codec_loop_on();
} #if defined(__BTIF_AUTOPOWEROFF__)
app_start_10_second_timer(APP_POWEROFF_TIMER_ID);
rb_decode_tid = osThreadCreate(osThread(rb_decode_thread), NULL);
if (rb_decode_tid == NULL) {
error("Failed to Create rb_thread \n");
return -1;
}
return 0;
}
int rb_codec_running(void) { return ((rb_decode_halt_flag == 0) ? 1 : 0); }
void rb_codec_set_halt(int halt) { rb_decode_halt_flag = halt; }
void rb_thread_set_decode_vars(int fd, int type, void *id3) {
song_fd = fd;
song_format = type;
current_id3 = (struct mp3entry *)id3;
}
void rb_player_sync_set_wait_thread(osThreadId tid) {
if (rbplay_loop_on)
thread_tid_waiter = tid;
else
thread_tid_waiter = NULL;
}
void rb_player_sync_wait_close(void) {
while (NULL != thread_tid_waiter) {
osThreadYield();
}
}
enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void) {
enum APP_SYSFREQ_FREQ_T freq;
hal_sysfreq_print();
info("bitrate:%d freq:%d\n", ci->id3->bitrate, ci->id3->frequency);
#ifndef __TWS__
enum AUD_SAMPRATE_T sample_rate = AUD_SAMPRATE_44100;
sample_rate = (enum AUD_SAMPRATE_T)ci->id3->frequency;
if (sample_rate > AUD_SAMPRATE_48000)
freq = APP_SYSFREQ_208M;
else if (sample_rate > AUD_SAMPRATE_44100)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
if (ci->id3->bitrate > 192)
freq = APP_SYSFREQ_208M;
else if (ci->id3->bitrate > 128)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
switch (song_format) {
case AFMT_APE:
freq = APP_SYSFREQ_208M;
break;
case AFMT_FLAC:
freq = APP_SYSFREQ_208M;
break;
case AFMT_PCM_WAV:
freq = APP_SYSFREQ_208M;
break;
default:
break;
}
#else
freq = APP_SYSFREQ_208M;
#endif #endif
info("Decode thread run at: %d", freq); song_fd = 0;
return freq; rb_decode_halt_flag = 1;
if(thread_tid_waiter) {
rb_player_sync_close_done();
} else {
rb_thread_send_status_change();
rb_thread_send_switch(true);
}
#ifdef __TWS__
//should update codec info after play one music
codec_info.update_codec_info = 1;
#endif
rbplay_loop_on = 0;
info("Play end");
break;
default:
error("Unkown rb cmd %d\n",evt);
break;
}
return 0;
} }
int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK* msg_src)
{
osStatus status;
RBTHREAD_MSG_BLOCK *msg_p = NULL;
msg_p = (RBTHREAD_MSG_BLOCK*)osMailAlloc(rb_decode_mailbox, 0);
if(!msg_p) {
TRACE(3,"%s fail, evt:%d,arg=%d \n",__func__,msg_src->evt,msg_src->arg);
return -1;
}
msg_p->evt = msg_src->evt;
msg_p->arg = msg_src->arg;
status = osMailPut(rb_decode_mailbox, msg_p);
return (int)status;
}
int rb_decode_mailbox_free(RBTHREAD_MSG_BLOCK* msg_p)
{
osStatus status;
status = osMailFree(rb_decode_mailbox, msg_p);
return (int)status;
}
int rb_decode_mailbox_get(RBTHREAD_MSG_BLOCK** msg_p)
{
osEvent evt;
evt = osMailGet(rb_decode_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (RBTHREAD_MSG_BLOCK *)evt.value.p;
return 0;
}
return -1;
}
static void rb_decode_thread(void const *argument)
{
RB_CTRL_CMD_T action;
RBTHREAD_MSG_BLOCK* msg_p;
while(1) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_32K);
// evt = osSignalWait(0, osWaitForever);
if(0 == rb_decode_mailbox_get(&msg_p)) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_104M);
action = (RB_CTRL_CMD_T) msg_p->evt;
rb_caller_tid = (osThreadId) msg_p->arg ;
TRACE(3,"[%s] action:%d ,tid,0x%x", __func__, action,rb_caller_tid);
rb_thread_process_evt(action);
rb_decode_mailbox_free(msg_p);
if( rb_caller_tid)
osSignalSet(rb_decode_tid, 0x1203);
rb_caller_tid = NULL;
}
}
}
int app_rbplay_open(void)
{
if (rb_decode_tid != NULL) {
warn("Decode thread reopen");
return -1;
}
rb_decode_mailbox = osMailCreate(osMailQ(rb_decode_mailbox), NULL);
if (rb_decode_mailbox == NULL) {
error("Failed to Create rb_decode_mailbox");
return -1;
}
rb_decode_tid = osThreadCreate(osThread(rb_decode_thread), NULL);
if (rb_decode_tid == NULL) {
error("Failed to Create rb_thread \n");
return -1;
}
return 0;
}
int rb_codec_running(void)
{
return ((rb_decode_halt_flag == 0)?1:0);
}
void rb_codec_set_halt(int halt)
{
rb_decode_halt_flag = halt;
}
void rb_thread_set_decode_vars(int fd, int type ,void* id3)
{
song_fd =fd;
song_format = type;
current_id3 = (struct mp3entry *)id3;
}
void rb_player_sync_set_wait_thread(osThreadId tid)
{
if(rbplay_loop_on)
thread_tid_waiter = tid;
else
thread_tid_waiter = NULL;
}
void rb_player_sync_wait_close(void )
{
while(NULL != thread_tid_waiter) {
osThreadYield();
}
}
enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void)
{
enum APP_SYSFREQ_FREQ_T freq;
hal_sysfreq_print();
info("bitrate:%d freq:%d\n", ci->id3->bitrate, ci->id3->frequency);
#ifndef __TWS__
enum AUD_SAMPRATE_T sample_rate = AUD_SAMPRATE_44100;
sample_rate =(enum AUD_SAMPRATE_T ) ci->id3->frequency;
if(sample_rate > AUD_SAMPRATE_48000)
freq = APP_SYSFREQ_208M;
else if (sample_rate > AUD_SAMPRATE_44100)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
if(ci->id3->bitrate > 192)
freq = APP_SYSFREQ_208M;
else if (ci->id3->bitrate > 128)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
switch( song_format ) {
case AFMT_APE:
freq = APP_SYSFREQ_208M;
break;
case AFMT_FLAC:
freq = APP_SYSFREQ_208M;
break;
case AFMT_PCM_WAV:
freq = APP_SYSFREQ_208M;
break;
default:
break;
}
#else
freq = APP_SYSFREQ_208M;
#endif
info("Decode thread run at: %d", freq);
return freq;
}

View File

@ -16,18 +16,18 @@
/* rbplay source */ /* rbplay source */
/* playback control & rockbox codec porting & codec thread */ /* playback control & rockbox codec porting & codec thread */
#include <ctype.h> #include <string.h>
#include <fcntl.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <stdio.h>
#include <fcntl.h>
#include <ctype.h>
#include <unistd.h> #include <unistd.h>
#include "SDFileSystem.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "metadata.h" #include "metadata.h"
#include "SDFileSystem.h"
#include "rbplaysd.h" #include "rbplaysd.h"
#include "utils.h" #include "utils.h"
@ -41,182 +41,185 @@ static playlist_item sd_curritem;
playlist_struct sd_playlist; playlist_struct sd_playlist;
static void playlist_insert(playlist_item *item) { static void playlist_insert(playlist_item* item)
int fd; {
fd = open(PLAYLIST_PATH, O_RDWR | O_CREAT); int fd;
if (fd <= 0) { fd = open(PLAYLIST_PATH, O_RDWR | O_CREAT);
error("Playlist open fail");
return;
}
lseek(fd, item->song_idx * sizeof(playlist_item), SEEK_SET);
write(fd, item, sizeof(playlist_item));
close(fd);
}
static bool sdcard_mount(void) {
if (sdfs) {
info("SD card already mount");
return true;
}
sdfs = new SDFileSystem(SD_LABEL);
if (sdfs == NULL) {
error("No memory for sd file system");
return false;
}
DIR *d;
d = opendir("/" SD_LABEL);
if (!d) {
warn("SD card mount error");
return false;
}
closedir(d);
return true;
}
static void app_rbplay_gen_playlist(playlist_struct *list) {
struct dirent *p;
DIR *d;
uint32_t total;
int fd = 0;
struct mp3entry current_id3;
playlist_item *sd_curritem_p = &sd_curritem;
memset(list, 0x0, sizeof(playlist_struct));
d = opendir("/" SD_LABEL);
if (!d) {
error("SD card open fail");
return;
}
info("---------gen audio list---------");
total = 0;
while (p = readdir(d)) {
if (probe_file_format(p->d_name) == AFMT_UNKNOWN)
continue;
memset(&sd_curritem, 0x0, sizeof(playlist_item));
sd_curritem.song_idx = total;
sprintf(sd_curritem.file_path, "/" SD_LABEL "/%s", p->d_name);
sprintf(sd_curritem.file_name, "%s", p->d_name);
info("Adding music: %s", sd_curritem.file_path);
fd = open(sd_curritem.file_path, O_RDONLY);
if (fd <= 0) { if (fd <= 0) {
error("File %s open error", p->d_name); error("Playlist open fail");
break; return;
} }
get_metadata(&current_id3, fd, sd_curritem.file_path); lseek(fd, item->song_idx * sizeof(playlist_item), SEEK_SET);
write(fd, item, sizeof(playlist_item));
close(fd); close(fd);
}
if (current_id3.bitrate == 0 || current_id3.filesize == 0 || static bool sdcard_mount(void)
current_id3.length == 0) {
break; if (sdfs) {
info("SD card already mount");
return true;
}
info("bits:%d, type:%d, freq:%d", current_id3.bitrate, sdfs = new SDFileSystem(SD_LABEL);
current_id3.codectype, current_id3.frequency); if (sdfs == NULL) {
error("No memory for sd file system");
return false;
}
sd_curritem_p->bitrate = current_id3.bitrate; DIR *d;
sd_curritem_p->codectype = current_id3.codectype; d = opendir("/" SD_LABEL);
sd_curritem_p->filesize = current_id3.filesize;
sd_curritem_p->length = current_id3.length; if (!d) {
sd_curritem_p->frequency = current_id3.frequency; warn("SD card mount error");
return false;
}
closedir(d);
return true;
}
static void app_rbplay_gen_playlist(playlist_struct *list)
{
struct dirent *p;
DIR *d;
uint32_t total;
int fd = 0;
struct mp3entry current_id3;
playlist_item* sd_curritem_p = &sd_curritem;
memset(list,0x0,sizeof(playlist_struct));
d = opendir("/" SD_LABEL);
if (!d) {
error("SD card open fail");
return;
}
info("---------gen audio list---------");
total = 0;
while (p = readdir(d)) {
if (probe_file_format(p->d_name) == AFMT_UNKNOWN)
continue;
memset(&sd_curritem,0x0,sizeof(playlist_item));
sd_curritem.song_idx = total;
sprintf(sd_curritem.file_path, "/" SD_LABEL "/%s", p->d_name);
sprintf(sd_curritem.file_name, "%s", p->d_name);
info("Adding music: %s", sd_curritem.file_path);
fd = open(sd_curritem.file_path, O_RDONLY);
if (fd <= 0) {
error("File %s open error", p->d_name);
break;
}
get_metadata(&current_id3, fd, sd_curritem.file_path);
close(fd);
if(current_id3.bitrate == 0 || current_id3.filesize == 0 || current_id3.length == 0)
break;
info("bits:%d, type:%d, freq:%d", current_id3.bitrate,
current_id3.codectype, current_id3.frequency);
sd_curritem_p->bitrate = current_id3.bitrate;
sd_curritem_p->codectype = current_id3.codectype;
sd_curritem_p->filesize = current_id3.filesize;
sd_curritem_p->length = current_id3.length;
sd_curritem_p->frequency = current_id3.frequency;
#ifdef PARSER_DETAIL #ifdef PARSER_DETAIL
char *str; char *str;
str = current_id3.title; str = current_id3.title;
if (str != NULL) { if(str != NULL) {
memset(sd_curritem_p->title, 0x0, MP3_TITLE_LEN); memset(sd_curritem_p->title,0x0,MP3_TITLE_LEN);
memcpy(sd_curritem_p->title, str, memcpy(sd_curritem_p->title ,str,strlen(str)>MP3_TITLE_LEN?MP3_TITLE_LEN:strlen(str));
strlen(str) > MP3_TITLE_LEN ? MP3_TITLE_LEN : strlen(str)); }
}
str = current_id3.artist; str = current_id3.artist;
if (str != NULL) { if(str != NULL) {
memset(sd_curritem_p->artist, 0x0, MP3_ARTIST_LEN); memset(sd_curritem_p->artist,0x0,MP3_ARTIST_LEN);
memcpy(sd_curritem_p->artist, str, memcpy(sd_curritem_p->artist ,str,strlen(str)>MP3_ARTIST_LEN?MP3_ARTIST_LEN:strlen(str));
strlen(str) > MP3_ARTIST_LEN ? MP3_ARTIST_LEN : strlen(str)); }
}
str = current_id3.album; str = current_id3.album;
if (str != NULL) { if(str != NULL) {
memset(sd_curritem_p->album, 0x0, MP3_ALBUM_LEN); memset(sd_curritem_p->album,0x0,MP3_ALBUM_LEN);
memcpy(sd_curritem_p->album, str, memcpy(sd_curritem_p->album ,str,strlen(str)>MP3_ALBUM_LEN?MP3_ALBUM_LEN:strlen(str));
strlen(str) > MP3_ALBUM_LEN ? MP3_ALBUM_LEN : strlen(str)); }
}
str = current_id3.genre_string; str = current_id3.genre_string;
if (str != NULL) { if(str != NULL) {
memset(sd_curritem_p->genre, 0x0, MP3_GENRE_LEN); memset(sd_curritem_p->genre,0x0,MP3_GENRE_LEN);
memcpy(sd_curritem_p->genre, str, memcpy(sd_curritem_p->genre ,str,strlen(str)>MP3_GENRE_LEN?MP3_GENRE_LEN:strlen(str));
strlen(str) > MP3_GENRE_LEN ? MP3_GENRE_LEN : strlen(str)); }
}
str = current_id3.composer; str = current_id3.composer;
if (str != NULL) { if(str != NULL) {
memset(sd_curritem_p->composer, 0x0, MP3_COMPOSER_LEN); memset(sd_curritem_p->composer,0x0,MP3_COMPOSER_LEN);
memcpy(sd_curritem_p->composer, str, memcpy(sd_curritem_p->composer ,str,strlen(str)>MP3_COMPOSER_LEN?MP3_COMPOSER_LEN:strlen(str));
strlen(str) > MP3_COMPOSER_LEN ? MP3_COMPOSER_LEN : strlen(str)); }
}
#endif #endif
playlist_insert(sd_curritem_p); playlist_insert(sd_curritem_p);
total++; total++;
} }
list->total_songs = total; list->total_songs = total ;
list->current_item = sd_curritem_p; list->current_item = sd_curritem_p;
closedir(d);
info("---------%d audio file searched---------" , total);
closedir(d);
info("---------%d audio file searched---------", total);
} }
void app_rbplay_load_playlist(playlist_struct *list) { void app_rbplay_load_playlist(playlist_struct *list)
if (sdcard_mount() == false) {
return; if(sdcard_mount() == false)
return;
remove(PLAYLIST_PATH); remove(PLAYLIST_PATH);
app_rbplay_gen_playlist(list); app_rbplay_gen_playlist(list);
} }
playlist_item *app_rbplay_get_playitem(const int idx) { playlist_item *app_rbplay_get_playitem(const int idx)
int fd; {
if (idx >= sd_playlist.total_songs) { int fd;
warn("Index exceed: %d / %d", idx, sd_playlist.total_songs); if(idx >= sd_playlist.total_songs) {
return NULL; warn("Index exceed: %d / %d", idx, sd_playlist.total_songs);
} return NULL;
}
fd = open(PLAYLIST_PATH, O_RDONLY); fd = open(PLAYLIST_PATH, O_RDONLY);
if (fd <= 0) { if (fd <= 0) {
warn("SD card playlist can not open"); warn("SD card playlist can not open");
return NULL; return NULL;
} }
lseek(fd, sizeof(playlist_item) * idx, SEEK_SET); lseek(fd, sizeof(playlist_item) * idx, SEEK_SET);
read(fd, sd_playlist.current_item, sizeof(playlist_item)); read(fd, sd_playlist.current_item, sizeof(playlist_item));
info("Get playitem: %d: %s", idx, sd_playlist.current_item->file_path); info("Get playitem: %d: %s", idx, sd_playlist.current_item->file_path);
close(fd); close(fd);
return sd_playlist.current_item; return sd_playlist.current_item;
} }
int app_ctl_remove_file(const int idx) { int app_ctl_remove_file(const int idx)
playlist_item *item = app_rbplay_get_playitem(idx); {
if (!item) playlist_item *item = app_rbplay_get_playitem(idx);
return -1; if (!item)
remove(item->file_path); return -1;
remove(item->file_path);
return 0; return 0;
} }

View File

@ -13,37 +13,39 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_utils.h"
#include "audio_dump.h"
#include "audioflinger.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "app_utils.h"
#include "audioflinger.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "string.h" #include "string.h"
#include "audio_dump.h"
// #include "local_wav.h" // #include "local_wav.h"
#define CHANNEL_NUM (2) #define CHANNEL_NUM (2)
#define CHAR_BYTES (1) #define CHAR_BYTES (1)
#define SHORT_BYTES (2) #define SHORT_BYTES (2)
#define INT_BYTES (4) #define INT_BYTES (4)
#define SAMPLE_BITS (16) #define SAMPLE_BITS (16)
#define SAMPLE_BYTES (SAMPLE_BITS / 8) #define SAMPLE_BYTES (SAMPLE_BITS / 8)
#define TX_SAMPLE_RATE (16000)
#define RX_SAMPLE_RATE (16000)
#define TX_FRAME_LEN (256) #define TX_SAMPLE_RATE (16000)
#define RX_FRAME_LEN (256) #define RX_SAMPLE_RATE (16000)
#define TX_BUF_SIZE (TX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2)
#define RX_BUF_SIZE (RX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2) #define TX_FRAME_LEN (256)
#define RX_FRAME_LEN (256)
#define TX_BUF_SIZE (TX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2)
#define RX_BUF_SIZE (RX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2)
#if SAMPLE_BYTES == SHORT_BYTES #if SAMPLE_BYTES == SHORT_BYTES
typedef short VOICE_PCM_T; typedef short VOICE_PCM_T;
#elif SAMPLE_BYTES == INT_BYTES #elif SAMPLE_BYTES == INT_BYTES
typedef int VOICE_PCM_T; typedef int VOICE_PCM_T;
#else #else
#error "Invalid SAMPLE_BYTES!!!" #error "Invalid SAMPLE_BYTES!!!"
#endif #endif
@ -54,127 +56,130 @@ static uint8_t POSSIBLY_UNUSED codec_playback_buf[RX_BUF_SIZE];
static uint32_t POSSIBLY_UNUSED codec_capture_cnt = 0; static uint32_t POSSIBLY_UNUSED codec_capture_cnt = 0;
static uint32_t POSSIBLY_UNUSED codec_playback_cnt = 0; static uint32_t POSSIBLY_UNUSED codec_playback_cnt = 0;
#define CODEC_STREAM_ID AUD_STREAM_ID_0 #define CODEC_STREAM_ID AUD_STREAM_ID_0
static uint32_t codec_capture_callback(uint8_t *buf, uint32_t len) { static uint32_t codec_capture_callback(uint8_t *buf, uint32_t len)
int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM; {
VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM]; int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM;
int interval_len = len * 2 / CHANNEL_NUM; VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM];
int interval_len = len * 2 / CHANNEL_NUM;
for (int i = 0; i < CHANNEL_NUM; i++) { for (int i=0; i<CHANNEL_NUM; i++) {
pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len); pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len);
} }
// TRACE(2,"[%s] cnt = %d", __func__, codec_capture_cnt++); // TRACE(2,"[%s] cnt = %d", __func__, codec_capture_cnt++);
audio_dump_add_channel_data(0, pcm_buf[0], pcm_len); audio_dump_add_channel_data(0, pcm_buf[0], pcm_len);
audio_dump_add_channel_data(1, pcm_buf[0], pcm_len); audio_dump_add_channel_data(1, pcm_buf[0], pcm_len);
audio_dump_run(); audio_dump_run();
return len; return len;
} }
static uint32_t codec_playback_callback(uint8_t *buf, uint32_t len) { static uint32_t codec_playback_callback(uint8_t *buf, uint32_t len)
int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM; {
VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM]; int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM;
int interval_len = len * 2 / CHANNEL_NUM; VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM];
int interval_len = len * 2 / CHANNEL_NUM;
for (int i = 0; i < CHANNEL_NUM; i++) { for (int i=0; i<CHANNEL_NUM; i++) {
pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len); pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len);
} }
// TRACE(2,"[%s] cnt = %d", __func__, codec_playback_cnt++); // TRACE(2,"[%s] cnt = %d", __func__, codec_playback_cnt++);
return len; return len;
} }
static int voice_start(bool on) { static int voice_start(bool on)
int ret = 0; {
static bool isRun = false; int ret = 0;
enum APP_SYSFREQ_FREQ_T freq = APP_SYSFREQ_208M; static bool isRun = false;
struct AF_STREAM_CONFIG_T stream_cfg; enum APP_SYSFREQ_FREQ_T freq = APP_SYSFREQ_208M;
struct AF_STREAM_CONFIG_T stream_cfg;
if (isRun == on) { if (isRun == on) {
return 0;
}
if (on) {
TRACE(1, "[%s]] ON", __func__);
af_set_priority(AF_USER_TEST, osPriorityHigh);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
TRACE(2, "[%s] sys freq calc : %d\n", __func__, hal_sys_timer_calc_cpu_freq(5, 0));
// Initialize Cqueue
codec_capture_cnt = 0;
codec_playback_cnt = 0;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = TX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)TX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.handler = codec_capture_callback;
stream_cfg.data_ptr = codec_capture_buf;
TRACE(3, "[%s] codec capture sample_rate: %d, data_size: %d", __func__, stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg);
ASSERT(ret == 0, "codec capture failed: %d", ret);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = RX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)RX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.handler = codec_playback_callback;
stream_cfg.data_ptr = codec_playback_buf;
TRACE(3, "[%s] codec playback sample_rate: %d, data_size: %d", __func__, stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg);
ASSERT(ret == 0, "codec playback failed: %d", ret);
audio_dump_init(TX_FRAME_LEN, sizeof(VOICE_PCM_T), 1);
// Start
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
}
else
{
// Close stream
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
audio_dump_deinit();
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
af_set_priority(AF_USER_TEST, osPriorityAboveNormal);
TRACE(1, "[%s] OFF", __func__);
}
isRun=on;
return 0; return 0;
}
if (on) {
TRACE(1, "[%s]] ON", __func__);
af_set_priority(AF_USER_TEST, osPriorityHigh);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
TRACE(2, "[%s] sys freq calc : %d\n", __func__,
hal_sys_timer_calc_cpu_freq(5, 0));
// Initialize Cqueue
codec_capture_cnt = 0;
codec_playback_cnt = 0;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = TX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)TX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.handler = codec_capture_callback;
stream_cfg.data_ptr = codec_capture_buf;
TRACE(3, "[%s] codec capture sample_rate: %d, data_size: %d", __func__,
stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg);
ASSERT(ret == 0, "codec capture failed: %d", ret);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = RX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)RX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.handler = codec_playback_callback;
stream_cfg.data_ptr = codec_playback_buf;
TRACE(3, "[%s] codec playback sample_rate: %d, data_size: %d", __func__,
stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg);
ASSERT(ret == 0, "codec playback failed: %d", ret);
audio_dump_init(TX_FRAME_LEN, sizeof(VOICE_PCM_T), 1);
// Start
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
} else {
// Close stream
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
audio_dump_deinit();
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
af_set_priority(AF_USER_TEST, osPriorityAboveNormal);
TRACE(1, "[%s] OFF", __func__);
}
isRun = on;
return 0;
} }
static bool voice_test_status = true; static bool voice_test_status = true;
void voice_test(void) { void voice_test(void)
TRACE(2, "[%s] status = %d", __func__, voice_test_status); {
TRACE(2, "[%s] status = %d", __func__, voice_test_status);
voice_start(voice_test_status); voice_start(voice_test_status);
voice_test_status = !voice_test_status; voice_test_status = !voice_test_status;
} }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -17,44 +17,46 @@
#include "mbed.h" #include "mbed.h"
#endif #endif
// Standard C Included Files // Standard C Included Files
#include <string.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <stdio.h>
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_uart.h" #include "hal_uart.h"
#include "hal_trace.h"
#include "hal_timer.h"
/*! /*!
* * @brief Standard Winodws PCM wave file header length * * @brief Standard Winodws PCM wave file header length
* */ * */
#define WAVE_FILE_HEADER_SIZE 0x2CU #define WAVE_FILE_HEADER_SIZE 0x2CU
typedef struct wave_header { typedef struct wave_header
uint8_t riff[4]; {
uint32_t size; uint8_t riff[4];
uint8_t waveFlag[4]; uint32_t size;
uint8_t fmt[4]; uint8_t waveFlag[4];
uint32_t fmtLen; uint8_t fmt[4];
uint16_t tag; uint32_t fmtLen;
uint16_t channels; uint16_t tag;
uint32_t sampFreq; uint16_t channels;
uint32_t byteRate; uint32_t sampFreq;
uint16_t blockAlign; uint32_t byteRate;
uint16_t bitSamp; uint16_t blockAlign;
uint8_t dataFlag[4]; uint16_t bitSamp;
uint32_t length; uint8_t dataFlag[4];
uint32_t length;
} wave_header_t; } wave_header_t;
/*! /*!
* * @brief Wave file structure * * @brief Wave file structure
* */ * */
typedef struct wave_file { typedef struct wave_file
wave_header_t header; {
uint32_t *data; wave_header_t header;
} wave_file_t; uint32_t *data;
}wave_file_t;
/* player */ /* player */
static unsigned int g_total_play_count = 0; static unsigned int g_total_play_count = 0;
@ -64,179 +66,188 @@ static unsigned int g_curr_play_index = 0;
wave_file_t g_wave_file_info; wave_file_t g_wave_file_info;
static char g_wav_header[WAVE_FILE_HEADER_SIZE]; static char g_wav_header[WAVE_FILE_HEADER_SIZE];
FILE *g_wave_file_handle = NULL; FILE *g_wave_file_handle = NULL;
static int32_t (*wav_file_playback_callback)(int32_t) = NULL; static int32_t (*wav_file_playback_callback)(int32_t ) = NULL;
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Code // Code
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
void wav_file_set_playeback_cb(int32_t (*cb)(int32_t)) { void wav_file_set_playeback_cb(int32_t (* cb)(int32_t))
wav_file_playback_callback = cb; {
wav_file_playback_callback = cb;
} }
bool wav_file_isplaydone(void) { bool wav_file_isplaydone(void)
return (g_curr_play_index >= g_total_play_count) ? true : false; {
return (g_curr_play_index >= g_total_play_count)? true : false;
} }
uint32_t wav_file_audio_more_data(uint8_t *buf, uint32_t len) { uint32_t wav_file_audio_more_data(uint8_t *buf, uint32_t len)
// static uint32_t g_preIrqTime = 0; {
uint32_t reallen = 0; // static uint32_t g_preIrqTime = 0;
// int32_t stime,etime; uint32_t reallen = 0;
int32_t status; // int32_t stime,etime;
int32_t status;
/* play done ? */ /* play done ? */
if (wav_file_isplaydone()) { if(wav_file_isplaydone()) {
memset(buf, 0, len); memset(buf, 0, len);
status = 0; status = 0;
if (wav_file_playback_callback)
wav_file_playback_callback(status);
return (len);
}
// stime = hal_sys_timer_get();
/* read file */
if (g_wave_file_handle)
reallen = fread(buf, 1, len, g_wave_file_handle);
// etime = hal_sys_timer_get();
if (reallen != len){
memset(buf, 0, len);
status = -1;
if (wav_file_playback_callback)
wav_file_playback_callback(status);
return (len);
}
// TRACE(5,"wav_file_audio_more_data irqDur:%d fsSpend:%d, readbuff:0x%08x %d/%d\n ", TICKS_TO_MS(stime - g_preIrqTime),TICKS_TO_MS(etime - stime),buf,reallen,len);
// g_preIrqTime = stime;
/* walk index */
g_curr_play_index += reallen;
return reallen;
}
uint32_t get_wav_data(wave_file_t *waveFile)
{
uint8_t *dataTemp = (uint8_t *)waveFile->data;
// check for RIFF
memcpy(waveFile->header.riff, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.riff, "RIFF", 4) )
{
return 0;
}
// Get size
memcpy(&waveFile->header.size, dataTemp, 4);
dataTemp += 4;
TRACE(1,"WAV header size [%d]\n", waveFile->header.size);
// .wav file flag
memcpy(waveFile->header.waveFlag, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.waveFlag, "WAVE", 4) )
{
return 0;
}
// fmt
memcpy(waveFile->header.fmt, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.fmt, "fmt ", 4) )
{
return 0;
}
// fmt length
memcpy(&waveFile->header.fmtLen, dataTemp, 4);
dataTemp += 4;
// Tag: PCM or not
memcpy(&waveFile->header.tag, dataTemp, 4);
dataTemp += 2;
// Channels
memcpy(&waveFile->header.channels, dataTemp, 4);
dataTemp += 2;
TRACE(1,"WAV channels [%d]\n", waveFile->header.channels);
// Sample Rate in Hz
memcpy(&waveFile->header.sampFreq, dataTemp, 4);
dataTemp += 4;
memcpy(&waveFile->header.byteRate, dataTemp, 4);
dataTemp += 4;
TRACE(1,"WAV sample_rate [%d]\n", waveFile->header.sampFreq);
TRACE(1,"WAV byteRate [%d]\n", waveFile->header.byteRate);
// quantize bytes for per samp point
memcpy(&waveFile->header.blockAlign, dataTemp, 4);
dataTemp += 2;
memcpy(&waveFile->header.bitSamp, dataTemp, 4);
dataTemp += 2;
TRACE(1,"WAV bitSamp [%d]\n", waveFile->header.bitSamp);
// Data
memcpy(waveFile->header.dataFlag, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.dataFlag, "data ", 4) )
{
return 0;
}
memcpy(&waveFile->header.length, dataTemp, 4);
dataTemp += 4;
return 0;
}
void audio_wav_init(wave_file_t *newWav)
{
get_wav_data(newWav);
// Configure the play audio g_format
//g_format.bits = newWav->header.bitSamp;
//g_format.sample_rate = newWav->header.sampFreq;
//g_format.mclk = 256 * g_format.sample_rate ;
//g_format.mono_streo = (sai_mono_streo_t)((newWav->header.channels) - 1);
}
uint32_t play_wav_file(char *file_path)
{
uint32_t bytesToRead = 0;
wave_file_t *newWav = &g_wave_file_info;
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_wave_file_handle = fopen(file_path, "rb");
if(g_wave_file_handle == NULL) {
TRACE(1,"WAV file %s open fail\n", file_path);
return 1;
}
fread(&g_wav_header, WAVE_FILE_HEADER_SIZE, 1, g_wave_file_handle);
newWav->data = (uint32_t *)&g_wav_header;
audio_wav_init(newWav);
// Remove header size from byte count
// Adjust note duration by divider value, wav tables in pcm_data.h are 200ms by default
bytesToRead = (newWav->header.length - WAVE_FILE_HEADER_SIZE);
g_curr_play_index = 0;
g_total_play_count = bytesToRead;
return newWav->header.sampFreq;
}
uint32_t stop_wav_file(void)
{
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_curr_play_index = 0;
g_total_play_count = 0;
if (g_wave_file_handle){
fclose(g_wave_file_handle);
g_wave_file_handle = NULL;
}
if (wav_file_playback_callback) if (wav_file_playback_callback)
wav_file_playback_callback(status); wav_file_playback_callback = NULL;
return (len);
}
// stime = hal_sys_timer_get();
/* read file */
if (g_wave_file_handle)
reallen = fread(buf, 1, len, g_wave_file_handle);
// etime = hal_sys_timer_get();
if (reallen != len) {
memset(buf, 0, len);
status = -1;
if (wav_file_playback_callback)
wav_file_playback_callback(status);
return (len);
}
// TRACE(5,"wav_file_audio_more_data irqDur:%d fsSpend:%d, readbuff:0x%08x
// %d/%d\n ", TICKS_TO_MS(stime - g_preIrqTime),TICKS_TO_MS(etime -
// stime),buf,reallen,len);
// g_preIrqTime = stime;
/* walk index */
g_curr_play_index += reallen;
return reallen;
}
uint32_t get_wav_data(wave_file_t *waveFile) {
uint8_t *dataTemp = (uint8_t *)waveFile->data;
// check for RIFF
memcpy(waveFile->header.riff, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.riff, "RIFF", 4)) {
return 0; return 0;
}
// Get size
memcpy(&waveFile->header.size, dataTemp, 4);
dataTemp += 4;
TRACE(1, "WAV header size [%d]\n", waveFile->header.size);
// .wav file flag
memcpy(waveFile->header.waveFlag, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.waveFlag, "WAVE", 4)) {
return 0;
}
// fmt
memcpy(waveFile->header.fmt, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.fmt, "fmt ", 4)) {
return 0;
}
// fmt length
memcpy(&waveFile->header.fmtLen, dataTemp, 4);
dataTemp += 4;
// Tag: PCM or not
memcpy(&waveFile->header.tag, dataTemp, 4);
dataTemp += 2;
// Channels
memcpy(&waveFile->header.channels, dataTemp, 4);
dataTemp += 2;
TRACE(1, "WAV channels [%d]\n", waveFile->header.channels);
// Sample Rate in Hz
memcpy(&waveFile->header.sampFreq, dataTemp, 4);
dataTemp += 4;
memcpy(&waveFile->header.byteRate, dataTemp, 4);
dataTemp += 4;
TRACE(1, "WAV sample_rate [%d]\n", waveFile->header.sampFreq);
TRACE(1, "WAV byteRate [%d]\n", waveFile->header.byteRate);
// quantize bytes for per samp point
memcpy(&waveFile->header.blockAlign, dataTemp, 4);
dataTemp += 2;
memcpy(&waveFile->header.bitSamp, dataTemp, 4);
dataTemp += 2;
TRACE(1, "WAV bitSamp [%d]\n", waveFile->header.bitSamp);
// Data
memcpy(waveFile->header.dataFlag, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.dataFlag, "data ", 4)) {
return 0;
}
memcpy(&waveFile->header.length, dataTemp, 4);
dataTemp += 4;
return 0;
}
void audio_wav_init(wave_file_t *newWav) {
get_wav_data(newWav);
// Configure the play audio g_format
// g_format.bits = newWav->header.bitSamp;
// g_format.sample_rate = newWav->header.sampFreq;
// g_format.mclk = 256 * g_format.sample_rate ;
// g_format.mono_streo = (sai_mono_streo_t)((newWav->header.channels) - 1);
}
uint32_t play_wav_file(char *file_path) {
uint32_t bytesToRead = 0;
wave_file_t *newWav = &g_wave_file_info;
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_wave_file_handle = fopen(file_path, "rb");
if (g_wave_file_handle == NULL) {
TRACE(1, "WAV file %s open fail\n", file_path);
return 1;
}
fread(&g_wav_header, WAVE_FILE_HEADER_SIZE, 1, g_wave_file_handle);
newWav->data = (uint32_t *)&g_wav_header;
audio_wav_init(newWav);
// Remove header size from byte count
// Adjust note duration by divider value, wav tables in pcm_data.h are 200ms
// by default
bytesToRead = (newWav->header.length - WAVE_FILE_HEADER_SIZE);
g_curr_play_index = 0;
g_total_play_count = bytesToRead;
return newWav->header.sampFreq;
}
uint32_t stop_wav_file(void) {
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_curr_play_index = 0;
g_total_play_count = 0;
if (g_wave_file_handle) {
fclose(g_wave_file_handle);
g_wave_file_handle = NULL;
}
if (wav_file_playback_callback)
wav_file_playback_callback = NULL;
return 0;
} }

File diff suppressed because it is too large Load Diff

41
apps/btusbaudio/Makefile Normal file
View File

@ -0,0 +1,41 @@
cur_dir := $(dir $(lastword $(MAKEFILE_LIST)))
obj-y := $(patsubst $(cur_dir)%,%,$(wildcard $(cur_dir)*.c $(cur_dir)*.cpp $(cur_dir)*.S))
obj-y := $(obj-y:.c=.o)
obj-y := $(obj-y:.cpp=.o)
obj-y := $(obj-y:.S=.o)
ccflags-y += \
$(BT_IF_INCLUDES) \
$(BT_PROFILES_INCLUDES) \
-Iservices/bt_app \
-Iservices/bt_app/a2dp_codecs/include \
-Iservices/audioflinger \
-Iservices/nvrecord \
-Iservices/overlay \
-Iservices/resources \
-Iservices/audio_process \
-Iapps/apptester \
-Iapps/factory \
-Iutils/crc32 \
-Iplatform/drivers/bt \
-Iplatform/drivers/ana \
-Iapps/audioplayers/rbplay \
-Itests/anc_usb \
-Iapps/anc/inc \
-Iapps/ota \
-Ithirdparty/userapi \
-Iservices/voicepath \
-Iservices/voicepath/gsound/gsound_service \
-Iservices/voicepath/gsound/gsound_target \
-Iservices/communication \
-Iutils/cqueue \
-Iservices/ai_voice/ama/ama_manager \
-Iservices/ai_voice/manager \
-Iservices/multimedia/audio/codec/sbc/inc \
-Iservices/multimedia/audio/codec/sbc/src/inc \
-Iservices/interconnection

View File

@ -0,0 +1,307 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "stdio.h"
#include "cmsis_os.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "app_audio.h"
#include "a2dp_api.h"
#include "app_bt.h"
#include "btapp.h"
#include "usb_audio_app.h"
#include "btusb_audio.h"
extern void btusbaudio_entry(void);
extern void btusbaudio_exit(void);
extern a2dp_stream_t* app_bt_get_steam(enum BT_DEVICE_ID_T id);
extern int app_bt_get_bt_addr(enum BT_DEVICE_ID_T id,bt_bdaddr_t *bdaddr);
extern bool app_bt_a2dp_service_is_connected(void);
int app_bt_A2DP_OpenStream(a2dp_stream_t *Stream, bt_bdaddr_t *Addr);
int app_bt_A2DP_CloseStream(a2dp_stream_t *Stream);
extern bool btapp_hfp_is_call_active(void);
static bool btusb_usb_is_on = false;
static enum BTUSB_MODE btusb_mode = BTUSB_MODE_INVALID;
static bool btusb_bt_audio_is_suspend = false;
#define BT_USB_DEBUG() //TRACE(2,"_debug: %s,%d",__func__,__LINE__)
extern struct BT_DEVICE_T app_bt_device;
static void _btusb_stream_open(unsigned int timeout_ms)
{
a2dp_stream_t *stream = NULL;
bt_bdaddr_t bdaddr;
uint32_t stime = 0;
uint32_t etime = 0;
stime = hal_sys_timer_get();
//BT_USB_DEBUG();
stream = (a2dp_stream_t*)app_bt_get_steam(BT_DEVICE_ID_1);
app_bt_get_bt_addr(BT_DEVICE_ID_1,&bdaddr);
if(stream)
{
//struct BT_DEVICE_T *bt_dev = &app_bt_device;
//A2DP_Register((a2dp_stream_t *)bt_dev->a2dp_stream[BT_DEVICE_ID_1]->a2dp_stream, &a2dp_avdtpcodec, NULL, (A2dpCallback) a2dp_callback);
//AVRCP_Register((AvrcpChannel *)bt_dev->avrcp_channel[BT_DEVICE_ID_1]->avrcp_channel_handle, (AvrcpCallback)avrcp_callback_CT, BTIF_AVRCP_CT_CATEGORY_1 | BTIF_AVRCP_CT_CATEGORY_2 | BTIF_AVRCP_TG_CATEGORY_2);
BT_USB_DEBUG();
osDelay(10);
app_bt_A2DP_OpenStream(stream,&bdaddr);
}
else
{
BT_USB_DEBUG();
return;
}
while(1)
{
if(app_bt_a2dp_service_is_connected()){
etime = hal_sys_timer_get();
TRACE(1,"_debug: a2dp service connected, wait time = 0x%x.",TICKS_TO_MS(etime - stime));
break;
}
else
{
etime = hal_sys_timer_get();
if(TICKS_TO_MS(etime - stime) >= timeout_ms)
{
TRACE(1,"_debug: a2dp service connect timeout = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
osDelay(10);
}
}
//BT_USB_DEBUG();
}
static void _btusb_stream_close(unsigned int timeout_ms)
{
a2dp_stream_t *stream = NULL;
uint32_t stime = 0;
uint32_t etime = 0;
stime = hal_sys_timer_get();
BT_USB_DEBUG();
stream = (a2dp_stream_t*)app_bt_get_steam(BT_DEVICE_ID_1);
if(stream)
{
BT_USB_DEBUG();
app_bt_A2DP_CloseStream(stream);
}
else
{
BT_USB_DEBUG();
return;
}
stime = hal_sys_timer_get();
while(1)
{
if(!app_bt_a2dp_service_is_connected()){
//struct BT_DEVICE_T *bt_dev = &app_bt_device;
//AVRCP_Deregister(bt_dev->avrcp_channel[BT_DEVICE_ID_1]->avrcp_channel_handle);
//A2DP_Deregister(stream);
etime = hal_sys_timer_get();
TRACE(1,"a2dp service diconnected, wait time = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
else
{
etime = hal_sys_timer_get();
if(TICKS_TO_MS(etime - stime) >= timeout_ms)
{
TRACE(1,"a2dp service diconnect timeout = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
osDelay(10);
}
}
BT_USB_DEBUG();
}
static void btusb_usbaudio_entry(void)
{
BT_USB_DEBUG();
btusbaudio_entry();
btusb_usb_is_on = true ;
}
void btusb_usbaudio_open(void)
{
BT_USB_DEBUG();
if(!btusb_usb_is_on)
{
btusb_usbaudio_entry();
BT_USB_DEBUG();
}
else
{
usb_audio_app(1);
}
BT_USB_DEBUG();
}
void btusb_usbaudio_close(void)
{
BT_USB_DEBUG();
if(btusb_usb_is_on)
{
usb_audio_app(0);
BT_USB_DEBUG();
}
else
{
BT_USB_DEBUG();
}
}
void btusb_btaudio_close(bool is_wait)
{
BT_USB_DEBUG();
//if(!btusb_bt_audio_is_suspend)
{
BT_USB_DEBUG();
if(is_wait)
{
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_CLOSEALL, 0);
_btusb_stream_close(BTUSB_OUTTIME_MS);
}
else
{
_btusb_stream_close(0);
}
btusb_bt_audio_is_suspend = true;
}
}
void btusb_btaudio_open(bool is_wait)
{
BT_USB_DEBUG();
//if(btusb_bt_audio_is_suspend)
{
TRACE(2,"%s: %d.",__func__,__LINE__);
if(is_wait)
{
_btusb_stream_open(BTUSB_OUTTIME_MS);
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_CLOSE, 0);
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_SETUP, 0);
}
else
{
_btusb_stream_open(0);
}
TRACE(2,"%s: %d.",__func__,__LINE__);
btusb_bt_audio_is_suspend = false;
}
}
void btusb_switch(enum BTUSB_MODE mode)
{
//BT_USB_DEBUG();
if(mode != BTUSB_MODE_BT && mode != BTUSB_MODE_USB)
{
ASSERT(0, "%s:%d, mode = %d.",__func__,__LINE__,mode);
}
if(btusb_mode == mode) {
BT_USB_DEBUG();
return;
}
if(btusb_mode == BTUSB_MODE_INVALID)
{
if(mode == BTUSB_MODE_BT) {
TRACE(1,"%s: switch to BT mode.",__func__);
btusb_mode = BTUSB_MODE_BT;
}
else {
TRACE(1,"%s: switch to USB mode.",__func__);
//btusb_btaudio_close(true);
osDelay(500);
btusb_usbaudio_open();
btusb_mode = BTUSB_MODE_USB;
}
}
else
{
if(mode == BTUSB_MODE_BT) {
TRACE(1,"%s: switch to BT mode.",__func__);
if(btusb_usb_is_on)
{
TRACE(1,"%s: btusb_usbaudio_close.",__func__);
btusb_usbaudio_close();
TRACE(1,"%s: btusb_usbaudio_close done.",__func__);
osDelay(500);
}
btusb_mode = BTUSB_MODE_BT;
btusb_btaudio_open(true);
TRACE(1,"%s: switch to BT mode done.",__func__);
}
else {
if(btapp_hfp_is_call_active() == 1)
{
TRACE(1,"%s: hfp is call active.",__func__);
return;
}
TRACE(1,"%s: switch to USB mode.",__func__);
btusb_btaudio_close(true);
TRACE(1,"%s: btusb_btaudio_close done.",__func__);
osDelay(500);
btusb_usbaudio_open();
btusb_mode = BTUSB_MODE_USB;
TRACE(1,"%s: switch to USB mode done.",__func__);
}
}
}
bool btusb_is_bt_mode(void)
{
BT_USB_DEBUG();
return btusb_mode == BTUSB_MODE_BT ? true : false;
}
bool btusb_is_usb_mode(void)
{
return btusb_mode == BTUSB_MODE_USB ? true : false;
}
#if defined(BT_USB_AUDIO_DUAL_MODE_TEST)
void test_btusb_switch(void)
{
if(btusb_mode == BTUSB_MODE_BT)
{
btusb_switch(BTUSB_MODE_USB);
}
else
{
btusb_switch(BTUSB_MODE_BT);
}
}
void test_btusb_switch_to_bt(void)
{
btusb_switch(BTUSB_MODE_BT);
}
void test_btusb_switch_to_usb(void)
{
btusb_switch(BTUSB_MODE_USB);
}
#endif

View File

@ -0,0 +1,40 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#ifndef _BTUSB_AUDIO_H_
#define _BTUSB_AUDIO_H_
#ifdef __cplusplus
extern "C" {
#endif
#define BTUSB_OUTTIME_MS 1000
enum BTUSB_MODE{
BTUSB_MODE_BT,
BTUSB_MODE_USB,
BTUSB_MODE_INVALID
};
void btusb_usbaudio_open(void);
void btusb_usbaudio_close(void);
void btusb_btaudio_open(bool is_wait);
void btusb_btaudio_close(bool is_wait);
void btusb_switch(enum BTUSB_MODE mode);
bool btusb_is_bt_mode(void);
bool btusb_is_usb_mode(void);
#ifdef __cplusplus
}
#endif
#endif // _BTUSB_AUDIO_H_

View File

@ -0,0 +1,139 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "cmsis_os.h"
#include "hal_trace.h"
#include "app_utils.h"
#include "usb_audio_app.h"
#include "usbaudio_thread.h"
static void usb_thread(void const *argument);
osThreadDef(usb_thread, osPriorityHigh, 1, 2048, "usb");
osMailQDef (usb_mailbox, USB_MAILBOX_MAX, USB_MESSAGE);
static osMailQId usb_mailbox = NULL;
static uint8_t usb_mailbox_cnt = 0;
#define USBAUDIO_DEBUG TRACE
static int usb_mailbox_init(void)
{
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__);
usb_mailbox = osMailCreate(osMailQ(usb_mailbox), NULL);
if (usb_mailbox == NULL) {
USBAUDIO_DEBUG("Failed to Create usb_mailbox\n");
return -1;
}
usb_mailbox_cnt = 0;
return 0;
}
int usb_mailbox_put(USB_MESSAGE* msg_src)
{
osStatus status;
USB_MESSAGE *msg_p = NULL;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__);
if(usb_mailbox_cnt >= 1)
{
USBAUDIO_DEBUG("%s,%d usb_mailbox_cnt = %d.",
__func__,__LINE__,usb_mailbox_cnt);
return 0;
}
msg_p = (USB_MESSAGE*)osMailAlloc(usb_mailbox, 0);
ASSERT(msg_p, "osMailAlloc error");
msg_p->id = msg_src->id;
msg_p->ptr = msg_src->ptr;
msg_p->param0 = msg_src->param0;
msg_p->param1 = msg_src->param1;
status = osMailPut(usb_mailbox, msg_p);
if (osOK == status)
usb_mailbox_cnt++;
USBAUDIO_DEBUG("%s,%d,usb_mailbox_cnt = %d.",__func__,__LINE__,usb_mailbox_cnt);
return (int)status;
}
int usb_mailbox_free(USB_MESSAGE* msg_p)
{
osStatus status;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__);
status = osMailFree(usb_mailbox, msg_p);
if (osOK == status)
usb_mailbox_cnt--;
USBAUDIO_DEBUG("%s,%d,usb_mailbox_cnt = %d.",__func__,__LINE__,usb_mailbox_cnt);
return (int)status;
}
int usb_mailbox_get(USB_MESSAGE **msg_p)
{
osEvent evt;
evt = osMailGet(usb_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (USB_MESSAGE*)evt.value.p;
return 0;
}
return -1;
}
static void usb_thread(void const *argument)
{
// USB_FUNC_T usb_funcp;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__);
while(1){
USB_MESSAGE *msg_p = NULL;
if (!usb_mailbox_get(&msg_p)) {
//TRACE(2,"_debug: %s,%d",__func__,__LINE__);
USBAUDIO_DEBUG("usb_thread: id = 0x%x, ptr = 0x%x,param0 = 0x%x,param1 = 0x%x.",
msg_p->id,msg_p->ptr,msg_p->param0,msg_p->param1);
usb_mailbox_free(msg_p);
usb_audio_app_loop();
}
}
}
static void usb_enqueue_cmd(uint32_t data)
{
USB_MESSAGE usb_msg;
usb_msg.id = 0;
usb_msg.param0 = 0;
usb_msg.param1 = 0;
usb_msg.ptr = 0;
usb_mailbox_put(&usb_msg);
}
int usb_os_init(void)
{
osThreadId usb_tid;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__);
if (usb_mailbox_init()) {
USBAUDIO_DEBUG("_debug: %s,%d",__func__,__LINE__);
return -1;
}
usb_tid = osThreadCreate(osThread(usb_thread), NULL);
if (usb_tid == NULL) {
USBAUDIO_DEBUG("Failed to Create usb_thread\n");
return 0;
}
usb_audio_set_enqueue_cmd_callback(usb_enqueue_cmd);
return 0;
}

View File

@ -0,0 +1,49 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#ifndef __USB_THREAD_H__
#define __USB_THREAD_H__
#ifdef __cplusplus
extern "C" {
#endif
#define USB_MAILBOX_MAX (20)
typedef struct {
uint32_t id;
uint32_t ptr;
uint32_t param0;
uint32_t param1;
} USB_MESSAGE;
//typedef int (*USB_MOD_HANDLER_T)(USB_MESSAGE_BODY *);
typedef void (*USB_FUNC_T)(uint32_t, uint32_t);
int usb_mailbox_put(USB_MESSAGE* msg_src);
int usb_mailbox_free(USB_MESSAGE* msg_p);
int usb_mailbox_get(USB_MESSAGE** msg_p);
int usb_os_init(void);
#ifdef __cplusplus
}
#endif
#endif // __USB_THREAD_H__

View File

@ -14,52 +14,58 @@
* *
****************************************************************************/ ****************************************************************************/
#ifdef __PC_CMD_UART__ #ifdef __PC_CMD_UART__
#include "app_cmd.h"
#include "app_thread.h"
#include "audio_process.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_cmd.h"
#include "hal_trace.h"
#include "list.h" #include "list.h"
#include "string.h" #include "string.h"
#include "app_thread.h"
#include "app_cmd.h"
#include "hal_cmd.h"
#include "hal_trace.h"
#include "audio_process.h"
#define APP_CMD_TRACE(s, ...) TRACE(s, ##__VA_ARGS__) #define APP_CMD_TRACE(s,...) TRACE(s, ##__VA_ARGS__)
void cmd_event_process(hal_cmd_rx_status_t status) { void cmd_event_process(hal_cmd_rx_status_t status)
APP_CMD_TRACE(1, "%s", __func__); {
APP_MESSAGE_BLOCK msg; APP_CMD_TRACE(1,"%s",__func__);
msg.mod_id = APP_MODUAL_CMD; APP_MESSAGE_BLOCK msg;
msg.msg_body.message_id = status; msg.mod_id = APP_MODUAL_CMD;
msg.msg_body.message_ptr = (uint32_t)NULL; msg.msg_body.message_id = status;
app_mailbox_put(&msg); msg.msg_body.message_ptr = (uint32_t)NULL;
return; app_mailbox_put(&msg);
return;
} }
static int app_cmd_handle_process(APP_MESSAGE_BODY *msg_body) { static int app_cmd_handle_process(APP_MESSAGE_BODY *msg_body)
hal_cmd_run((hal_cmd_rx_status_t)msg_body->message_id); {
return 0; hal_cmd_run((hal_cmd_rx_status_t)msg_body->message_id);
return 0;
} }
uint8_t app_cmd_flag = 0; uint8_t app_cmd_flag = 0;
void app_cmd_open(void) { void app_cmd_open(void)
APP_CMD_TRACE(1, "%s", __func__); {
APP_CMD_TRACE(1,"%s",__func__);
app_cmd_flag = 1; app_cmd_flag = 1;
app_set_threadhandle(APP_MODUAL_CMD, app_cmd_handle_process); app_set_threadhandle(APP_MODUAL_CMD, app_cmd_handle_process);
hal_cmd_set_callback(cmd_event_process); hal_cmd_set_callback(cmd_event_process);
hal_cmd_open(); hal_cmd_open();
return; return;
} }
void app_cmd_close(void) { void app_cmd_close(void)
APP_CMD_TRACE(1, "%s", __func__); {
if (app_cmd_flag) { APP_CMD_TRACE(1,"%s",__func__);
app_cmd_flag = 0; if(app_cmd_flag)
hal_cmd_close(); {
app_set_threadhandle(APP_MODUAL_CMD, NULL); app_cmd_flag = 0;
} hal_cmd_close();
return; app_set_threadhandle(APP_MODUAL_CMD, NULL);
}
return;
} }
#endif #endif

View File

@ -13,66 +13,69 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_spec_ostimer.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h"
#include "stdint.h" #include "stdint.h"
#include "app_spec_ostimer.h"
#include "hal_trace.h"
/// Create timer /// Create timer
osStatus app_spec_timer_create(SPEC_TIMER_CTX_T *spec_timer_ctx, osStatus app_spec_timer_create (SPEC_TIMER_CTX_T *spec_timer_ctx, const osTimerDef_t *timer_def, os_timer_type type, void *argument)
const osTimerDef_t *timer_def, {
os_timer_type type, void *argument) { spec_timer_ctx->type = type;
spec_timer_ctx->type = type; spec_timer_ctx->argument = argument;
spec_timer_ctx->argument = argument; spec_timer_ctx->timerid = osTimerCreate(timer_def, type, spec_timer_ctx);
spec_timer_ctx->timerid = osTimerCreate(timer_def, type, spec_timer_ctx); return spec_timer_ctx->timerid ? osOK: osErrorOS;
return spec_timer_ctx->timerid ? osOK : osErrorOS;
} }
/// Start or restart timer /// Start or restart timer
osStatus app_spec_timer_start(SPEC_TIMER_CTX_T *spec_timer_ctx, osStatus app_spec_timer_start (SPEC_TIMER_CTX_T *spec_timer_ctx, uint32_t millisec)
uint32_t millisec) { {
osStatus status; osStatus status;
// TRACE(1,"%s", __func__); //TRACE(1,"%s", __func__);
if (millisec > UINT16_MAX) { if (millisec > UINT16_MAX){
spec_timer_ctx->interval = millisec; spec_timer_ctx->interval = millisec;
spec_timer_ctx->ctx = millisec; spec_timer_ctx->ctx = millisec;
status = osTimerStart(spec_timer_ctx->timerid, UINT16_MAX); status = osTimerStart(spec_timer_ctx->timerid, UINT16_MAX);
} else { }else{
spec_timer_ctx->interval = millisec; spec_timer_ctx->interval = millisec;
spec_timer_ctx->ctx = millisec; spec_timer_ctx->ctx = millisec;
status = osTimerStart(spec_timer_ctx->timerid, (uint32_t)millisec); status = osTimerStart(spec_timer_ctx->timerid, (uint32_t)millisec);
} }
return status; return status;
} }
/// Stop timer /// Stop timer
osStatus app_spec_timer_stop(SPEC_TIMER_CTX_T *spec_timer_ctx) { osStatus app_spec_timer_stop (SPEC_TIMER_CTX_T *spec_timer_ctx)
{
return osTimerStop(spec_timer_ctx->timerid); return osTimerStop(spec_timer_ctx->timerid);
} }
/// Delete timer /// Delete timer
osStatus app_spec_timer_delete(SPEC_TIMER_CTX_T *spec_timer_ctx) { osStatus app_spec_timer_delete (SPEC_TIMER_CTX_T *spec_timer_ctx)
{
return osTimerDelete(spec_timer_ctx->timerid); return osTimerDelete(spec_timer_ctx->timerid);
} }
void app_spec_timer_handler(void const *para) { void app_spec_timer_handler(void const *para)
SPEC_TIMER_CTX_T *spec_timer_ctx = (SPEC_TIMER_CTX_T *)para; {
SPEC_TIMER_CTX_T *spec_timer_ctx = (SPEC_TIMER_CTX_T *)para;
if (spec_timer_ctx->ctx > UINT16_MAX) { if (spec_timer_ctx->ctx > UINT16_MAX){
spec_timer_ctx->ctx -= UINT16_MAX; spec_timer_ctx->ctx -= UINT16_MAX;
if (spec_timer_ctx->ctx > UINT16_MAX) { if (spec_timer_ctx->ctx > UINT16_MAX){
osTimerStart(spec_timer_ctx->timerid, UINT16_MAX); osTimerStart(spec_timer_ctx->timerid, UINT16_MAX);
} else { }else{
osTimerStart(spec_timer_ctx->timerid, spec_timer_ctx->ctx); osTimerStart(spec_timer_ctx->timerid, spec_timer_ctx->ctx);
}
}else{
(*spec_timer_ctx->ptimer)(spec_timer_ctx->argument);
if (spec_timer_ctx->type == osTimerPeriodic){
app_spec_timer_start(spec_timer_ctx, spec_timer_ctx->interval);
}
} }
} else {
(*spec_timer_ctx->ptimer)(spec_timer_ctx->argument);
if (spec_timer_ctx->type == osTimerPeriodic) {
app_spec_timer_start(spec_timer_ctx, spec_timer_ctx->interval);
}
}
} }
#if 0 #if 0

View File

@ -13,141 +13,152 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_thread.h"
#include "app_utils.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_timer.h"
#include "app_utils.h"
#include "app_thread.h"
static APP_MOD_HANDLER_T mod_handler[APP_MODUAL_NUM]; static APP_MOD_HANDLER_T mod_handler[APP_MODUAL_NUM];
static void app_thread(void const *argument); static void app_thread(void const *argument);
osThreadDef(app_thread, osPriorityHigh, 1, 1024 * 3, "app_thread"); osThreadDef(app_thread, osPriorityHigh, 1, 1024*3, "app_thread");
osMailQDef(app_mailbox, APP_MAILBOX_MAX, APP_MESSAGE_BLOCK); osMailQDef (app_mailbox, APP_MAILBOX_MAX, APP_MESSAGE_BLOCK);
static osMailQId app_mailbox = NULL; static osMailQId app_mailbox = NULL;
static uint8_t app_mailbox_cnt = 0; static uint8_t app_mailbox_cnt = 0;
osThreadId app_thread_tid; osThreadId app_thread_tid;
static int app_mailbox_init(void) { static int app_mailbox_init(void)
app_mailbox = osMailCreate(osMailQ(app_mailbox), NULL); {
if (app_mailbox == NULL) { app_mailbox = osMailCreate(osMailQ(app_mailbox), NULL);
TRACE(0, "Failed to Create app_mailbox\n"); if (app_mailbox == NULL) {
return -1; TRACE(0,"Failed to Create app_mailbox\n");
} return -1;
app_mailbox_cnt = 0;
return 0;
}
int app_mailbox_put(APP_MESSAGE_BLOCK *msg_src) {
osStatus status;
APP_MESSAGE_BLOCK *msg_p = NULL;
msg_p = (APP_MESSAGE_BLOCK *)osMailAlloc(app_mailbox, 0);
if (!msg_p) {
osEvent evt;
TRACE_IMM(0, "osMailAlloc error dump");
for (uint8_t i = 0; i < APP_MAILBOX_MAX; i++) {
evt = osMailGet(app_mailbox, 0);
if (evt.status == osEventMail) {
TRACE_IMM(
9,
"cnt:%d mod:%d src:%08x tim:%d id:%x ptr:%08x para:%08x/%08x/%08x",
i, ((APP_MESSAGE_BLOCK *)(evt.value.p))->mod_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->src_thread,
((APP_MESSAGE_BLOCK *)(evt.value.p))->system_time,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_ptr,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param0,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param1,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param2);
} else {
TRACE_IMM(2, "cnt:%d %d", i, evt.status);
break;
}
} }
TRACE_IMM(0, "osMailAlloc error dump end"); app_mailbox_cnt = 0;
}
ASSERT(msg_p, "osMailAlloc error");
msg_p->src_thread = (uint32_t)osThreadGetId();
msg_p->dest_thread = (uint32_t)NULL;
msg_p->system_time = hal_sys_timer_get();
msg_p->mod_id = msg_src->mod_id;
msg_p->msg_body.message_id = msg_src->msg_body.message_id;
msg_p->msg_body.message_ptr = msg_src->msg_body.message_ptr;
msg_p->msg_body.message_Param0 = msg_src->msg_body.message_Param0;
msg_p->msg_body.message_Param1 = msg_src->msg_body.message_Param1;
msg_p->msg_body.message_Param2 = msg_src->msg_body.message_Param2;
status = osMailPut(app_mailbox, msg_p);
if (osOK == status)
app_mailbox_cnt++;
return (int)status;
}
int app_mailbox_free(APP_MESSAGE_BLOCK *msg_p) {
osStatus status;
status = osMailFree(app_mailbox, msg_p);
if (osOK == status)
app_mailbox_cnt--;
return (int)status;
}
int app_mailbox_get(APP_MESSAGE_BLOCK **msg_p) {
osEvent evt;
evt = osMailGet(app_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (APP_MESSAGE_BLOCK *)evt.value.p;
return 0; return 0;
}
return -1;
} }
static void app_thread(void const *argument) { int app_mailbox_put(APP_MESSAGE_BLOCK* msg_src)
while (1) { {
osStatus status;
APP_MESSAGE_BLOCK *msg_p = NULL; APP_MESSAGE_BLOCK *msg_p = NULL;
if (!app_mailbox_get(&msg_p)) { msg_p = (APP_MESSAGE_BLOCK*)osMailAlloc(app_mailbox, 0);
if (msg_p->mod_id < APP_MODUAL_NUM) {
if (mod_handler[msg_p->mod_id]) { if (!msg_p){
int ret = mod_handler[msg_p->mod_id](&(msg_p->msg_body)); osEvent evt;
if (ret) TRACE_IMM(0,"osMailAlloc error dump");
TRACE(2, "mod_handler[%d] ret=%d", msg_p->mod_id, ret); for (uint8_t i=0; i<APP_MAILBOX_MAX; i++){
evt = osMailGet(app_mailbox, 0);
if (evt.status == osEventMail) {
TRACE_IMM(9,"cnt:%d mod:%d src:%08x tim:%d id:%x ptr:%08x para:%08x/%08x/%08x",
i,
((APP_MESSAGE_BLOCK *)(evt.value.p))->mod_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->src_thread,
((APP_MESSAGE_BLOCK *)(evt.value.p))->system_time,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_ptr,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param0,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param1,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param2);
}else{
TRACE_IMM(2,"cnt:%d %d", i, evt.status);
break;
}
} }
} TRACE_IMM(0,"osMailAlloc error dump end");
app_mailbox_free(msg_p);
} }
}
ASSERT(msg_p, "osMailAlloc error");
msg_p->src_thread = (uint32_t)osThreadGetId();
msg_p->dest_thread = (uint32_t)NULL;
msg_p->system_time = hal_sys_timer_get();
msg_p->mod_id = msg_src->mod_id;
msg_p->msg_body.message_id = msg_src->msg_body.message_id;
msg_p->msg_body.message_ptr = msg_src->msg_body.message_ptr;
msg_p->msg_body.message_Param0 = msg_src->msg_body.message_Param0;
msg_p->msg_body.message_Param1 = msg_src->msg_body.message_Param1;
msg_p->msg_body.message_Param2 = msg_src->msg_body.message_Param2;
status = osMailPut(app_mailbox, msg_p);
if (osOK == status)
app_mailbox_cnt++;
return (int)status;
} }
int app_os_init(void) { int app_mailbox_free(APP_MESSAGE_BLOCK* msg_p)
if (app_mailbox_init()) {
return -1; osStatus status;
app_thread_tid = osThreadCreate(osThread(app_thread), NULL); status = osMailFree(app_mailbox, msg_p);
if (app_thread_tid == NULL) { if (osOK == status)
TRACE(0, "Failed to Create app_thread\n"); app_mailbox_cnt--;
return (int)status;
}
int app_mailbox_get(APP_MESSAGE_BLOCK** msg_p)
{
osEvent evt;
evt = osMailGet(app_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (APP_MESSAGE_BLOCK *)evt.value.p;
return 0;
}
return -1;
}
static void app_thread(void const *argument)
{
while(1){
APP_MESSAGE_BLOCK *msg_p = NULL;
if (!app_mailbox_get(&msg_p)) {
if (msg_p->mod_id < APP_MODUAL_NUM) {
if (mod_handler[msg_p->mod_id]) {
int ret = mod_handler[msg_p->mod_id](&(msg_p->msg_body));
if (ret)
TRACE(2,"mod_handler[%d] ret=%d", msg_p->mod_id, ret);
}
}
app_mailbox_free(msg_p);
}
}
}
int app_os_init(void)
{
if (app_mailbox_init())
return -1;
app_thread_tid = osThreadCreate(osThread(app_thread), NULL);
if (app_thread_tid == NULL) {
TRACE(0,"Failed to Create app_thread\n");
return 0;
}
return 0; return 0;
}
return 0;
} }
int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id, int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id, APP_MOD_HANDLER_T handler)
APP_MOD_HANDLER_T handler) { {
if (mod_id >= APP_MODUAL_NUM) if (mod_id>=APP_MODUAL_NUM)
return -1; return -1;
mod_handler[mod_id] = handler; mod_handler[mod_id] = handler;
return 0; return 0;
} }
void *app_os_tid_get(void) { return (void *)app_thread_tid; } void * app_os_tid_get(void)
{
bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id) { return (void *)app_thread_tid;
return mod_handler[mod_id];
} }
bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id)
{
return mod_handler[mod_id];
}

View File

@ -15,8 +15,6 @@
****************************************************************************/ ****************************************************************************/
#ifndef __APP_THREAD_H__ #ifndef __APP_THREAD_H__
#define __APP_THREAD_H__ #define __APP_THREAD_H__
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -25,71 +23,70 @@ extern "C" {
#define APP_MAILBOX_MAX (20) #define APP_MAILBOX_MAX (20)
enum APP_MODUAL_ID_T { enum APP_MODUAL_ID_T {
APP_MODUAL_KEY = 0, APP_MODUAL_KEY = 0,
APP_MODUAL_AUDIO, APP_MODUAL_AUDIO,
APP_MODUAL_BATTERY, APP_MODUAL_BATTERY,
APP_MODUAL_BT, APP_MODUAL_BT,
APP_MODUAL_FM, APP_MODUAL_FM,
APP_MODUAL_SD, APP_MODUAL_SD,
APP_MODUAL_LINEIN, APP_MODUAL_LINEIN,
APP_MODUAL_USBHOST, APP_MODUAL_USBHOST,
APP_MODUAL_USBDEVICE, APP_MODUAL_USBDEVICE,
APP_MODUAL_WATCHDOG, APP_MODUAL_WATCHDOG,
APP_MODUAL_AUDIO_MANAGE, APP_MODUAL_AUDIO_MANAGE,
APP_MODUAL_ANC, APP_MODUAL_ANC,
APP_MODUAL_SMART_MIC, APP_MODUAL_SMART_MIC,
#ifdef __PC_CMD_UART__ #ifdef __PC_CMD_UART__
APP_MODUAL_CMD, APP_MODUAL_CMD,
#endif #endif
#ifdef TILE_DATAPATH #ifdef TILE_DATAPATH
APP_MODUAL_TILE, APP_MODUAL_TILE,
#endif #endif
APP_MODUAL_MIC, APP_MODUAL_MIC,
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
APP_MODUAL_VOICE_DETECTOR, APP_MODUAL_VOICE_DETECTOR,
#endif #endif
APP_MODUAL_CUSTOM_FUNCTION, APP_MODUAL_CUSTOM_FUNCTION,
APP_MODUAL_OHTER, APP_MODUAL_OHTER,
APP_MODUAL_WNR, APP_MODUAL_WNR,
APP_MODUAL_NUM APP_MODUAL_NUM
}; };
typedef struct { typedef struct {
uint32_t message_id; uint32_t message_id;
uint32_t message_ptr; uint32_t message_ptr;
uint32_t message_Param0; uint32_t message_Param0;
uint32_t message_Param1; uint32_t message_Param1;
uint32_t message_Param2; uint32_t message_Param2;
} APP_MESSAGE_BODY; } APP_MESSAGE_BODY;
typedef struct { typedef struct {
uint32_t src_thread; uint32_t src_thread;
uint32_t dest_thread; uint32_t dest_thread;
uint32_t system_time; uint32_t system_time;
uint32_t mod_id; uint32_t mod_id;
APP_MESSAGE_BODY msg_body; APP_MESSAGE_BODY msg_body;
} APP_MESSAGE_BLOCK; } APP_MESSAGE_BLOCK;
typedef int (*APP_MOD_HANDLER_T)(APP_MESSAGE_BODY *); typedef int (*APP_MOD_HANDLER_T)(APP_MESSAGE_BODY *);
int app_mailbox_put(APP_MESSAGE_BLOCK *msg_src); int app_mailbox_put(APP_MESSAGE_BLOCK* msg_src);
int app_mailbox_free(APP_MESSAGE_BLOCK *msg_p); int app_mailbox_free(APP_MESSAGE_BLOCK* msg_p);
int app_mailbox_get(APP_MESSAGE_BLOCK **msg_p); int app_mailbox_get(APP_MESSAGE_BLOCK** msg_p);
int app_os_init(void); int app_os_init(void);
int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id, int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id, APP_MOD_HANDLER_T handler);
APP_MOD_HANDLER_T handler);
void *app_os_tid_get(void); void * app_os_tid_get(void);
bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id); bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
#endif //__FMDEC_H__ #endif//__FMDEC_H__

View File

@ -13,23 +13,23 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_utils.h"
#include "analog.h"
#include "cmsis.h" #include "cmsis.h"
#include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_timer.h"
#include "hal_wdt.h" #include "hal_wdt.h"
#include "pmu.h" #include "pmu.h"
#include "analog.h"
#include "app_utils.h"
#ifdef RTOS #ifdef RTOS
#include "cmsis_os.h" #include "cmsis_os.h"
#endif #endif
#define FREQ_FREE 0UL #define FREQ_FREE 0UL
#define FREQ_26M 26UL #define FREQ_26M 26UL
#define FREQ_52M 52UL #define FREQ_52M 52UL
#define FREQ_78M 78UL #define FREQ_78M 78UL
#define FREQ_104M 104UL #define FREQ_104M 104UL
#define FREQ_208M 208UL #define FREQ_208M 208UL
/* /*
* qos_users, quality of services users, this kind of user must run with the * qos_users, quality of services users, this kind of user must run with the
@ -41,19 +41,22 @@
*/ */
/* /*
* NOTE: * NOTE:
* The macro QOS_USERS works only when the APP_SYSFREQ_USER_APP_XXX is not large * The macro QOS_USERS works only when the APP_SYSFREQ_USER_APP_XXX is not large than
* than 32, currently this works, but if the are more user, another way needed * 32, currently this works, but if the are more user, another way needed
*/ */
#define QOS_USERS \ #define QOS_USERS ((1 << (APP_SYSFREQ_USER_AI_VOICE)) | \
((1 << (APP_SYSFREQ_USER_AI_VOICE)) | (1 << (APP_SYSFREQ_USER_BT_A2DP))) (1 << (APP_SYSFREQ_USER_BT_A2DP)))
static const uint32_t freq_map[] = { static const uint32_t freq_map[] = {
[HAL_CMU_FREQ_32K] = FREQ_FREE, [HAL_CMU_FREQ_26M] = FREQ_26M, [HAL_CMU_FREQ_32K] = FREQ_FREE,
[HAL_CMU_FREQ_52M] = FREQ_52M, [HAL_CMU_FREQ_78M] = FREQ_78M, [HAL_CMU_FREQ_26M] = FREQ_26M,
[HAL_CMU_FREQ_104M] = FREQ_104M, [HAL_CMU_FREQ_208M] = FREQ_208M, [HAL_CMU_FREQ_52M] = FREQ_52M,
[HAL_CMU_FREQ_78M] = FREQ_78M,
[HAL_CMU_FREQ_104M] = FREQ_104M,
[HAL_CMU_FREQ_208M] = FREQ_208M,
}; };
static const uint32_t user_map[] = { static const uint32_t user_map[] = {
[0] = APP_SYSFREQ_USER_AI_VOICE, [0] = APP_SYSFREQ_USER_AI_VOICE,
[1] = APP_SYSFREQ_USER_BT_A2DP, [1] = APP_SYSFREQ_USER_BT_A2DP,
}; };
@ -86,97 +89,95 @@ static uint32_t qos_freqs_map;
*/ */
static uint32_t qos_users_map; static uint32_t qos_users_map;
static int app_qosfreq_req(enum APP_SYSFREQ_USER_T user, static int app_qosfreq_req(enum APP_SYSFREQ_USER_T user, enum APP_SYSFREQ_FREQ_T freq)
enum APP_SYSFREQ_FREQ_T freq) { {
int ret; int ret;
int qos_freq_num = 0; int qos_freq_num = 0;
uint32_t max_qos_freq = 0; uint32_t max_qos_freq = 0;
int user_idx; int user_idx;
int i; int i;
uint32_t lock; uint32_t lock;
if (freq >= APP_SYSFREQ_FREQ_QTY) if (freq >= APP_SYSFREQ_FREQ_QTY)
return -1; return -1;
lock = int_lock(); lock = int_lock();
for (i = 0; i < ARRAY_SIZE(user_map); i++) { for (i = 0; i < ARRAY_SIZE(user_map); i++) {
if (user == user_map[i]) { if (user == user_map[i]) {
break; break;
}
} }
}
if (i >= ARRAY_SIZE(user_map)) { if (i >= ARRAY_SIZE(user_map)) {
int_unlock(lock);
ASSERT(0, "can not find qos user");
return 0;
}
user_idx = i;
if ((int)freq != (int)HAL_CMU_FREQ_32K) { // require freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_freqs_map |= freq << (4 * i);
qos_users_map |= 1 << user_idx;
} else { //release freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_users_map &= ~ (1 << user_idx);
}
//scan the qos_user_map and sum every user's request freq
for(i = 0; i < ARRAY_SIZE(user_map); i++) {
if ((qos_users_map >> i) & 0x1) {
uint32_t real_freq;
int freq_num;
freq_num = (qos_freqs_map >> (4 * i )) & 0xf;
real_freq = freq_map[freq_num];
max_qos_freq += real_freq;
}
}
for (i = 0; i < ARRAY_SIZE(freq_map); i++) {
if (i) {
if ((max_qos_freq > freq_map[i-1]) && (max_qos_freq <= freq_map[i])) {
qos_freq_num = i;
break;
}
} else {
if (max_qos_freq == freq_map[i]) {
qos_freq_num = i;
break;
}
}
}
if (i >= ARRAY_SIZE(freq_map)) {
qos_freq_num = (HAL_CMU_FREQ_QTY - 1);
int_unlock(lock);
TRACE(0, "WARNING: required sysfreq exceed");
// ASSERT(0, "can not find actual freq");
return 0;
}
user = APP_SYSFREQ_USER_QOS;
TRACE(2, "User %d require sysfreq %d", user, qos_freq_num);
ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user, (enum HAL_CMU_FREQ_T)qos_freq_num);
int_unlock(lock); int_unlock(lock);
ASSERT(0, "can not find qos user"); return ret;
return 0;
}
user_idx = i;
if ((int)freq != (int)HAL_CMU_FREQ_32K) { // require freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_freqs_map |= freq << (4 * i);
qos_users_map |= 1 << user_idx;
} else { // release freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_users_map &= ~(1 << user_idx);
}
// scan the qos_user_map and sum every user's request freq
for (i = 0; i < ARRAY_SIZE(user_map); i++) {
if ((qos_users_map >> i) & 0x1) {
uint32_t real_freq;
int freq_num;
freq_num = (qos_freqs_map >> (4 * i)) & 0xf;
real_freq = freq_map[freq_num];
max_qos_freq += real_freq;
}
}
for (i = 0; i < ARRAY_SIZE(freq_map); i++) {
if (i) {
if ((max_qos_freq > freq_map[i - 1]) && (max_qos_freq <= freq_map[i])) {
qos_freq_num = i;
break;
}
} else {
if (max_qos_freq == freq_map[i]) {
qos_freq_num = i;
break;
}
}
}
if (i >= ARRAY_SIZE(freq_map)) {
qos_freq_num = (HAL_CMU_FREQ_QTY - 1);
int_unlock(lock);
TRACE(0, "WARNING: required sysfreq exceed");
// ASSERT(0, "can not find actual freq");
return 0;
}
user = APP_SYSFREQ_USER_QOS;
TRACE(2, "User %d require sysfreq %d", user, qos_freq_num);
ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user,
(enum HAL_CMU_FREQ_T)qos_freq_num);
int_unlock(lock);
return ret;
} }
int app_sysfreq_req(enum APP_SYSFREQ_USER_T user, int app_sysfreq_req(enum APP_SYSFREQ_USER_T user, enum APP_SYSFREQ_FREQ_T freq)
enum APP_SYSFREQ_FREQ_T freq) { {
int ret; int ret;
// if user is qos user // if user is qos user
if ((1 << user) & QOS_USERS) { if ((1 << user) & QOS_USERS) {
ret = app_qosfreq_req(user, freq); ret = app_qosfreq_req(user, freq);
} else { // if user is NOT qos user } else { // if user is NOT qos user
ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user, ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user, (enum HAL_CMU_FREQ_T)freq);
(enum HAL_CMU_FREQ_T)freq); }
}
return ret; return ret;
} }
#ifdef RTOS #ifdef RTOS
@ -187,86 +188,94 @@ static osTimerId wdt_ping_timer_id;
osTimerDef(wdt_ping_timer, watchdog_ping_handler); osTimerDef(wdt_ping_timer, watchdog_ping_handler);
static uint32_t wdt_ping_period; static uint32_t wdt_ping_period;
static void watchdog_ping(void) { static void watchdog_ping(void)
hal_wdt_ping(HAL_WDT_ID_0); {
hal_wdt_ping(HAL_WDT_ID_0);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_feed(); pmu_wdt_feed();
#endif #endif
} }
static void app_wdt_irq_handle(enum HAL_WDT_ID_T id, uint32_t status) { static void app_wdt_irq_handle(enum HAL_WDT_ID_T id, uint32_t status)
analog_aud_codec_mute(); {
ASSERT(0, "%s id:%d status:%d", __func__, id, status); analog_aud_codec_mute();
ASSERT(0, "%s id:%d status:%d",__func__, id, status);
} }
static void pmu_wdt_irq_handle(void) { static void pmu_wdt_irq_handle(void)
analog_aud_codec_mute(); {
ASSERT(1, "%s", __func__); analog_aud_codec_mute();
ASSERT(1, "%s", __func__);
} }
static void watchdog_ping_handler(void const *unused) { static void watchdog_ping_handler(void const *unused)
int ret; {
int ret;
watchdog_ping(); watchdog_ping();
ret = rtx_task_idle_health_check(); ret = rtx_task_idle_health_check();
if (ret < 0) { if (ret < 0) {
ASSERT(0, "System soft lockup"); ASSERT(0, "System soft lockup");
} }
osTimerStart(wdt_ping_timer_id, wdt_ping_period); osTimerStart(wdt_ping_timer_id, wdt_ping_period);
} }
int app_wdt_open(int seconds) { int app_wdt_open(int seconds)
uint32_t lock = int_lock(); {
uint32_t lock = int_lock();
hal_wdt_set_irq_callback(HAL_WDT_ID_0, app_wdt_irq_handle); hal_wdt_set_irq_callback(HAL_WDT_ID_0, app_wdt_irq_handle);
hal_wdt_set_timeout(HAL_WDT_ID_0, seconds); hal_wdt_set_timeout(HAL_WDT_ID_0, seconds);
hal_wdt_start(HAL_WDT_ID_0); hal_wdt_start(HAL_WDT_ID_0);
pmu_wdt_set_irq_handler(pmu_wdt_irq_handle); pmu_wdt_set_irq_handler(pmu_wdt_irq_handle);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_config(seconds * 1100, seconds * 1100); pmu_wdt_config(seconds * 1100, seconds * 1100);
pmu_wdt_start(); pmu_wdt_start();
#endif #endif
int_unlock(lock); int_unlock(lock);
wdt_ping_timer_id = osTimerCreate(osTimer(wdt_ping_timer), osTimerOnce, NULL); wdt_ping_timer_id = osTimerCreate(osTimer(wdt_ping_timer), osTimerOnce, NULL);
if (!wdt_ping_timer_id) { if (!wdt_ping_timer_id) {
TRACE(0, "Warning: can not create watchdog ping timer"); TRACE(0,"Warning: can not create watchdog ping timer");
return -1; return -1;
} }
wdt_ping_period = seconds * 1000 / 4; wdt_ping_period = seconds * 1000 / 4;
osTimerStart(wdt_ping_timer_id, wdt_ping_period); osTimerStart(wdt_ping_timer_id, wdt_ping_period);
return 0; return 0;
} }
int app_wdt_reopen(int seconds) { int app_wdt_reopen(int seconds)
uint32_t lock = int_lock(); {
hal_wdt_stop(HAL_WDT_ID_0); uint32_t lock = int_lock();
hal_wdt_set_timeout(HAL_WDT_ID_0, seconds); hal_wdt_stop(HAL_WDT_ID_0);
hal_wdt_start(HAL_WDT_ID_0); hal_wdt_set_timeout(HAL_WDT_ID_0, seconds);
hal_wdt_start(HAL_WDT_ID_0);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_config(seconds * 1000, seconds * 1000); pmu_wdt_config(seconds * 1000, seconds * 1000);
pmu_wdt_start(); pmu_wdt_start();
#endif #endif
int_unlock(lock); int_unlock(lock);
osTimerStart(wdt_ping_timer_id, wdt_ping_period); osTimerStart(wdt_ping_timer_id, wdt_ping_period);
return 0; return 0;
} }
int app_wdt_close(void) { int app_wdt_close(void)
uint32_t lock; {
uint32_t lock;
osTimerStop(wdt_ping_timer_id); osTimerStop(wdt_ping_timer_id);
lock = int_lock(); lock = int_lock();
hal_wdt_stop(HAL_WDT_ID_0); hal_wdt_stop(HAL_WDT_ID_0);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_stop(); pmu_wdt_stop();
#endif #endif
int_unlock(lock); int_unlock(lock);
return 0; return 0;
} }
#endif #endif

View File

@ -1,23 +1,23 @@
#ifdef __RAND_FROM_MIC__ #ifdef __RAND_FROM_MIC__
#include "randfrommic.h"
#include "app_audio.h"
#include "app_bt_stream.h"
#include "app_utils.h"
#include "audioflinger.h" #include "audioflinger.h"
#include "cmsis_gcc.h"
#include "cmsis_os.h"
#include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "stdio.h" #include "app_utils.h"
#include "stdlib.h"
#include "string.h" #include "string.h"
#include "stdlib.h"
#include "stdio.h"
#include "app_bt_stream.h"
#include "randfrommic.h"
#include "hal_timer.h"
#include "cmsis_os.h"
#include "cmsis_gcc.h"
#include "app_audio.h"
#if BT_DRV_DEBUG #if BT_DRV_DEBUG
#define RAND_TRACE(n, fmt, ...) TRACE(n, fmt, ##__VA_ARGS__) #define RAND_TRACE(n, fmt, ...) TRACE(n, fmt, ##__VA_ARGS__)
#define RAND_DUMP(s, buff, len) DUMP8(s, buff, len) #define RAND_DUMP(s,buff,len) DUMP8(s,buff,len)
#else #else
#define RAND_TRACE(n, fmt, ...) #define RAND_TRACE(n, fmt, ...)
#define RAND_DUMP(s, buff, len) #define RAND_DUMP(s,buff,len)
#endif #endif
static void generateRand(bool on); static void generateRand(bool on);
@ -29,201 +29,239 @@ static uint32_t randSeed = 1;
static bool randInitialised = false; static bool randInitialised = false;
// 4 bytes aligned // 4 bytes aligned
#define RAND_GRAB_BITS_PER_SAMPLE 4 #define RAND_GRAB_BITS_PER_SAMPLE 4
#define RAND_GRAB_BITS_MASK_PER_SAMPLE ((1 << RAND_GRAB_BITS_PER_SAMPLE) - 1) #define RAND_GRAB_BITS_MASK_PER_SAMPLE ((1 << RAND_GRAB_BITS_PER_SAMPLE)-1)
RAND_NUMBER_T randomBuffer = { RAND_NUMBER_T randomBuffer =
{
25, 25,
RAND_STATUS_CLOSE, RAND_STATUS_CLOSE,
}; };
/** /**
* Description: parse mic data according to the stream cfg(bit mode and channel * Description: parse mic data according to the stream cfg(bit mode and channel number)
* number) only the lowest byte of each frame is taken ADC format: 16bit mode -> * only the lowest byte of each frame is taken
* [15:0] is valid 24bit mode -> [23:4] is valid 32bit mode -> [31:12] is valid * ADC format:
* 16bit mode -> [15:0] is valid
* 24bit mode -> [23:4] is valid
* 32bit mode -> [31:12] is valid
* *
*/ */
static int randDataParse(uint8_t *buf, uint32_t len, enum AUD_BITS_T bits, static int randDataParse(uint8_t *buf, uint32_t len, enum AUD_BITS_T bits,
enum AUD_CHANNEL_NUM_T ch_num) { enum AUD_CHANNEL_NUM_T ch_num)
uint8_t index = 0; {
uint8_t index = 0;
union { union {
uint32_t seedValue; uint32_t seedValue;
uint8_t value[4]; uint8_t value[4];
} seedData; }seedData;
if ((NULL == buf) || if ((NULL == buf) ||
((RANDOM_CAPTURE_BUFFER_SIZE / 2) > len)) // ping-pong buffer ((RANDOM_CAPTURE_BUFFER_SIZE/2) > len)) // ping-pong buffer
{ {
return -1; return -1;
}
RAND_TRACE(1, "%s", __func__);
RAND_DUMP("%x ", buf, 16);
switch (bits) {
case AUD_BITS_16: {
uint16_t *content = (uint16_t *)buf;
for (index = 0; index < 4; index++) {
seedData.value[index] =
((*content) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
(((*(content + ch_num)) & RAND_GRAB_BITS_MASK_PER_SAMPLE)
<< RAND_GRAB_BITS_PER_SAMPLE);
content += ((8 / RAND_GRAB_BITS_PER_SAMPLE) * ch_num);
} }
break;
}
case AUD_BITS_24: {
uint32_t *content = (uint32_t *)buf;
for (index = 0; index < 4; index++) {
// bit 23:4 are valid
seedData.value[index] =
(((*content) >> 4) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
((((*(content + ch_num)) >> 4) & RAND_GRAB_BITS_MASK_PER_SAMPLE)
<< RAND_GRAB_BITS_PER_SAMPLE);
content += ((8 / RAND_GRAB_BITS_PER_SAMPLE) * ch_num);
}
break;
}
case AUD_BITS_32: {
uint32_t *content = (uint32_t *)buf;
for (index = 0; index < 4; index++) {
// bit 31:12 are valid
seedData.value[index] =
(((*content) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
((((*(content + ch_num)) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE)
<< RAND_GRAB_BITS_PER_SAMPLE);
content += ((8 / RAND_GRAB_BITS_PER_SAMPLE) * ch_num);
}
break;
}
default: {
return -1;
} break;
}
randSeed = seedData.seedValue; RAND_TRACE(1, "%s", __func__);
RAND_DUMP("%x ",buf, 16);
return 0; switch (bits)
{
case AUD_BITS_16:
{
uint16_t* content = (uint16_t *)buf;
for (index = 0;index < 4; index++)
{
seedData.value[index] = ((*content) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
(((*(content+ch_num)) & RAND_GRAB_BITS_MASK_PER_SAMPLE) << RAND_GRAB_BITS_PER_SAMPLE);
content += ((8/RAND_GRAB_BITS_PER_SAMPLE)*ch_num);
}
break;
}
case AUD_BITS_24:
{
uint32_t* content = (uint32_t *)buf;
for (index = 0;index < 4; index++)
{
// bit 23:4 are valid
seedData.value[index] = (((*content) >> 4) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
((((*(content+ch_num)) >> 4)&RAND_GRAB_BITS_MASK_PER_SAMPLE) << RAND_GRAB_BITS_PER_SAMPLE);
content += ((8/RAND_GRAB_BITS_PER_SAMPLE)*ch_num);
}
break;
}
case AUD_BITS_32:
{
uint32_t* content = (uint32_t *)buf;
for (index = 0;index < 4; index++)
{
// bit 31:12 are valid
seedData.value[index] = (((*content) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
((((*(content+ch_num)) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE) << RAND_GRAB_BITS_PER_SAMPLE);
content += ((8/RAND_GRAB_BITS_PER_SAMPLE)*ch_num);
}
break;
}
default:
{
return -1;
}
break;
}
randSeed = seedData.seedValue;
return 0;
} }
static void generateRand(bool on) { static void generateRand(bool on)
struct AF_STREAM_CONFIG_T stream_cfg; {
struct AF_STREAM_CONFIG_T stream_cfg;
RAND_TRACE(2, "%s op:%d", __func__, on); RAND_TRACE(2, "%s op:%d", __func__, on);
if (on) { if (on)
randomBuffer.skipRound = 10; {
randomBuffer.skipRound = 10;
randomBuffer.status = random_mic_is_on(&deviceId); randomBuffer.status = random_mic_is_on(&deviceId);
RAND_TRACE(2, "%s random status = %d", __func__, randomBuffer.status); RAND_TRACE(2, "%s random status = %d", __func__, randomBuffer.status);
if (RAND_STATUS_CLOSE == randomBuffer.status) { if (RAND_STATUS_CLOSE == randomBuffer.status)
app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_208M); {
app_capture_audio_mempool_init(); app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_208M);
app_capture_audio_mempool_get_buff(&captureBuffer, app_capture_audio_mempool_init();
RANDOM_CAPTURE_BUFFER_SIZE); app_capture_audio_mempool_get_buff(&captureBuffer,
memset(&stream_cfg, 0, sizeof(stream_cfg)); RANDOM_CAPTURE_BUFFER_SIZE);
stream_cfg.bits = AUD_BITS_16; memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = AUD_CHANNEL_NUM_1; stream_cfg.bits = AUD_BITS_16;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_8000; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.vol = TGT_VOLUME_LEVEL_15; stream_cfg.sample_rate = AUD_SAMPRATE_8000;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC; stream_cfg.vol = TGT_VOLUME_LEVEL_15;
stream_cfg.handler = rand_data_handle; stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.handler = rand_data_handle;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(captureBuffer); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(captureBuffer);
stream_cfg.data_size = RANDOM_CAPTURE_BUFFER_SIZE; stream_cfg.data_size = RANDOM_CAPTURE_BUFFER_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
randomBuffer.status = RAND_STATUS_OPEN; randomBuffer.status = RAND_STATUS_OPEN;
} else if (RAND_STATUS_MIC_OPENED == randomBuffer.status) { }
af_stream_start(deviceId, AUD_STREAM_CAPTURE); else if(RAND_STATUS_MIC_OPENED == randomBuffer.status)
{
af_stream_start(deviceId, AUD_STREAM_CAPTURE);
}
} }
} else { else
// release the acquired system clock {
app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_32K); // release the acquired system clock
if (RAND_STATUS_MIC_OPENED == randomBuffer.status) { app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_32K);
af_stream_stop(deviceId, AUD_STREAM_CAPTURE); if (RAND_STATUS_MIC_OPENED == randomBuffer.status)
} else if (RAND_STATUS_OPEN == randomBuffer.status) { {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_stop(deviceId, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); }
else if (RAND_STATUS_OPEN == randomBuffer.status)
{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
}
randomBuffer.status = RAND_STATUS_CLOSE;
} }
randomBuffer.status = RAND_STATUS_CLOSE;
}
} }
static uint32_t rand_data_handle(uint8_t *buf, uint32_t len) { static uint32_t rand_data_handle(uint8_t *buf, uint32_t len)
if (buf == NULL) { {
return len; if (buf == NULL)
} {
return len;
if ((1 == randomBuffer.skipRound) &&
(!randDataParse(buf, len, AUD_BITS_16, AUD_CHANNEL_NUM_1))) {
generateRand(false);
randomBuffer.skipRound = 0;
} else if (1 != randomBuffer.skipRound) {
randomBuffer.skipRound--;
}
return len;
}
void initSeed(void) {
uint8_t count = 100; // avoid deed loop
RAND_TRACE(2, "%s:+++ initialised = %d", __func__, randInitialised);
if (randInitialised) {
generateRand(true);
while ((0 != randomBuffer.skipRound) && (0 != count)) {
osDelay(10);
count--;
} }
}
if ((0 == count) || (false == randInitialised)) { if ((1 == randomBuffer.skipRound) &&
RAND_TRACE(1, "%s not ready", __func__); (!randDataParse(buf, len, AUD_BITS_16, AUD_CHANNEL_NUM_1)))
randSeed = (uint32_t)hal_sys_timer_get(); {
generateRand(false);
}
srand(randSeed);
RAND_TRACE(2, "%s:--- count = %d", __func__, count);
}
void random_status_sync(void) {
if (RAND_STATUS_OPEN == randomBuffer.status) {
RAND_TRACE(1, "%s random mic has already on,should be closed", __func__);
generateRand(false);
}
}
void random_data_process(uint8_t *buf, uint32_t len, enum AUD_BITS_T bits,
enum AUD_CHANNEL_NUM_T ch_num) {
if (buf == NULL) {
return;
}
if ((RAND_STATUS_MIC_STARTED == randomBuffer.status) ||
(RAND_STATUS_MIC_OPENED == randomBuffer.status)) {
if (len >= RANDOM_CAPTURE_BUFFER_SIZE / 2) {
RAND_TRACE(4, "%s buf address = 0x%p, bits = %d, channel num = %d",
__func__, buf, bits, ch_num);
RAND_DUMP("%02x ", buf, 32);
if ((1 == randomBuffer.skipRound) &&
(!randDataParse(buf, len, bits, ch_num))) {
generateRand(false); generateRand(false);
randomBuffer.skipRound = 0; randomBuffer.skipRound = 0;
} else if (1 != randomBuffer.skipRound) {
randomBuffer.skipRound--;
}
} }
} else if (1 != randomBuffer.skipRound)
{
randomBuffer.skipRound--;
}
return len;
} }
void randInit(void) { randInitialised = true; } void initSeed(void)
{
uint8_t count = 100; // avoid deed loop
RAND_TRACE(2, "%s:+++ initialised = %d", __func__, randInitialised);
if (randInitialised)
{
generateRand(true);
while ((0 != randomBuffer.skipRound) && (0 != count))
{
osDelay(10);
count --;
}
}
if ((0 == count) || (false == randInitialised))
{
RAND_TRACE(1, "%s not ready", __func__);
randSeed = (uint32_t)hal_sys_timer_get();
generateRand(false);
}
srand(randSeed);
RAND_TRACE(2, "%s:--- count = %d", __func__, count);
}
void random_status_sync(void)
{
if (RAND_STATUS_OPEN == randomBuffer.status)
{
RAND_TRACE(1, "%s random mic has already on,should be closed", __func__);
generateRand(false);
}
}
void random_data_process(uint8_t *buf, uint32_t len,enum AUD_BITS_T bits,
enum AUD_CHANNEL_NUM_T ch_num)
{
if (buf == NULL)
{
return;
}
if ((RAND_STATUS_MIC_STARTED == randomBuffer.status) ||
(RAND_STATUS_MIC_OPENED == randomBuffer.status))
{
if (len >= RANDOM_CAPTURE_BUFFER_SIZE/2)
{
RAND_TRACE(4, "%s buf address = 0x%p, bits = %d, channel num = %d", __func__, buf, bits, ch_num);
RAND_DUMP("%02x ", buf, 32);
if ((1 == randomBuffer.skipRound) &&
(!randDataParse(buf, len, bits, ch_num)))
{
generateRand(false);
randomBuffer.skipRound = 0;
}
else if (1 != randomBuffer.skipRound)
{
randomBuffer.skipRound--;
}
}
}
}
void randInit(void)
{
randInitialised = true;
}
#endif #endif

View File

@ -18,6 +18,7 @@ ccflags-y += \
-Iapps/key \ -Iapps/key \
-Iplatform/drivers/bt \ -Iplatform/drivers/bt \
-Iplatform/drivers/ana \ -Iplatform/drivers/ana \
-Iplatform/drivers/usb/usb_dev/inc \
-Iapps/battery \ -Iapps/battery \
-Iservices/multimedia/audio/codec/sbc/inc \ -Iservices/multimedia/audio/codec/sbc/inc \
-Iservices/multimedia/audio/codec/sbc/src/inc \ -Iservices/multimedia/audio/codec/sbc/src/inc \

File diff suppressed because it is too large Load Diff

View File

@ -15,9 +15,8 @@
****************************************************************************/ ****************************************************************************/
#ifndef __APP_FACTORY_H__ #ifndef __APP_FACTORY_H__
#define __APP_FACTORY_H__ #define __APP_FACTORY_H__
#include <stdbool.h>
#include <stdint.h> #define APP_FACTORY_TRACE(s,...) TRACE(s, ##__VA_ARGS__)
#define APP_FACTORY_TRACE(s, ...) TRACE(s, ##__VA_ARGS__)
void app_factorymode_result_set(bool result); void app_factorymode_result_set(bool result);

View File

@ -13,155 +13,171 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_bt_stream.h"
#include "app_factory.h"
#include "app_media_player.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "resources.h" #include "resources.h"
#include "app_bt_stream.h"
#include "app_media_player.h"
#include "app_factory.h"
#include "string.h" #include "string.h"
// for audio // for audio
#include "audioflinger.h"
#include "app_audio.h" #include "app_audio.h"
#include "app_utils.h" #include "app_utils.h"
#include "audioflinger.h"
#include "app_factory_audio.h" #include "app_factory_audio.h"
#ifdef __FACTORY_MODE_SUPPORT__ #ifdef __FACTORY_MODE_SUPPORT__
#define BT_AUDIO_FACTORMODE_BUFF_SIZE (1024 * 2) #define BT_AUDIO_FACTORMODE_BUFF_SIZE (1024*2)
static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY; static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY;
static int16_t *app_audioloop_play_cache = NULL; static int16_t *app_audioloop_play_cache = NULL;
static uint32_t app_factorymode_data_come(uint8_t *buf, uint32_t len) { static uint32_t app_factorymode_data_come(uint8_t *buf, uint32_t len)
DUMP16("%d,", (int *)buf, 30); {
DUMP16("%d,",(int*)buf,30);
app_audio_pcmbuff_put(buf, len); app_audio_pcmbuff_put(buf, len);
if (a2dp_cache_status == APP_AUDIO_CACHE_QTY) { if (a2dp_cache_status == APP_AUDIO_CACHE_QTY){
a2dp_cache_status = APP_AUDIO_CACHE_OK; a2dp_cache_status = APP_AUDIO_CACHE_OK;
}
return len;
}
static uint32_t app_factorymode_more_data(uint8_t *buf, uint32_t len) {
if (a2dp_cache_status != APP_AUDIO_CACHE_QTY) {
app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len / 2);
app_bt_stream_copy_track_one_to_two_16bits(
(int16_t *)buf, app_audioloop_play_cache, len / 2 / 2);
}
return len;
}
int app_factorymode_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq) {
uint8_t *buff_play = NULL;
uint8_t *buff_capture = NULL;
uint8_t *buff_loop = NULL;
struct AF_STREAM_CONFIG_T stream_cfg;
static bool isRun = false;
APP_FACTORY_TRACE(3, "app_factorymode_audioloop work:%d op:%d freq:%d", isRun,
on, freq);
if (isRun == on)
return 0;
if (on) {
if (freq < APP_SYSFREQ_52M) {
freq = APP_SYSFREQ_52M;
} }
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq); return len;
}
a2dp_cache_status = APP_AUDIO_CACHE_QTY; static uint32_t app_factorymode_more_data(uint8_t *buf, uint32_t len)
app_audio_mempool_init(); {
app_audio_mempool_get_buff(&buff_capture, BT_AUDIO_FACTORMODE_BUFF_SIZE); if (a2dp_cache_status != APP_AUDIO_CACHE_QTY){
app_audio_mempool_get_buff(&buff_play, BT_AUDIO_FACTORMODE_BUFF_SIZE * 2); app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2);
app_audio_mempool_get_buff((uint8_t **)&app_audioloop_play_cache, app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, app_audioloop_play_cache, len/2/2);
BT_AUDIO_FACTORMODE_BUFF_SIZE * 2 / 2 / 2); }
app_audio_mempool_get_buff(&buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE << 2); return len;
app_audio_pcmbuff_init(buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE << 2); }
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16; int app_factorymode_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq)
// stream_cfg.channel_num = AUD_CHANNEL_NUM_1; {
uint8_t *buff_play = NULL;
uint8_t *buff_capture = NULL;
uint8_t *buff_loop = NULL;
struct AF_STREAM_CONFIG_T stream_cfg;
static bool isRun = false;
APP_FACTORY_TRACE(3,"app_factorymode_audioloop work:%d op:%d freq:%d", isRun, on, freq);
if (isRun==on)
return 0;
if (on){
if (freq < APP_SYSFREQ_52M) {
freq = APP_SYSFREQ_52M;
}
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
a2dp_cache_status = APP_AUDIO_CACHE_QTY;
app_audio_mempool_init();
app_audio_mempool_get_buff(&buff_capture, BT_AUDIO_FACTORMODE_BUFF_SIZE);
app_audio_mempool_get_buff(&buff_play, BT_AUDIO_FACTORMODE_BUFF_SIZE*2);
app_audio_mempool_get_buff((uint8_t **)&app_audioloop_play_cache, BT_AUDIO_FACTORMODE_BUFF_SIZE*2/2/2);
app_audio_mempool_get_buff(&buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE<<2);
app_audio_pcmbuff_init(buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE<<2);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16;
//stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
#ifdef SPEECH_TX_AEC_CODEC_REF #ifdef SPEECH_TX_AEC_CODEC_REF
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
#else #else
stream_cfg.channel_num = AUD_CHANNEL_NUM_1; stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
#endif #endif
#if defined(__AUDIO_RESAMPLE__) && defined(SW_CAPTURE_RESAMPLE) #if defined(__AUDIO_RESAMPLE__) && defined(SW_CAPTURE_RESAMPLE)
stream_cfg.sample_rate = AUD_SAMPRATE_8463; stream_cfg.sample_rate = AUD_SAMPRATE_8463;
#else #else
stream_cfg.sample_rate = AUD_SAMPRATE_8000; stream_cfg.sample_rate = AUD_SAMPRATE_8000;
#endif #endif
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; #if FPGA==0
stream_cfg.vol = TGT_VOLUME_LEVEL_15; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC; #else
stream_cfg.handler = app_factorymode_data_come; stream_cfg.device = AUD_STREAM_USE_EXT_CODEC;
#endif
stream_cfg.vol = TGT_VOLUME_LEVEL_15;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.handler = app_factorymode_data_come;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture);
stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE; stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.handler = app_factorymode_more_data; stream_cfg.handler = app_factorymode_more_data;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play);
stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE * 2; stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*2;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
APP_FACTORY_TRACE(0, "app_factorymode_audioloop on"); APP_FACTORY_TRACE(0,"app_factorymode_audioloop on");
} else { } else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
APP_FACTORY_TRACE(0, "app_factorymode_audioloop off"); APP_FACTORY_TRACE(0,"app_factorymode_audioloop off");
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K); app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
} }
isRun = on; isRun=on;
return 0; return 0;
} }
int app_factorymode_output_pcmpatten(audio_test_pcmpatten_t *pcmpatten, int app_factorymode_output_pcmpatten(audio_test_pcmpatten_t *pcmpatten, uint8_t *buf, uint32_t len)
uint8_t *buf, uint32_t len) { {
uint32_t remain_size = len; uint32_t remain_size = len;
uint32_t curr_size = 0; uint32_t curr_size = 0;
if (remain_size > pcmpatten->len) { if (remain_size > pcmpatten->len)
do { {
if (pcmpatten->cuur_buf_pos) { do{
curr_size = pcmpatten->len - pcmpatten->cuur_buf_pos; if (pcmpatten->cuur_buf_pos)
memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos / 2]), curr_size); {
remain_size -= curr_size; curr_size = pcmpatten->len-pcmpatten->cuur_buf_pos;
pcmpatten->cuur_buf_pos = 0; memcpy(buf,&(pcmpatten->buf[pcmpatten->cuur_buf_pos/2]), curr_size);
} else if (remain_size > pcmpatten->len) { remain_size -= curr_size;
memcpy(buf + curr_size, pcmpatten->buf, pcmpatten->len); pcmpatten->cuur_buf_pos = 0;
curr_size += pcmpatten->len; }
remain_size -= pcmpatten->len; else if (remain_size>pcmpatten->len)
} else { {
memcpy(buf + curr_size, pcmpatten->buf, remain_size); memcpy(buf+curr_size, pcmpatten->buf, pcmpatten->len);
pcmpatten->cuur_buf_pos = remain_size; curr_size += pcmpatten->len;
remain_size = 0; remain_size -= pcmpatten->len;
} }
} while (remain_size); else
} else { {
if ((pcmpatten->len - pcmpatten->cuur_buf_pos) >= len) { memcpy(buf+curr_size,pcmpatten->buf, remain_size);
memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos / 2]), len); pcmpatten->cuur_buf_pos = remain_size;
pcmpatten->cuur_buf_pos += len; remain_size = 0;
} else { }
curr_size = pcmpatten->len - pcmpatten->cuur_buf_pos; }while(remain_size);
memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos / 2]), curr_size); }
pcmpatten->cuur_buf_pos = len - curr_size; else
memcpy(buf + curr_size, pcmpatten->buf, pcmpatten->cuur_buf_pos); {
if ((pcmpatten->len - pcmpatten->cuur_buf_pos) >= len)
{
memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos/2]),len);
pcmpatten->cuur_buf_pos += len;
}
else
{
curr_size = pcmpatten->len-pcmpatten->cuur_buf_pos;
memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos/2]),curr_size);
pcmpatten->cuur_buf_pos = len - curr_size;
memcpy(buf+curr_size, pcmpatten->buf, pcmpatten->cuur_buf_pos);
}
} }
}
return 0; return 0;
} }
#include "fft128dot.h" #include "fft128dot.h"
@ -169,118 +185,111 @@ int app_factorymode_output_pcmpatten(audio_test_pcmpatten_t *pcmpatten,
#define N 64 #define N 64
#define NFFT 128 #define NFFT 128
struct mic_st_t { struct mic_st_t{
FftTwiddle_t w[N]; FftTwiddle_t w[N];
FftTwiddle_t w128[N * 2]; FftTwiddle_t w128[N*2];
FftData_t x[N * 2]; FftData_t x[N*2];
FftData_t data_odd[N]; FftData_t data_odd[N];
FftData_t data_even[N]; FftData_t data_even[N];
FftData_t data_odd_d[N]; FftData_t data_odd_d[N];
FftData_t data_even_d[N]; FftData_t data_even_d[N];
FftData_t data[N * 2]; FftData_t data[N*2];
signed long out[N]; signed long out[N];
}; };
int app_factorymode_mic_cancellation_run(void *mic_st, signed short *inbuf, int app_factorymode_mic_cancellation_run(void * mic_st, signed short *inbuf, int sample)
int sample) { {
struct mic_st_t *st = (struct mic_st_t *)mic_st; struct mic_st_t *st = (struct mic_st_t *)mic_st;
int i, k, jj, ii; int i,k,jj,ii;
// int dataWidth = 16; // input word format is 16 bit twos complement //int dataWidth = 16; // input word format is 16 bit twos complement fractional format 1.15
// fractional format 1.15 int twiddleWidth = 16; // input word format is 16 bit twos complement fractional format 2.14
int twiddleWidth = FftMode_t ifft = FFT_MODE;
16; // input word format is 16 bit twos complement fractional format 2.14
FftMode_t ifft = FFT_MODE;
make_symmetric_twiddles(st->w, N, twiddleWidth); make_symmetric_twiddles(st->w,N,twiddleWidth);
make_symmetric_twiddles(st->w128, N * 2, twiddleWidth); make_symmetric_twiddles(st->w128,N*2,twiddleWidth);
// input data // input data
for (i = 0; i < sample; i++) { for (i=0; i<sample; i++){
st->x[i].re = inbuf[i]; st->x[i].re = inbuf[i];
st->x[i].im = 0; st->x[i].im = 0;
}
for (ii = 0; ii < 1; ii++) {
k = 0;
for (jj = 0; jj < N * 2; jj += 2) {
FftData_t tmp;
tmp.re = st->x[jj].re;
tmp.im = st->x[jj].im;
st->data_even[k].re =
tmp.re; //(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
st->data_even[k].im =
tmp.im; //(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
tmp.re = st->x[jj + 1].re;
tmp.im = st->x[jj + 1].im;
st->data_odd[k].re =
tmp.re; //(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
st->data_odd[k].im =
tmp.im; //(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
k++;
} }
fftr4(NFFT / 2, st->data_even, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH, for(ii = 0; ii < 1; ii++)
ifft); {
fftr4(NFFT / 2, st->data_odd, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH, k = 0;
ifft); for (jj = 0; jj < N*2; jj+=2)
{
FftData_t tmp;
for (jj = 0; jj < NFFT / 2; jj++) { tmp.re = st->x[jj].re;
tmp.im = st->x[jj].im;
int idx = dibit_reverse_int(jj, NFFT / 2); st->data_even[k].re = tmp.re;//(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
st->data_even_d[jj].re = st->data_even[idx].re; st->data_even[k].im = tmp.im;//(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
st->data_even_d[jj].im = st->data_even[idx].im; tmp.re = st->x[jj+1].re;
st->data_odd_d[jj].re = st->data_odd[idx].re; tmp.im = st->x[jj+1].im;
st->data_odd_d[jj].im = st->data_odd[idx].im; st->data_odd[k].re = tmp.re;//(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
st->data_odd[k].im = tmp.im;//(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
k++;
}
fftr4(NFFT/2, st->data_even, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH, ifft);
fftr4(NFFT/2, st->data_odd, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH, ifft);
for (jj = 0; jj < NFFT/2; jj++)
{
int idx = dibit_reverse_int(jj, NFFT/2);
st->data_even_d[jj].re = st->data_even[idx].re;
st->data_even_d[jj].im = st->data_even[idx].im;
st->data_odd_d[jj].re = st->data_odd[idx].re;
st->data_odd_d[jj].im = st->data_odd[idx].im;
}
for (jj=0;jj<NFFT/2;jj++)
{
long long mbr,mbi;
FftData_t ta;
FftData_t tmp;
double a;
mbr = (long long)(st->data_odd_d[jj].re) * st->w128[jj].re - (long long)(st->data_odd_d[jj].im) * st->w128[jj].im;
mbi = (long long)(st->data_odd_d[jj].im) * st->w128[jj].re + (long long)(st->data_odd_d[jj].re) * st->w128[jj].im;
ta.re = int(mbr>>(FFTR4_TWIDDLE_WIDTH-2));
ta.im = int(mbi>>(FFTR4_TWIDDLE_WIDTH-2));
st->data[jj].re = (st->data_even_d[jj].re + ta.re)/2;
st->data[jj].im = (st->data_even_d[jj].im + ta.im)/2;
//data[jj] = sat(data[jj],FFTR4_DATA_WIDTH);
st->data[jj+NFFT/2].re = (st->data_even_d[jj].re - ta.re)/2;
st->data[jj+NFFT/2].im = (st->data_even_d[jj].im - ta.im)/2;
//data[jj+NFFT/2] = sat(data[jj+NFFT/2],FFTR4_DATA_WIDTH);
a = st->data[jj].re;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.re = (int)a;
a = st->data[jj].im;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii*NFFT+jj].re = (int) tmp.re;
st->x[ii*NFFT+jj].im = (int) tmp.im;
a = st->data[jj+NFFT/2].re;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.re = (int)a;
a = st->data[jj+NFFT/2].im;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii*NFFT+jj+NFFT/2].re = (int) tmp.re;
st->x[ii*NFFT+jj+NFFT/2].im = (int) tmp.im;
}
} }
for (jj = 0; jj < NFFT / 2; jj++) {
long long mbr, mbi;
FftData_t ta;
FftData_t tmp;
double a;
mbr = (long long)(st->data_odd_d[jj].re) * st->w128[jj].re -
(long long)(st->data_odd_d[jj].im) * st->w128[jj].im;
mbi = (long long)(st->data_odd_d[jj].im) * st->w128[jj].re +
(long long)(st->data_odd_d[jj].re) * st->w128[jj].im;
ta.re = int(mbr >> (FFTR4_TWIDDLE_WIDTH - 2));
ta.im = int(mbi >> (FFTR4_TWIDDLE_WIDTH - 2));
st->data[jj].re = (st->data_even_d[jj].re + ta.re) / 2;
st->data[jj].im = (st->data_even_d[jj].im + ta.im) / 2;
// data[jj] = sat(data[jj],FFTR4_DATA_WIDTH);
st->data[jj + NFFT / 2].re = (st->data_even_d[jj].re - ta.re) / 2;
st->data[jj + NFFT / 2].im = (st->data_even_d[jj].im - ta.im) / 2;
// data[jj+NFFT/2] = sat(data[jj+NFFT/2],FFTR4_DATA_WIDTH);
a = st->data[jj].re; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 for (i=0; i<N; i++){
/// << FFTR4_SCALE); st->out[i] = st->x[i].re * st->x[i].re + st->x[i].im * st->x[i].im;
tmp.re = (int)a;
a = st->data[jj].im; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1
/// << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii * NFFT + jj].re = (int)tmp.re;
st->x[ii * NFFT + jj].im = (int)tmp.im;
a = st->data[jj + NFFT / 2].re; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);//
/// * double(1 << FFTR4_SCALE);
tmp.re = (int)a;
a = st->data[jj + NFFT / 2].im; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);//
/// * double(1 << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii * NFFT + jj + NFFT / 2].re = (int)tmp.re;
st->x[ii * NFFT + jj + NFFT / 2].im = (int)tmp.im;
} }
}
for (i = 0; i < N; i++) { return 0;
st->out[i] = st->x[i].re * st->x[i].re + st->x[i].im * st->x[i].im;
}
return 0;
} }
void *app_factorymode_mic_cancellation_init(void *(*alloc_ext)(int)) { void *app_factorymode_mic_cancellation_init(void* (* alloc_ext)(int))
struct mic_st_t *mic_st; {
mic_st = (struct mic_st_t *)alloc_ext(sizeof(struct mic_st_t)); struct mic_st_t *mic_st;
return (void *)mic_st; mic_st = (struct mic_st_t *)alloc_ext(sizeof(struct mic_st_t));
return (void *)mic_st;
} }
#endif #endif

View File

@ -13,120 +13,128 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_factory_bt.h"
#include "app_battery.h"
#include "app_factory.h"
#include "app_utils.h"
#include "apps.h"
#include "bluetooth.h"
#include "bt_drv_interface.h"
#include "bt_drv_reg_op.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "conmgr_api.h"
#include "hal_bootmode.h"
#include "hal_chipid.h"
#include "hal_sleep.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_sleep.h"
#include "bt_drv_interface.h"
#include "intersyshci.h" #include "intersyshci.h"
#include "me_api.h" #include "apps.h"
#include "app_factory.h"
#include "app_factory_bt.h"
#include "app_utils.h"
#include "bluetooth.h"
#include "nvrecord.h" #include "nvrecord.h"
#include "nvrecord_dev.h" #include "nvrecord_dev.h"
#include "pmu.h" #include "pmu.h"
#include "tgt_hardware.h" #include "tgt_hardware.h"
#include "app_battery.h"
#include "bt_drv_reg_op.h"
#include "conmgr_api.h"
#include "me_api.h"
#include "hal_bootmode.h"
#include "hal_chipid.h"
#define APP_FACT_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3
#define APP_FACT_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3
#ifdef __FACTORY_MODE_SUPPORT__ #ifdef __FACTORY_MODE_SUPPORT__
static uint8_t inquiry_buff[] = {0x01, 0x72, 0x77, 0xb0, 0x18, 0x57, 0x60, 0x01, static uint8_t inquiry_buff[] = {0x01, 0x72, 0x77, 0xb0, 0x18, 0x57, 0x60,\
0x00, 0x00, 0x00, 0x1f, 0x00, 0x00, 0x00}; 0x01, 0x00, 0x00, 0x00, 0x1f, 0x00, 0x00, 0x00};
static btif_cmgr_handler_t *app_factorymode_cmgrHandler; static btif_cmgr_handler_t *app_factorymode_cmgrHandler;
static void bt_error_check_timer_handler(void const *param); static void bt_error_check_timer_handler(void const *param);
osTimerDef(bt_error_check_timer, bt_error_check_timer_handler); osTimerDef(bt_error_check_timer, bt_error_check_timer_handler);
static osTimerId bt_error_check_timer_id = NULL; static osTimerId bt_error_check_timer_id = NULL;
uint8_t test_mode_type = 0; uint8_t test_mode_type=0;
static void bt_error_check_timer_handler(void const *param) { static void bt_error_check_timer_handler(void const *param)
// dump rssi {
bt_drv_rssi_dump_handler(); //dump rssi
// check BT core status bt_drv_rssi_dump_handler();
if (bt_drv_error_check_handler()) { //check BT core status
if (test_mode_type == 1) { if(bt_drv_error_check_handler())
hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE | {
HAL_SW_BOOTMODE_TEST_SIGNALINGMODE); if(test_mode_type==1)
} else if (test_mode_type == 2) { {
hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE | hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE|HAL_SW_BOOTMODE_TEST_SIGNALINGMODE);
HAL_SW_BOOTMODE_TEST_NOSIGNALINGMODE); }
else if(test_mode_type==2)
{
hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE|HAL_SW_BOOTMODE_TEST_NOSIGNALINGMODE);
}
hal_cmu_sys_reboot();
} }
hal_cmu_sys_reboot();
}
} }
static void app_factorymode_bt_inquiry_buff_update(void) { static void app_factorymode_bt_inquiry_buff_update(void)
bt_bdaddr_t flsh_dongle_addr; {
int ret = -1; bt_bdaddr_t flsh_dongle_addr;
int ret = -1;
ret = nvrec_dev_get_dongleaddr(&flsh_dongle_addr); ret = nvrec_dev_get_dongleaddr(&flsh_dongle_addr);
if (0 == ret) { if(0 == ret) {
memcpy((void *)&inquiry_buff[1], (void *)flsh_dongle_addr.address, memcpy((void *)&inquiry_buff[1],(void *)flsh_dongle_addr.address,BTIF_BD_ADDR_SIZE);
BTIF_BD_ADDR_SIZE); DUMP8("0x%02x ", &inquiry_buff[2], BTIF_BD_ADDR_SIZE);
DUMP8("0x%02x ", &inquiry_buff[2], BTIF_BD_ADDR_SIZE); }
}
} }
static void app_factorymode_CmgrCallback(btif_cmgr_handler_t *cHandler, static void app_factorymode_CmgrCallback(btif_cmgr_handler_t *cHandler,
cmgr_event_t Event, cmgr_event_t Event,
bt_status_t Status) { bt_status_t Status)
APP_FACTORY_TRACE(4, "%s cHandler:%p Event:%d status:%d", __func__, cHandler, {
Event, Status); APP_FACTORY_TRACE(4,"%s cHandler:%p Event:%d status:%d", __func__, cHandler, Event, Status);
if (Event == BTIF_CMEVENT_DATA_LINK_CON_CNF) { if (Event == BTIF_CMEVENT_DATA_LINK_CON_CNF){
if (Status == BT_STS_SUCCESS) { if (Status == BT_STS_SUCCESS){
APP_FACTORY_TRACE(0, "connect ok"); APP_FACTORY_TRACE(0,"connect ok");
app_factorymode_result_set(true); app_factorymode_result_set(true);
btif_cmgr_remove_data_link(cHandler); btif_cmgr_remove_data_link(cHandler);
} else { }else{
APP_FACTORY_TRACE(0, "connect failed"); APP_FACTORY_TRACE(0,"connect failed");
app_factorymode_result_set(false); app_factorymode_result_set(false);
}
} }
}
if (Event == BTIF_CMEVENT_DATA_LINK_DIS) { if (Event == BTIF_CMEVENT_DATA_LINK_DIS){
if (Status == BT_STS_SUCCESS) { if (Status == BT_STS_SUCCESS){
APP_FACTORY_TRACE(0, "disconnect ok"); APP_FACTORY_TRACE(0,"disconnect ok");
} else { }else{
APP_FACTORY_TRACE(0, "disconnect failed"); APP_FACTORY_TRACE(0,"disconnect failed");
}
} }
}
} }
static void app_factorymode_bt_InquiryResult_add(void) { static void app_factorymode_bt_InquiryResult_add(void)
U8 len = 15; {
bool rssi = false, extended = false; U8 len = 15;
U8 *parm = (U8 *)inquiry_buff; bool rssi = false, extended = false;
U8* parm = (U8*)inquiry_buff;
/* Found one or more devices. Report to clients */ /* Found one or more devices. Report to clients */
APP_FACTORY_TRACE(4, "%s len:%d rssi:%d extended:%d", __func__, len, rssi, APP_FACTORY_TRACE(4,"%s len:%d rssi:%d extended:%d", __func__, len, rssi, extended);
extended); DUMP8("0x%02x ", parm, len);
DUMP8("0x%02x ", parm, len); btif_me_inquiry_result_setup(parm, rssi, extended);
btif_me_inquiry_result_setup(parm, rssi, extended);
} }
void app_factorymode_bt_create_connect(void) { void app_factorymode_bt_create_connect(void)
bt_status_t status; {
bt_bdaddr_t *bdAddr = (bt_bdaddr_t *)(inquiry_buff + 1); bt_status_t status;
bt_bdaddr_t *bdAddr = (bt_bdaddr_t *)(inquiry_buff+1);
status = btif_cmgr_create_data_link(app_factorymode_cmgrHandler, bdAddr); status = btif_cmgr_create_data_link(app_factorymode_cmgrHandler, bdAddr);
APP_FACTORY_TRACE(2, "%s:%d", __func__, status); APP_FACTORY_TRACE(2,"%s:%d", __func__, status);
} }
void app_factorymode_bt_init_connect(void) { void app_factorymode_bt_init_connect(void)
app_factorymode_cmgrHandler = btif_cmgr_handler_create(); {
app_factorymode_cmgrHandler = btif_cmgr_handler_create();
btif_cmgr_register_handler(app_factorymode_cmgrHandler, btif_cmgr_register_handler(app_factorymode_cmgrHandler,
app_factorymode_CmgrCallback); app_factorymode_CmgrCallback);
app_factorymode_bt_inquiry_buff_update(); app_factorymode_bt_inquiry_buff_update();
app_factorymode_bt_InquiryResult_add(); app_factorymode_bt_InquiryResult_add();
} }
extern osTimerId app_bt_accessmode_timer; extern osTimerId app_bt_accessmode_timer;
@ -137,187 +145,187 @@ extern osTimerId app_bt_accessmode_timer;
#define XTAL_FCAP_RANGE (0xFF) #define XTAL_FCAP_RANGE (0xFF)
#endif #endif
void app_factorymode_bt_xtalrangetest(APP_KEY_STATUS *status, void *param) { void app_factorymode_bt_xtalrangetest(APP_KEY_STATUS *status, void *param)
dev_addr_name devinfo; {
uint32_t fcap = 0; dev_addr_name devinfo;
APP_FACTORY_TRACE(1, "%s", __func__); uint32_t fcap = 0;
APP_FACTORY_TRACE(1,"%s",__func__);
#ifdef __WATCHER_DOG_RESET__ #ifdef __WATCHER_DOG_RESET__
app_wdt_close(); app_wdt_close();
#endif #endif
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
app_stop_10_second_timer(APP_PAIR_TIMER_ID); app_stop_10_second_timer(APP_PAIR_TIMER_ID);
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
if (app_bt_accessmode_timer) { if (app_bt_accessmode_timer){
osTimerStop(app_bt_accessmode_timer); osTimerStop(app_bt_accessmode_timer);
} }
if (!bt_error_check_timer_id) { if (!bt_error_check_timer_id){
bt_error_check_timer_id = bt_error_check_timer_id = osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL);
osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL); }
} if (bt_error_check_timer_id != NULL) {
if (bt_error_check_timer_id != NULL) { osTimerStart(bt_error_check_timer_id, 1000);
osTimerStart(bt_error_check_timer_id, 1000); }
} test_mode_type = 1;
test_mode_type = 1; app_status_indication_set(APP_STATUS_INDICATION_TESTMODE);
app_status_indication_set(APP_STATUS_INDICATION_TESTMODE); pmu_sleep_en(0);
pmu_sleep_en(0); BESHCI_Close();
BESHCI_Close(); btdrv_hciopen();
btdrv_hciopen(); btdrv_hci_reset();
btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_sleep_config(0); btdrv_sleep_config(0);
osDelay(2000); osDelay(2000);
btdrv_ins_patch_test_init(); btdrv_ins_patch_test_init();
btdrv_feature_default(); btdrv_feature_default();
#endif #endif
devinfo.btd_addr = bt_addr; devinfo.btd_addr = bt_addr;
devinfo.ble_addr = ble_addr; devinfo.ble_addr = ble_addr;
devinfo.localname = BT_LOCAL_NAME; devinfo.localname = BT_LOCAL_NAME;
nvrec_dev_localname_addr_init(&devinfo); nvrec_dev_localname_addr_init(&devinfo);
btdrv_write_localinfo((char *)devinfo.localname, btdrv_write_localinfo((char *)devinfo.localname, strlen(devinfo.localname) + 1, devinfo.btd_addr);
strlen(devinfo.localname) + 1, devinfo.btd_addr);
btdrv_vco_test_start(78); btdrv_vco_test_start(78);
while (1) { while(1){
btdrv_rf_set_xtal_fcap(fcap % XTAL_FCAP_RANGE, 1); btdrv_rf_set_xtal_fcap(fcap%XTAL_FCAP_RANGE, 1);
osDelay(300); osDelay(300);
TRACE(2, "xtal tune:%d", fcap % XTAL_FCAP_RANGE); TRACE(2,"xtal tune:%d", fcap%XTAL_FCAP_RANGE);
fcap++; fcap++;
} }
} }
void app_factorymode_bt_signalingtest(APP_KEY_STATUS *status, void *param) { void app_factorymode_bt_signalingtest(APP_KEY_STATUS *status, void *param)
dev_addr_name devinfo; {
APP_FACTORY_TRACE(1, "%s", __func__); dev_addr_name devinfo;
APP_FACTORY_TRACE(1,"%s",__func__);
#ifdef __WATCHER_DOG_RESET__ #ifdef __WATCHER_DOG_RESET__
app_wdt_close(); app_wdt_close();
#endif #endif
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
app_stop_10_second_timer(APP_PAIR_TIMER_ID); app_stop_10_second_timer(APP_PAIR_TIMER_ID);
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
if (app_bt_accessmode_timer) { if (app_bt_accessmode_timer){
osTimerStop(app_bt_accessmode_timer); osTimerStop(app_bt_accessmode_timer);
} }
if (!bt_error_check_timer_id) { if (!bt_error_check_timer_id){
bt_error_check_timer_id = bt_error_check_timer_id = osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL);
osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL); }
} if (bt_error_check_timer_id != NULL) {
if (bt_error_check_timer_id != NULL) { osTimerStart(bt_error_check_timer_id, 1000);
osTimerStart(bt_error_check_timer_id, 1000); }
} test_mode_type = 1;
test_mode_type = 1; app_status_indication_set(APP_STATUS_INDICATION_TESTMODE);
app_status_indication_set(APP_STATUS_INDICATION_TESTMODE); pmu_sleep_en(0);
pmu_sleep_en(0); BESHCI_Close();
BESHCI_Close(); btdrv_hciopen();
btdrv_hciopen(); btdrv_ins_patch_test_init();
btdrv_ins_patch_test_init(); btdrv_hci_reset();
btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_sleep_config(0); btdrv_sleep_config(0);
osDelay(2000); osDelay(2000);
btdrv_testmode_start(); btdrv_testmode_start();
btdrv_feature_default(); btdrv_feature_default();
#endif #endif
devinfo.btd_addr = bt_addr; devinfo.btd_addr = bt_addr;
devinfo.ble_addr = ble_addr; devinfo.ble_addr = ble_addr;
devinfo.localname = BT_LOCAL_NAME; devinfo.localname = BT_LOCAL_NAME;
devinfo.ble_name = BT_LOCAL_NAME; devinfo.ble_name= BT_LOCAL_NAME;
nvrec_dev_localname_addr_init(&devinfo); nvrec_dev_localname_addr_init(&devinfo);
#ifdef __IBRT_IBRT_TESTMODE__ #ifdef __IBRT_IBRT_TESTMODE__
uint8_t ibrt_address[6] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66}; uint8_t ibrt_address[6] = {0x11,0x22,0x33,0x44,0x55,0x66};
memcpy(bt_addr, ibrt_address, 6); memcpy(bt_addr,ibrt_address,6);
memcpy(devinfo.btd_addr, ibrt_address, 6); memcpy(devinfo.btd_addr,ibrt_address,6);
#endif #endif
btdrv_write_localinfo((char *)devinfo.localname, btdrv_write_localinfo((char *)devinfo.localname, strlen(devinfo.localname) + 1, devinfo.btd_addr);
strlen(devinfo.localname) + 1, devinfo.btd_addr); bt_drv_extra_config_after_init();
bt_drv_extra_config_after_init(); btdrv_enable_dut();
btdrv_enable_dut();
#ifdef __IBRT_IBRT_TESTMODE__ #ifdef __IBRT_IBRT_TESTMODE__
btdrv_enable_ibrt_test(); btdrv_enable_ibrt_test();
#endif #endif
} }
int app_battery_stop(void); int app_battery_stop(void);
void app_factorymode_bt_nosignalingtest(APP_KEY_STATUS *status, void *param) { void app_factorymode_bt_nosignalingtest(APP_KEY_STATUS *status, void *param)
dev_addr_name devinfo; {
APP_FACTORY_TRACE(1, "%s", __func__); dev_addr_name devinfo;
APP_FACTORY_TRACE(1,"%s",__func__);
#ifdef __WATCHER_DOG_RESET__ #ifdef __WATCHER_DOG_RESET__
app_wdt_close(); app_wdt_close();
#endif #endif
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
app_stop_10_second_timer(APP_PAIR_TIMER_ID); app_stop_10_second_timer(APP_PAIR_TIMER_ID);
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
app_status_indication_set(APP_STATUS_INDICATION_TESTMODE1); app_status_indication_set(APP_STATUS_INDICATION_TESTMODE1);
osTimerStop(app_bt_accessmode_timer); osTimerStop(app_bt_accessmode_timer);
if (!bt_error_check_timer_id) { if (!bt_error_check_timer_id){
bt_error_check_timer_id = bt_error_check_timer_id = osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL);
osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL); }
} if (bt_error_check_timer_id != NULL) {
if (bt_error_check_timer_id != NULL) { osTimerStart(bt_error_check_timer_id, 1000);
osTimerStart(bt_error_check_timer_id, 1000); }
} test_mode_type = 2;
test_mode_type = 2; app_battery_stop();
app_battery_stop(); pmu_sleep_en(0);
pmu_sleep_en(0); BESHCI_Close();
BESHCI_Close(); btdrv_hciopen();
btdrv_hciopen(); btdrv_ins_patch_test_init();
btdrv_ins_patch_test_init(); bt_drv_reg_op_key_gen_after_reset(false);
bt_drv_reg_op_key_gen_after_reset(false); btdrv_hci_reset();
btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_sleep_config(0); btdrv_sleep_config(0);
#endif #endif
osDelay(2000); osDelay(2000);
btdrv_testmode_start(); btdrv_testmode_start();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_feature_default(); btdrv_feature_default();
devinfo.btd_addr = bt_addr; devinfo.btd_addr = bt_addr;
devinfo.ble_addr = ble_addr; devinfo.ble_addr = ble_addr;
devinfo.localname = BT_LOCAL_NAME; devinfo.localname = BT_LOCAL_NAME;
devinfo.ble_name = BT_LOCAL_NAME; devinfo.ble_name= BT_LOCAL_NAME;
nvrec_dev_localname_addr_init(&devinfo); nvrec_dev_localname_addr_init(&devinfo);
btdrv_write_localinfo((char *)devinfo.localname, btdrv_write_localinfo((char *)devinfo.localname, strlen(devinfo.localname) + 1, devinfo.btd_addr);
strlen(devinfo.localname) + 1, devinfo.btd_addr);
#endif #endif
bt_drv_extra_config_after_init(); bt_drv_extra_config_after_init();
btdrv_hcioff(); btdrv_hcioff();
#ifdef __BT_DEBUG_TPORTS__ #ifdef __BT_DEBUG_TPORTS__
{ {
extern void bt_enable_tports(void); extern void bt_enable_tports(void);
bt_enable_tports(); bt_enable_tports();
// hal_iomux_tportopen(); //hal_iomux_tportopen();
} }
#endif #endif
btdrv_uart_bridge_loop(); btdrv_uart_bridge_loop();
} }
int app_factorymode_bt_xtalcalib_proc(void) { int app_factorymode_bt_xtalcalib_proc(void)
uint32_t capval = 0x80; {
int nRet; uint32_t capval = 0x80;
int nRet;
APP_FACTORY_TRACE(1, "%s", __func__); APP_FACTORY_TRACE(1,"%s",__func__);
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
APP_FACTORY_TRACE(1, "calib default, capval:%d", capval); APP_FACTORY_TRACE(1,"calib default, capval:%d", capval);
btdrv_hciopen(); btdrv_hciopen();
btdrv_hci_reset(); btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_ins_patch_test_init(); btdrv_ins_patch_test_init();
#endif #endif
btdrv_hcioff(); btdrv_hcioff();
capval = 0x80; capval = 0x80;
bt_drv_calib_open(); bt_drv_calib_open();
nRet = bt_drv_calib_result_porc(&capval); nRet = bt_drv_calib_result_porc(&capval);
bt_drv_calib_close(); bt_drv_calib_close();
TRACE(2, "!!!!!!!!!!!!!!!!!!!!!!!!!!!calib ret:%d, capval:%d", nRet, capval); TRACE(2,"!!!!!!!!!!!!!!!!!!!!!!!!!!!calib ret:%d, capval:%d", nRet, capval);
if (!nRet) if (!nRet)
nvrec_dev_set_xtal_fcap((unsigned int)capval); nvrec_dev_set_xtal_fcap((unsigned int)capval);
return nRet; return nRet;
} }
void app_factorymode_bt_xtalcalib(APP_KEY_STATUS *status, void *param) { void app_factorymode_bt_xtalcalib(APP_KEY_STATUS *status, void *param)
APP_FACTORY_TRACE(1, "%s", __func__); {
app_factorymode_bt_xtalcalib_proc(); APP_FACTORY_TRACE(1,"%s",__func__);
app_factorymode_bt_xtalcalib_proc();
} }
#endif #endif

View File

@ -1,180 +1,179 @@
#ifdef __USB_COMM__ #ifdef __USB_COMM__
#include "app_factory_cdc_comm.h"
#include "plat_types.h"
#include "stdbool.h"
#include "stdint.h" #include "stdint.h"
#include "stdio.h" #include "stdbool.h"
#include "plat_types.h"
#include "string.h" #include "string.h"
#include "sys_api_cdc_comm.h" #include "stdio.h"
#include "tool_msg.h" #include "tool_msg.h"
#include "sys_api_cdc_comm.h"
#include "app_factory_cdc_comm.h"
static enum PARSE_STATE parse_state; static enum PARSE_STATE parse_state;
static struct message_t recv_msg; static struct message_t recv_msg;
static struct message_t send_msg = { static struct message_t send_msg = { { PREFIX_CHAR, }, };
{
PREFIX_CHAR,
},
};
static unsigned char check_sum(unsigned char *buf, unsigned char len) { static unsigned char check_sum(unsigned char *buf, unsigned char len)
int i; {
unsigned char sum = 0; int i;
unsigned char sum = 0;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
sum += buf[i]; sum += buf[i];
} }
return sum; return sum;
} }
int send_reply(const unsigned char *payload, unsigned int len) { int send_reply(const unsigned char *payload, unsigned int len)
int ret = 0; {
int ret = 0;
if (len + 1 > sizeof(send_msg.data)) { if (len + 1 > sizeof(send_msg.data)) {
TRACE(1, "Packet length too long: %u", len); TRACE(1,"Packet length too long: %u", len);
return -1; return -1;
} }
send_msg.hdr.type = recv_msg.hdr.type; send_msg.hdr.type = recv_msg.hdr.type;
send_msg.hdr.seq = recv_msg.hdr.seq; send_msg.hdr.seq = recv_msg.hdr.seq;
send_msg.hdr.len = len; send_msg.hdr.len = len;
memcpy(&send_msg.data[0], payload, len); memcpy(&send_msg.data[0], payload, len);
send_msg.data[len] = send_msg.data[len] = ~check_sum((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg) - 1);
~check_sum((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg) - 1);
ret = send_data((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg)); ret = send_data((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg));
return ret; return ret;
} }
static void reset_parse_state(unsigned char **buf, size_t *len) { static void reset_parse_state(unsigned char **buf, size_t *len)
parse_state = PARSE_HEADER; {
memset(&recv_msg.hdr, 0, sizeof(recv_msg.hdr)); parse_state = PARSE_HEADER;
memset(&recv_msg.hdr, 0, sizeof(recv_msg.hdr));
*buf = (unsigned char *)&recv_msg.hdr; *buf = (unsigned char *)&recv_msg.hdr;
*len = sizeof(recv_msg.hdr); *len = sizeof(recv_msg.hdr);
} }
static enum ERR_CODE check_msg_hdr(void) { static enum ERR_CODE check_msg_hdr(void)
enum ERR_CODE errcode = ERR_NONE; {
enum ERR_CODE errcode = ERR_NONE;
switch (recv_msg.hdr.type) { switch (recv_msg.hdr.type) {
case TYPE_SYS: case TYPE_SYS:
if (recv_msg.hdr.len != 1 && recv_msg.hdr.len != 5) { if (recv_msg.hdr.len != 1 && recv_msg.hdr.len != 5) {
// TRACE(1,"SYS msg length error: %u", recv_msg.hdr.len); //TRACE(1,"SYS msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN; errcode = ERR_LEN;
}
break;
case TYPE_READ:
if (recv_msg.hdr.len != 4) {
//TRACE(1,"READ msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
}
break;
case TYPE_WRITE:
if (recv_msg.hdr.len <= 4 || recv_msg.hdr.len > 20) {
//TRACE(1,"WRITE msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
}
break;
default:
break;
} }
break;
case TYPE_READ:
if (recv_msg.hdr.len != 4) {
// TRACE(1,"READ msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
}
break;
case TYPE_WRITE:
if (recv_msg.hdr.len <= 4 || recv_msg.hdr.len > 20) {
// TRACE(1,"WRITE msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
}
break;
default:
break;
}
if (errcode == ERR_NONE && recv_msg.hdr.len + 1 > sizeof(recv_msg.data)) { if (errcode == ERR_NONE && recv_msg.hdr.len + 1 > sizeof(recv_msg.data)) {
errcode = ERR_LEN; errcode = ERR_LEN;
} }
return errcode; return errcode;
} }
static enum ERR_CODE handle_sys_cmd(enum SYS_CMD_TYPE cmd, unsigned char *param, static enum ERR_CODE handle_sys_cmd(enum SYS_CMD_TYPE cmd, unsigned char *param, unsigned int len)
unsigned int len) { {
unsigned char cret[5]; unsigned char cret[5];
unsigned int bootmode; unsigned int bootmode;
cret[0] = ERR_NONE; cret[0] = ERR_NONE;
if (cmd == SYS_CMD_SET_BOOTMODE || cmd == SYS_CMD_CLR_BOOTMODE) { if (cmd == SYS_CMD_SET_BOOTMODE || cmd == SYS_CMD_CLR_BOOTMODE) {
if (len != 4) { if (len != 4) {
TRACE(2, "Invalid SYS CMD len %u for cmd: 0x%x", len, cmd); TRACE(2,"Invalid SYS CMD len %u for cmd: 0x%x", len, cmd);
return ERR_DATA_LEN; return ERR_DATA_LEN;
}
} else {
if (len != 0) {
TRACE(2,"Invalid SYS CMD len %u for cmd: 0x%x", len, cmd);
return ERR_DATA_LEN;
}
} }
} else {
if (len != 0) { switch (cmd) {
TRACE(2, "Invalid SYS CMD len %u for cmd: 0x%x", len, cmd); case SYS_CMD_REBOOT: {
return ERR_DATA_LEN; TRACE(0,"--- Reboot---");
send_reply(cret, 1);
system_reboot();
break;
}
case SYS_CMD_SHUTDOWN: {
TRACE(0,"--- Shutdown ---");
send_reply(cret, 1);
system_shutdown();
break;
}
case SYS_CMD_SET_BOOTMODE: {
TRACE(0,"--- Set bootmode ---");
memcpy(&bootmode, param, 4);
system_set_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_CLR_BOOTMODE: {
TRACE(0,"--- Clear bootmode ---");
memcpy(&bootmode, param, 4);
system_clear_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_GET_BOOTMODE: {
TRACE(0,"--- Get bootmode ---");
bootmode = system_get_bootmode();
memcpy(&cret[1], &bootmode, 4);
send_reply(cret, 5);
break;
}
default: {
TRACE(1,"Invalid command: 0x%x", recv_msg.data[0]);
return ERR_SYS_CMD;
}
} }
}
switch (cmd) { return ERR_NONE;
case SYS_CMD_REBOOT: {
TRACE(0, "--- Reboot---");
send_reply(cret, 1);
system_reboot();
break;
}
case SYS_CMD_SHUTDOWN: {
TRACE(0, "--- Shutdown ---");
send_reply(cret, 1);
system_shutdown();
break;
}
case SYS_CMD_SET_BOOTMODE: {
TRACE(0, "--- Set bootmode ---");
memcpy(&bootmode, param, 4);
system_set_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_CLR_BOOTMODE: {
TRACE(0, "--- Clear bootmode ---");
memcpy(&bootmode, param, 4);
system_clear_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_GET_BOOTMODE: {
TRACE(0, "--- Get bootmode ---");
bootmode = system_get_bootmode();
memcpy(&cret[1], &bootmode, 4);
send_reply(cret, 5);
break;
}
default: {
TRACE(1, "Invalid command: 0x%x", recv_msg.data[0]);
return ERR_SYS_CMD;
}
}
return ERR_NONE;
} }
static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra) { static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra)
enum ERR_CODE errcode = ERR_NONE; {
enum ERR_CODE errcode = ERR_NONE;
#if 0 #if 0
uint32_t rlen = 0; uint32_t rlen = 0;
#endif #endif
*extra = 0; *extra = 0;
// Checksum // Checksum
if (check_sum((unsigned char *)&recv_msg, MSG_TOTAL_LEN(&recv_msg)) != 0xFF) { if (check_sum((unsigned char *)&recv_msg, MSG_TOTAL_LEN(&recv_msg)) != 0xFF) {
TRACE(0, "Checksum error"); TRACE(0,"Checksum error");
return ERR_CHECKSUM; return ERR_CHECKSUM;
}
switch (recv_msg.hdr.type) {
case TYPE_SYS: {
TRACE_TIME(0, "------ SYS CMD ------");
errcode = handle_sys_cmd((enum SYS_CMD_TYPE)recv_msg.data[0],
&recv_msg.data[1], recv_msg.hdr.len - 1);
if (errcode != ERR_NONE) {
return errcode;
} }
break;
} switch (recv_msg.hdr.type) {
case TYPE_READ: { case TYPE_SYS: {
TRACE_TIME(0, "------ READ CMD ------"); TRACE_TIME(0,"------ SYS CMD ------");
errcode = handle_sys_cmd((enum SYS_CMD_TYPE)recv_msg.data[0], &recv_msg.data[1], recv_msg.hdr.len - 1);
if (errcode != ERR_NONE) {
return errcode;
}
break;
}
case TYPE_READ: {
TRACE_TIME(0,"------ READ CMD ------");
#if 0 #if 0
uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2]; uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2];
uint8_t data[4] = {0}; uint8_t data[4] = {0};
@ -185,10 +184,10 @@ static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra) {
send_reply(data, rlen); send_reply(data, rlen);
} }
#endif #endif
break; break;
} }
case TYPE_WRITE: { case TYPE_WRITE: {
TRACE_TIME(0, "------ WRITE CMD ------"); TRACE_TIME(0,"------ WRITE CMD ------");
#if 0 #if 0
uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2]; uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2];
uint32_t wdata = (recv_msg.data[3] << 24) | (recv_msg.data[4] << 16) | (recv_msg.data[5] << 8) | recv_msg.data[6]; uint32_t wdata = (recv_msg.data[3] << 24) | (recv_msg.data[4] << 16) | (recv_msg.data[5] << 8) | recv_msg.data[6];
@ -199,115 +198,117 @@ static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra) {
else else
send_reply(data, 1); send_reply(data, 1);
#endif #endif
break; break;
} }
default: default:
break; break;
} }
return ERR_NONE; return ERR_NONE;
} }
static int parse_packet(unsigned char **buf, size_t *len) { static int parse_packet(unsigned char **buf, size_t *len)
enum ERR_CODE errcode; {
int rlen = *len; enum ERR_CODE errcode;
unsigned char *data; int rlen = *len;
int i; unsigned char *data;
int extra; int i;
unsigned char cret; int extra;
unsigned char cret;
switch (parse_state) { switch (parse_state) {
case PARSE_HEADER: case PARSE_HEADER:
ASSERT(rlen > 0 && rlen <= sizeof(recv_msg.hdr), "Invalid rlen!"); ASSERT(rlen > 0 && rlen <= sizeof(recv_msg.hdr), "Invalid rlen!");
if (recv_msg.hdr.prefix == PREFIX_CHAR) { if (recv_msg.hdr.prefix == PREFIX_CHAR) {
errcode = check_msg_hdr(); errcode = check_msg_hdr();
if (errcode != ERR_NONE) { if (errcode != ERR_NONE) {
goto _err; goto _err;
} }
parse_state = PARSE_DATA; parse_state = PARSE_DATA;
*buf = &recv_msg.data[0]; *buf = &recv_msg.data[0];
*len = recv_msg.hdr.len + 1; *len = recv_msg.hdr.len + 1;
} else { } else {
data = (unsigned char *)&recv_msg.hdr.prefix; data = (unsigned char *)&recv_msg.hdr.prefix;
for (i = 1; i < rlen; i++) { for (i = 1; i < rlen; i++) {
if (data[i] == PREFIX_CHAR) { if (data[i] == PREFIX_CHAR) {
memmove(&recv_msg.hdr.prefix, &data[i], rlen - i); memmove(&recv_msg.hdr.prefix, &data[i], rlen - i);
break; break;
} }
} }
*buf = &data[rlen - i]; *buf = &data[rlen - i];
*len = sizeof(recv_msg.hdr) + i - rlen; *len = sizeof(recv_msg.hdr) + i - rlen;
}
break;
case PARSE_DATA:
errcode = handle_data(buf, len, &extra);
if (errcode != ERR_NONE) {
goto _err;
}
// Receive next message
reset_parse_state(buf, len);
break;
default:
TRACE(1,"Invalid parse_state: %d", parse_state);
break;
} }
break;
case PARSE_DATA:
errcode = handle_data(buf, len, &extra);
if (errcode != ERR_NONE) {
goto _err;
}
// Receive next message
reset_parse_state(buf, len);
break;
default:
TRACE(1, "Invalid parse_state: %d", parse_state);
break;
}
return 0; return 0;
_err: _err:
cancel_input(); cancel_input();
cret = (unsigned char)errcode; cret = (unsigned char)errcode;
send_reply(&cret, 1); send_reply(&cret, 1);
return 1; return 1;
} }
void comm_loop(void) { void comm_loop(void)
int ret; {
unsigned char *buf = NULL; int ret;
size_t len = 0; unsigned char *buf = NULL;
size_t buf_len, rlen; size_t len = 0;
size_t buf_len, rlen;
_sync: _sync:
reset_transport(); reset_transport();
reset_parse_state(&buf, &len); reset_parse_state(&buf, &len);
while (1) { while (1) {
rlen = 0; rlen = 0;
if (parse_state == PARSE_HEADER) { if (parse_state == PARSE_HEADER) {
set_recv_timeout(default_recv_timeout_idle); set_recv_timeout(default_recv_timeout_idle);
} else { } else {
set_recv_timeout(default_recv_timeout_short); set_recv_timeout(default_recv_timeout_short);
} }
buf_len = 0; buf_len = 0;
ret = recv_data_ex(buf, buf_len, len, &rlen); ret = recv_data_ex(buf, buf_len, len, &rlen);
if (ret) { if (ret) {
TRACE(1, "Receiving data failed: %d", ret); TRACE(1,"Receiving data failed: %d", ret);
goto _err; goto _err;
} }
if (len != rlen) { if (len != rlen) {
TRACE(2, "Receiving part of the data: expect=%u real=%u", len, rlen); TRACE(2,"Receiving part of the data: expect=%u real=%u", len, rlen);
goto _err; goto _err;
} }
ret = parse_packet(&buf, &len); ret = parse_packet(&buf, &len);
if (ret) { if (ret) {
TRACE(0, "Parsing packet failed"); TRACE(0,"Parsing packet failed");
goto _err; goto _err;
}
} }
}
_err: _err:
ret = handle_error(); ret = handle_error();
if (ret == 0) { if (ret == 0) {
TRACE(0, "retry ..."); TRACE(0,"retry ...");
goto _sync; goto _sync;
} }
return; return;
} }
#endif #endif

View File

@ -8,11 +8,10 @@
#include "usb_cdc.h" #include "usb_cdc.h"
#endif #endif
#define TIMEOUT_INFINITE ((uint32_t)-1) #define TIMEOUT_INFINITE ((uint32_t)-1)
const unsigned int default_recv_timeout_short = MS_TO_TICKS(500); const unsigned int default_recv_timeout_short = MS_TO_TICKS(500);
const unsigned int default_recv_timeout_idle = const unsigned int default_recv_timeout_idle = TIMEOUT_INFINITE; //MS_TO_TICKS(10 * 60 * 1000);
TIMEOUT_INFINITE; // MS_TO_TICKS(10 * 60 * 1000);
const unsigned int default_recv_timeout_4k_data = MS_TO_TICKS(500); const unsigned int default_recv_timeout_4k_data = MS_TO_TICKS(500);
const unsigned int default_send_timeout = MS_TO_TICKS(500); const unsigned int default_send_timeout = MS_TO_TICKS(500);
@ -30,165 +29,201 @@ static const struct USB_SERIAL_CFG_T cdc_cfg = {
.mode = USB_SERIAL_API_NONBLOCKING, .mode = USB_SERIAL_API_NONBLOCKING,
}; };
void reset_transport(void) { void reset_transport(void)
cancel_xfer = false; {
cancel_xfer = false;
if (xfer_timer) { if (xfer_timer) {
hwtimer_stop(xfer_timer); hwtimer_stop(xfer_timer);
} else { } else {
xfer_timer = hwtimer_alloc(NULL, NULL); xfer_timer = hwtimer_alloc(NULL, NULL);
} }
usb_serial_flush_recv_buffer(); usb_serial_flush_recv_buffer();
usb_serial_init_xfer(); usb_serial_init_xfer();
set_recv_timeout(default_recv_timeout_short); set_recv_timeout(default_recv_timeout_short);
set_send_timeout(default_send_timeout); set_send_timeout(default_send_timeout);
} }
void set_recv_timeout(unsigned int timeout) { recv_timeout = timeout; } void set_recv_timeout(unsigned int timeout)
{
void set_send_timeout(unsigned int timeout) { send_timeout = timeout; } recv_timeout = timeout;
static void usb_send_timeout(void *param) { usb_serial_cancel_send(); }
static void usb_send_timer_start(void) {
if (send_timeout == TIMEOUT_INFINITE) {
return;
}
if (xfer_timer) {
hwtimer_update_then_start(xfer_timer, usb_send_timeout, NULL, send_timeout);
}
} }
static void usb_send_timer_stop(void) { void set_send_timeout(unsigned int timeout)
if (xfer_timer) { {
hwtimer_stop(xfer_timer); send_timeout = timeout;
}
} }
static int usb_send_data(const unsigned char *buf, size_t len) { static void usb_send_timeout(void *param)
int ret; {
usb_serial_cancel_send();
usb_send_timer_start();
ret = usb_serial_send(buf, len);
usb_send_timer_stop();
return ret;
} }
int send_data(const unsigned char *buf, size_t len) { static void usb_send_timer_start(void)
if (cancel_xfer) { {
return -1; if (send_timeout == TIMEOUT_INFINITE) {
} return;
return usb_send_data(buf, len); }
if (xfer_timer) {
hwtimer_update_then_start(xfer_timer, usb_send_timeout, NULL, send_timeout);
}
} }
static void usb_recv_timeout(void *param) { usb_serial_cancel_recv(); } static void usb_send_timer_stop(void)
{
static void usb_recv_timer_start(void) { if (xfer_timer) {
if (recv_timeout == TIMEOUT_INFINITE) { hwtimer_stop(xfer_timer);
return; }
}
if (xfer_timer) {
hwtimer_update_then_start(xfer_timer, usb_recv_timeout, NULL, recv_timeout);
}
} }
static void usb_recv_timer_stop(void) { static int usb_send_data(const unsigned char *buf, size_t len)
if (xfer_timer) { {
hwtimer_stop(xfer_timer); int ret;
}
usb_send_timer_start();
ret = usb_serial_send(buf, len);
usb_send_timer_stop();
return ret;
} }
static int usb_recv_data(unsigned char *buf, size_t len, size_t *rlen) { int send_data(const unsigned char *buf, size_t len)
int ret; {
if (cancel_xfer) {
usb_recv_timer_start(); return -1;
ret = usb_serial_recv(buf, len); }
usb_recv_timer_stop(); return usb_send_data(buf, len);
if (ret == 0) {
*rlen = len;
}
return ret;
} }
int recv_data_ex(unsigned char *buf, size_t len, size_t expect, size_t *rlen) { static void usb_recv_timeout(void *param)
if (cancel_xfer) { {
return -1; usb_serial_cancel_recv();
}
return usb_recv_data(buf, expect, rlen);
} }
static int usb_handle_error(void) { static void usb_recv_timer_start(void)
int ret; {
if (recv_timeout == TIMEOUT_INFINITE) {
return;
}
TRACE(0, "****** Send break ******"); if (xfer_timer) {
hwtimer_update_then_start(xfer_timer, usb_recv_timeout, NULL, recv_timeout);
// Send break signal, to tell the peer to reset the connection }
ret = usb_serial_send_break();
if (ret) {
TRACE(1, "Sending break failed: %d", ret);
}
return ret;
} }
int handle_error(void) { static void usb_recv_timer_stop(void)
int ret = 0; {
uint32_t err_time; if (xfer_timer) {
hwtimer_stop(xfer_timer);
hal_sys_timer_delay(MS_TO_TICKS(50)); }
if (!cancel_xfer) {
ret = usb_handle_error();
}
err_time = hal_sys_timer_get();
if (xfer_err_cnt == 0 || err_time - xfer_err_time > MS_TO_TICKS(5000)) {
xfer_err_cnt = 0;
xfer_err_time = err_time;
}
xfer_err_cnt++;
if (xfer_err_cnt < 3) {
hal_sys_timer_delay(MS_TO_TICKS(100));
} else if (xfer_err_cnt < 5) {
hal_sys_timer_delay(MS_TO_TICKS(500));
} else {
hal_sys_timer_delay(MS_TO_TICKS(2000));
}
return ret;
} }
static int usb_cancel_input(void) { return usb_serial_flush_recv_buffer(); } static int usb_recv_data(unsigned char *buf, size_t len, size_t *rlen)
{
int ret;
int cancel_input(void) { return usb_cancel_input(); } usb_recv_timer_start();
ret = usb_serial_recv(buf, len);
void system_reboot(void) { usb_recv_timer_stop();
hal_sys_timer_delay(MS_TO_TICKS(10)); if (ret == 0) {
hal_cmu_sys_reboot(); *rlen = len;
}
return ret;
} }
void system_shutdown(void) { int recv_data_ex(unsigned char *buf, size_t len, size_t expect, size_t *rlen)
{
if (cancel_xfer) {
return -1;
}
return usb_recv_data(buf, expect, rlen);
}
static int usb_handle_error(void)
{
int ret;
TRACE(0,"****** Send break ******");
// Send break signal, to tell the peer to reset the connection
ret = usb_serial_send_break();
if (ret) {
TRACE(1,"Sending break failed: %d", ret);
}
return ret;
}
int handle_error(void)
{
int ret = 0;
uint32_t err_time;
hal_sys_timer_delay(MS_TO_TICKS(50));
if (!cancel_xfer) {
ret = usb_handle_error();
}
err_time = hal_sys_timer_get();
if (xfer_err_cnt == 0 || err_time - xfer_err_time > MS_TO_TICKS(5000)) {
xfer_err_cnt = 0;
xfer_err_time = err_time;
}
xfer_err_cnt++;
if (xfer_err_cnt < 3) {
hal_sys_timer_delay(MS_TO_TICKS(100));
} else if (xfer_err_cnt < 5) {
hal_sys_timer_delay(MS_TO_TICKS(500));
} else {
hal_sys_timer_delay(MS_TO_TICKS(2000));
}
return ret;
}
static int usb_cancel_input(void)
{
return usb_serial_flush_recv_buffer();
}
int cancel_input(void)
{
return usb_cancel_input();
}
void system_reboot(void)
{
hal_sys_timer_delay(MS_TO_TICKS(10));
hal_cmu_sys_reboot();
}
void system_shutdown(void)
{
#if 0 #if 0
if (dld_transport == TRANSPORT_USB) { if (dld_transport == TRANSPORT_USB) {
// Avoid PC usb serial driver hanging // Avoid PC usb serial driver hanging
usb_serial_close(); usb_serial_close();
} }
#endif #endif
hal_sys_timer_delay(MS_TO_TICKS(10)); hal_sys_timer_delay(MS_TO_TICKS(10));
pmu_shutdown(); pmu_shutdown();
} }
void system_set_bootmode(unsigned int bootmode) { void system_set_bootmode(unsigned int bootmode)
bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED); {
hal_sw_bootmode_set(bootmode); bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED);
hal_sw_bootmode_set(bootmode);
} }
void system_clear_bootmode(unsigned int bootmode) { void system_clear_bootmode(unsigned int bootmode)
bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED); {
hal_sw_bootmode_clear(bootmode); bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED);
hal_sw_bootmode_clear(bootmode);
} }
unsigned int system_get_bootmode(void) { return hal_sw_bootmode_get(); } unsigned int system_get_bootmode(void)
{
return hal_sw_bootmode_get();
}
#endif #endif

View File

@ -13,145 +13,155 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_key.h"
#include "app_thread.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h"
#include "list.h" #include "list.h"
#include "string.h" #include "string.h"
#include "app_thread.h"
#include "app_key.h"
#include "hal_trace.h"
#define APP_KEY_TRACE(s, ...) // TRACE(s, ##__VA_ARGS__) #define APP_KEY_TRACE(s,...) //TRACE(s, ##__VA_ARGS__)
#define KEY_EVENT_CNT_LIMIT (3) #define KEY_EVENT_CNT_LIMIT (3)
typedef struct { typedef struct {
list_t *key_list; list_t *key_list;
} APP_KEY_CONFIG; }APP_KEY_CONFIG;
APP_KEY_CONFIG app_key_conifg = {.key_list = NULL}; APP_KEY_CONFIG app_key_conifg = {
.key_list = NULL
};
osPoolDef(app_key_handle_mempool, 20, APP_KEY_HANDLE); osPoolDef (app_key_handle_mempool, 20, APP_KEY_HANDLE);
osPoolId app_key_handle_mempool = NULL; osPoolId app_key_handle_mempool = NULL;
static uint8_t key_event_cnt = 0; static uint8_t key_event_cnt = 0;
static int key_event_process(uint32_t key_code, uint8_t key_event) { static int key_event_process(uint32_t key_code, uint8_t key_event)
uint32_t app_keyevt; {
APP_MESSAGE_BLOCK msg; uint32_t app_keyevt;
APP_MESSAGE_BLOCK msg;
if (key_event_cnt>KEY_EVENT_CNT_LIMIT){
return 0;
}else{
key_event_cnt++;
}
msg.mod_id = APP_MODUAL_KEY;
APP_KEY_SET_MESSAGE(app_keyevt, key_code, key_event);
msg.msg_body.message_id = app_keyevt;
msg.msg_body.message_ptr = (uint32_t)NULL;
app_mailbox_put(&msg);
if (key_event_cnt > KEY_EVENT_CNT_LIMIT) {
return 0; return 0;
} else {
key_event_cnt++;
}
msg.mod_id = APP_MODUAL_KEY;
APP_KEY_SET_MESSAGE(app_keyevt, key_code, key_event);
msg.msg_body.message_id = app_keyevt;
msg.msg_body.message_ptr = (uint32_t)NULL;
app_mailbox_put(&msg);
return 0;
} }
void app_key_simulate_key_event(uint32_t key_code, uint8_t key_event) { void app_key_simulate_key_event(uint32_t key_code, uint8_t key_event)
key_event_process(key_code, key_event); {
key_event_process(key_code, key_event);
} }
static void app_key_handle_free(void *key_handle) { static void app_key_handle_free(void *key_handle)
osPoolFree(app_key_handle_mempool, key_handle); {
osPoolFree (app_key_handle_mempool, key_handle);
} }
static APP_KEY_HANDLE *app_key_handle_find(const APP_KEY_STATUS *key_status) { static APP_KEY_HANDLE *app_key_handle_find(const APP_KEY_STATUS *key_status)
APP_KEY_HANDLE *key_handle = NULL; {
list_node_t *node = NULL; APP_KEY_HANDLE *key_handle = NULL;
list_node_t *node = NULL;
for (node = list_begin(app_key_conifg.key_list); for (node = list_begin(app_key_conifg.key_list); node != list_end(app_key_conifg.key_list); node = list_next(node)) {
node != list_end(app_key_conifg.key_list); node = list_next(node)) { key_handle = (APP_KEY_HANDLE *)list_node(node);
key_handle = (APP_KEY_HANDLE *)list_node(node); if ((key_handle->key_status.code == key_status->code)&&(key_handle->key_status.event == key_status->event))
if ((key_handle->key_status.code == key_status->code) && return key_handle;
(key_handle->key_status.event == key_status->event)) }
return key_handle;
}
return NULL; return NULL;
} }
static int app_key_handle_process(APP_MESSAGE_BODY *msg_body) { static int app_key_handle_process(APP_MESSAGE_BODY *msg_body)
APP_KEY_STATUS key_status; {
APP_KEY_HANDLE *key_handle = NULL; APP_KEY_STATUS key_status;
APP_KEY_HANDLE *key_handle = NULL;
APP_KEY_GET_CODE(msg_body->message_id, key_status.code); APP_KEY_GET_CODE(msg_body->message_id, key_status.code);
APP_KEY_GET_EVENT(msg_body->message_id, key_status.event); APP_KEY_GET_EVENT(msg_body->message_id, key_status.event);
APP_KEY_TRACE(3, "%s code:%d event:%d", __func__, key_status.code, APP_KEY_TRACE(3,"%s code:%d event:%d",__func__,key_status.code, key_status.event);
key_status.event);
key_event_cnt--; key_event_cnt--;
key_handle = app_key_handle_find(&key_status); key_handle = app_key_handle_find(&key_status);
if (key_handle != NULL && key_handle->function != NULL) if (key_handle != NULL && key_handle->function!= NULL)
((APP_KEY_HANDLE_CB_T)key_handle->function)(&key_status, key_handle->param); ((APP_KEY_HANDLE_CB_T)key_handle->function)(&key_status,key_handle->param);
return 0; return 0;
} }
int app_key_handle_registration(const APP_KEY_HANDLE *key_handle) { int app_key_handle_registration(const APP_KEY_HANDLE *key_handle)
APP_KEY_HANDLE *dest_key_handle = NULL; {
APP_KEY_TRACE(1, "%s", __func__); APP_KEY_HANDLE *dest_key_handle = NULL;
dest_key_handle = app_key_handle_find(&(key_handle->key_status)); APP_KEY_TRACE(1,"%s",__func__);
dest_key_handle = app_key_handle_find(&(key_handle->key_status));
APP_KEY_TRACE(2, "%s dest handle:0x%x", __func__, dest_key_handle); APP_KEY_TRACE(2,"%s dest handle:0x%x",__func__,dest_key_handle);
if (dest_key_handle == NULL) { if (dest_key_handle == NULL){
dest_key_handle = (APP_KEY_HANDLE *)osPoolCAlloc(app_key_handle_mempool); dest_key_handle = (APP_KEY_HANDLE *)osPoolCAlloc (app_key_handle_mempool);
APP_KEY_TRACE(2, "%s malloc:0x%x", __func__, dest_key_handle); APP_KEY_TRACE(2,"%s malloc:0x%x",__func__,dest_key_handle);
list_append(app_key_conifg.key_list, dest_key_handle); list_append(app_key_conifg.key_list, dest_key_handle);
} }
if (dest_key_handle == NULL) if (dest_key_handle == NULL)
return -1; return -1;
APP_KEY_TRACE(5, "%s set handle:0x%x code:%d event:%d function:%x", __func__, APP_KEY_TRACE(5,"%s set handle:0x%x code:%d event:%d function:%x",__func__,dest_key_handle, key_handle->key_status.code, key_handle->key_status.event, key_handle->function);
dest_key_handle, key_handle->key_status.code, dest_key_handle->key_status.code = key_handle->key_status.code;
key_handle->key_status.event, key_handle->function); dest_key_handle->key_status.event = key_handle->key_status.event;
dest_key_handle->key_status.code = key_handle->key_status.code; dest_key_handle->string = key_handle->string;
dest_key_handle->key_status.event = key_handle->key_status.event; dest_key_handle->function = key_handle->function;
dest_key_handle->string = key_handle->string; dest_key_handle->param = key_handle->param;;
dest_key_handle->function = key_handle->function;
dest_key_handle->param = key_handle->param;
;
return 0; return 0;
} }
void app_key_handle_clear(void) { list_clear(app_key_conifg.key_list); } void app_key_handle_clear(void)
{
int app_key_open(int checkPwrKey) { list_clear(app_key_conifg.key_list);
APP_KEY_TRACE(2, "%s %x", __func__, app_key_conifg.key_list);
if (app_key_conifg.key_list == NULL)
app_key_conifg.key_list = list_new(app_key_handle_free, NULL, NULL);
if (app_key_handle_mempool == NULL)
app_key_handle_mempool = osPoolCreate(osPool(app_key_handle_mempool));
app_set_threadhandle(APP_MODUAL_KEY, app_key_handle_process);
return hal_key_open(checkPwrKey, key_event_process);
} }
int app_key_close(void) { int app_key_open(int checkPwrKey)
hal_key_close(); {
if (app_key_conifg.key_list != NULL) APP_KEY_TRACE(2,"%s %x",__func__, app_key_conifg.key_list);
list_free(app_key_conifg.key_list);
app_set_threadhandle(APP_MODUAL_KEY, NULL); if (app_key_conifg.key_list == NULL)
return 0; app_key_conifg.key_list = list_new(app_key_handle_free, NULL, NULL);
if (app_key_handle_mempool == NULL)
app_key_handle_mempool = osPoolCreate(osPool(app_key_handle_mempool));
app_set_threadhandle(APP_MODUAL_KEY, app_key_handle_process);
return hal_key_open(checkPwrKey, key_event_process);
} }
uint32_t app_key_read_status(uint32_t code) { int app_key_close(void)
return (uint32_t)hal_key_read_status((enum HAL_KEY_CODE_T)code); {
hal_key_close();
if (app_key_conifg.key_list != NULL)
list_free(app_key_conifg.key_list);
app_set_threadhandle(APP_MODUAL_KEY, NULL);
return 0;
}
uint32_t app_key_read_status(uint32_t code)
{
return (uint32_t)hal_key_read_status((enum HAL_KEY_CODE_T)code);
} }
#if defined(_AUTO_TEST_) #if defined(_AUTO_TEST_)
int simul_key_event_process(uint32_t key_code, uint8_t key_event) { int simul_key_event_process(uint32_t key_code, uint8_t key_event)
return key_event_process(key_code, key_event); {
return key_event_process(key_code, key_event);
} }
#endif #endif

View File

@ -13,87 +13,82 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "hal_key.h"
#ifndef __APP_KEY_H__ #ifndef __APP_KEY_H__
#define __APP_KEY_H__ #define __APP_KEY_H__
#ifdef __cplusplus #include "hal_key.h"
extern "C" {
#endif
#define APP_KEY_SET_MESSAGE(appevt, code, evt) \ #define APP_KEY_SET_MESSAGE(appevt, code, evt) (appevt = (((uint32_t)code&0xffffff)<<8)|(evt&0xff))
(appevt = (((uint32_t)code & 0xffffff) << 8) | (evt & 0xff)) #define APP_KEY_GET_CODE(appevt, code) (code = (appevt>>8)&0xffffff)
#define APP_KEY_GET_CODE(appevt, code) (code = (appevt >> 8) & 0xffffff) #define APP_KEY_GET_EVENT(appevt, evt) (evt = appevt&0xff)
#define APP_KEY_GET_EVENT(appevt, evt) (evt = appevt & 0xff)
#define APP_KEY_CODE_GOOGLE APP_KEY_CODE_FN15 #define APP_KEY_CODE_GOOGLE APP_KEY_CODE_FN15
#define APP_KEY_CODE_VOICEPATH APP_KEY_CODE_FN15 #define APP_KEY_CODE_VOICEPATH APP_KEY_CODE_FN15
#define APP_KEY_CODE_TILE APP_KEY_CODE_FN15 #define APP_KEY_CODE_TILE APP_KEY_CODE_FN15
enum APP_KEY_CODE_T { enum APP_KEY_CODE_T {
APP_KEY_CODE_NONE = HAL_KEY_CODE_NONE, APP_KEY_CODE_NONE = HAL_KEY_CODE_NONE,
APP_KEY_CODE_PWR = HAL_KEY_CODE_PWR, APP_KEY_CODE_PWR = HAL_KEY_CODE_PWR,
APP_KEY_CODE_FN1 = HAL_KEY_CODE_FN1, APP_KEY_CODE_FN1 = HAL_KEY_CODE_FN1,
APP_KEY_CODE_FN2 = HAL_KEY_CODE_FN2, APP_KEY_CODE_FN2 = HAL_KEY_CODE_FN2,
APP_KEY_CODE_FN3 = HAL_KEY_CODE_FN3, APP_KEY_CODE_FN3 = HAL_KEY_CODE_FN3,
APP_KEY_CODE_FN4 = HAL_KEY_CODE_FN4, APP_KEY_CODE_FN4 = HAL_KEY_CODE_FN4,
APP_KEY_CODE_FN5 = HAL_KEY_CODE_FN5, APP_KEY_CODE_FN5 = HAL_KEY_CODE_FN5,
APP_KEY_CODE_FN6 = HAL_KEY_CODE_FN6, APP_KEY_CODE_FN6 = HAL_KEY_CODE_FN6,
APP_KEY_CODE_FN7 = HAL_KEY_CODE_FN7, APP_KEY_CODE_FN7 = HAL_KEY_CODE_FN7,
APP_KEY_CODE_FN8 = HAL_KEY_CODE_FN8, APP_KEY_CODE_FN8 = HAL_KEY_CODE_FN8,
APP_KEY_CODE_FN9 = HAL_KEY_CODE_FN9, APP_KEY_CODE_FN9 = HAL_KEY_CODE_FN9,
APP_KEY_CODE_FN10 = HAL_KEY_CODE_FN10, APP_KEY_CODE_FN10 = HAL_KEY_CODE_FN10,
APP_KEY_CODE_FN11 = HAL_KEY_CODE_FN11, APP_KEY_CODE_FN11 = HAL_KEY_CODE_FN11,
APP_KEY_CODE_FN12 = HAL_KEY_CODE_FN12, APP_KEY_CODE_FN12 = HAL_KEY_CODE_FN12,
APP_KEY_CODE_FN13 = HAL_KEY_CODE_FN13, APP_KEY_CODE_FN13 = HAL_KEY_CODE_FN13,
APP_KEY_CODE_FN14 = HAL_KEY_CODE_FN14, APP_KEY_CODE_FN14 = HAL_KEY_CODE_FN14,
APP_KEY_CODE_FN15 = HAL_KEY_CODE_FN15, APP_KEY_CODE_FN15 = HAL_KEY_CODE_FN15,
}; };
enum APP_KEY_EVENT_T { enum APP_KEY_EVENT_T {
APP_KEY_EVENT_NONE = HAL_KEY_EVENT_NONE, APP_KEY_EVENT_NONE = HAL_KEY_EVENT_NONE,
APP_KEY_EVENT_DOWN = HAL_KEY_EVENT_DOWN, APP_KEY_EVENT_DOWN = HAL_KEY_EVENT_DOWN,
APP_KEY_EVENT_FIRST_DOWN = HAL_KEY_EVENT_FIRST_DOWN, APP_KEY_EVENT_FIRST_DOWN = HAL_KEY_EVENT_FIRST_DOWN,
APP_KEY_EVENT_CONTINUED_DOWN = HAL_KEY_EVENT_CONTINUED_DOWN, APP_KEY_EVENT_CONTINUED_DOWN = HAL_KEY_EVENT_CONTINUED_DOWN,
APP_KEY_EVENT_UP = HAL_KEY_EVENT_UP, APP_KEY_EVENT_UP = HAL_KEY_EVENT_UP,
APP_KEY_EVENT_UP_AFTER_LONGPRESS = HAL_KEY_EVENT_UP_AFTER_LONGPRESS, APP_KEY_EVENT_UP_AFTER_LONGPRESS = HAL_KEY_EVENT_UP_AFTER_LONGPRESS,
APP_KEY_EVENT_LONGPRESS = HAL_KEY_EVENT_LONGPRESS, APP_KEY_EVENT_LONGPRESS = HAL_KEY_EVENT_LONGPRESS,
APP_KEY_EVENT_LONGLONGPRESS = HAL_KEY_EVENT_LONGLONGPRESS, APP_KEY_EVENT_LONGLONGPRESS = HAL_KEY_EVENT_LONGLONGPRESS,
APP_KEY_EVENT_CLICK = HAL_KEY_EVENT_CLICK, APP_KEY_EVENT_CLICK = HAL_KEY_EVENT_CLICK,
APP_KEY_EVENT_DOUBLECLICK = HAL_KEY_EVENT_DOUBLECLICK, APP_KEY_EVENT_DOUBLECLICK = HAL_KEY_EVENT_DOUBLECLICK,
APP_KEY_EVENT_TRIPLECLICK = HAL_KEY_EVENT_TRIPLECLICK, APP_KEY_EVENT_TRIPLECLICK = HAL_KEY_EVENT_TRIPLECLICK,
APP_KEY_EVENT_ULTRACLICK = HAL_KEY_EVENT_ULTRACLICK, APP_KEY_EVENT_ULTRACLICK = HAL_KEY_EVENT_ULTRACLICK,
APP_KEY_EVENT_RAMPAGECLICK = HAL_KEY_EVENT_RAMPAGECLICK, APP_KEY_EVENT_RAMPAGECLICK = HAL_KEY_EVENT_RAMPAGECLICK,
APP_KEY_EVENT_SIXTHCLICK = HAL_KEY_EVENT_SIXTHCLICK, APP_KEY_EVENT_SIXTHCLICK = HAL_KEY_EVENT_SIXTHCLICK,
APP_KEY_EVENT_SEVENTHCLICK = HAL_KEY_EVENT_SEVENTHCLICK, APP_KEY_EVENT_SEVENTHCLICK = HAL_KEY_EVENT_SEVENTHCLICK,
APP_KEY_EVENT_EIGHTHCLICK = HAL_KEY_EVENT_EIGHTHCLICK, APP_KEY_EVENT_EIGHTHCLICK = HAL_KEY_EVENT_EIGHTHCLICK,
APP_KEY_EVENT_NINETHCLICK = HAL_KEY_EVENT_NINETHCLICK, APP_KEY_EVENT_NINETHCLICK = HAL_KEY_EVENT_NINETHCLICK,
APP_KEY_EVENT_TENTHCLICK = HAL_KEY_EVENT_TENTHCLICK, APP_KEY_EVENT_TENTHCLICK = HAL_KEY_EVENT_TENTHCLICK,
APP_KEY_EVENT_REPEAT = HAL_KEY_EVENT_REPEAT, APP_KEY_EVENT_REPEAT = HAL_KEY_EVENT_REPEAT,
APP_KEY_EVENT_GROUPKEY_DOWN = HAL_KEY_EVENT_GROUPKEY_DOWN, APP_KEY_EVENT_GROUPKEY_DOWN = HAL_KEY_EVENT_GROUPKEY_DOWN,
APP_KEY_EVENT_GROUPKEY_REPEAT = HAL_KEY_EVENT_GROUPKEY_REPEAT, APP_KEY_EVENT_GROUPKEY_REPEAT = HAL_KEY_EVENT_GROUPKEY_REPEAT,
APP_KEY_EVENT_INITDOWN = HAL_KEY_EVENT_INITDOWN, APP_KEY_EVENT_INITDOWN = HAL_KEY_EVENT_INITDOWN,
APP_KEY_EVENT_INITUP = HAL_KEY_EVENT_INITUP, APP_KEY_EVENT_INITUP = HAL_KEY_EVENT_INITUP,
APP_KEY_EVENT_INITLONGPRESS = HAL_KEY_EVENT_INITLONGPRESS, APP_KEY_EVENT_INITLONGPRESS = HAL_KEY_EVENT_INITLONGPRESS,
APP_KEY_EVENT_INITLONGLONGPRESS = HAL_KEY_EVENT_INITLONGLONGPRESS, APP_KEY_EVENT_INITLONGLONGPRESS = HAL_KEY_EVENT_INITLONGLONGPRESS,
APP_KEY_EVENT_INITFINISHED = HAL_KEY_EVENT_INITFINISHED, APP_KEY_EVENT_INITFINISHED = HAL_KEY_EVENT_INITFINISHED,
APP_KEY_EVENT_NUM = HAL_KEY_EVENT_NUM, APP_KEY_EVENT_NUM = HAL_KEY_EVENT_NUM,
}; };
typedef struct { typedef struct {
uint32_t code; uint32_t code;
uint8_t event; uint8_t event;
} APP_KEY_STATUS; }APP_KEY_STATUS;
typedef void (*APP_KEY_HANDLE_CB_T)(APP_KEY_STATUS *, void *param); typedef void (*APP_KEY_HANDLE_CB_T)(APP_KEY_STATUS*, void *param);
typedef struct { typedef struct {
APP_KEY_STATUS key_status; APP_KEY_STATUS key_status;
const char *string; const char* string;
APP_KEY_HANDLE_CB_T function; APP_KEY_HANDLE_CB_T function;
void *param; void *param;
} APP_KEY_HANDLE; } APP_KEY_HANDLE;
int app_key_open(int checkPwrKey); int app_key_open(int checkPwrKey);
@ -111,8 +106,4 @@ void app_key_simulate_key_event(uint32_t key_code, uint8_t key_event);
#if defined(_AUTO_TEST_) #if defined(_AUTO_TEST_)
int simul_key_event_process(uint32_t key_code, uint8_t key_event); int simul_key_event_process(uint32_t key_code, uint8_t key_event);
#endif #endif
#endif//__FMDEC_H__
#ifdef __cplusplus
};
#endif
#endif //__FMDEC_H__

File diff suppressed because it is too large Load Diff

View File

@ -18,7 +18,7 @@
#include "app_status_ind.h" #include "app_status_ind.h"
#define STACK_READY_BT 0x01 #define STACK_READY_BT 0x01
#define STACK_READY_BLE 0x02 #define STACK_READY_BLE 0x02
#ifdef __cplusplus #ifdef __cplusplus
@ -37,20 +37,20 @@ int app_reset(void);
int app_status_battery_report(uint8_t level); int app_status_battery_report(uint8_t level);
int app_voice_report(APP_STATUS_INDICATION_T status, uint8_t device_id); int app_voice_report( APP_STATUS_INDICATION_T status,uint8_t device_id);
int app_voice_report_generic(APP_STATUS_INDICATION_T status, uint8_t device_id, int app_voice_report_generic(APP_STATUS_INDICATION_T status, uint8_t device_id, uint8_t isMerging);
uint8_t isMerging);
int app_voice_stop(APP_STATUS_INDICATION_T status, uint8_t device_id); int app_voice_stop(APP_STATUS_INDICATION_T status, uint8_t device_id);
/*FixME*/ /*FixME*/
void app_status_set_num(const char *p); void app_status_set_num(const char* p);
////////////10 second tiemr/////////////// ////////////10 second tiemr///////////////
#define APP_FAST_PAIRING_TIMEOUT_IN_SECOND 120 #define APP_FAST_PAIRING_TIMEOUT_IN_SECOND 120
#define APP_PAIR_TIMER_ID 0 #define APP_PAIR_TIMER_ID 0
#define APP_POWEROFF_TIMER_ID 1 #define APP_POWEROFF_TIMER_ID 1
#define APP_FASTPAIR_LASTING_TIMER_ID 2 #define APP_FASTPAIR_LASTING_TIMER_ID 2
void app_stop_10_second_timer(uint8_t timer_id); void app_stop_10_second_timer(uint8_t timer_id);
void app_start_10_second_timer(uint8_t timer_id); void app_start_10_second_timer(uint8_t timer_id);
@ -61,28 +61,33 @@ void app_start_postponed_reset(void);
bool app_is_power_off_in_progress(void); bool app_is_power_off_in_progress(void);
#define CHIP_ID_C 1 #define CHIP_ID_C 1
#define CHIP_ID_D 2 #define CHIP_ID_D 2
void app_disconnect_all_bt_connections(void); void app_disconnect_all_bt_connections(void);
bool app_is_stack_ready(void); bool app_is_stack_ready(void);
extern uint8_t latency_mode_is_open; extern uint8_t latency_mode_is_open;
extern uint8_t app_poweroff_flag; bool Curr_Is_Master(void);
bool Curr_Is_Slave(void);
extern uint8_t get_nv_role(void);
extern uint8_t get_curr_role(void);
extern uint8_t app_poweroff_flag;
extern bool MobileLinkLose_reboot; extern bool MobileLinkLose_reboot;
extern bool factory_mode_status; extern bool factory_mode_status;
extern uint8_t app_poweroff_flag; extern uint8_t app_poweroff_flag;
extern bool MobileLinkLose_reboot; extern bool MobileLinkLose_reboot;
extern void startclr_info_timer(int ms); extern void startclr_info_timer(int ms);
extern void app_enterpairing_timer_start(void); extern void app_enterpairing_timer_start(void);
extern void app_enterpairing_timer_stop(void); extern void app_enterpairing_timer_stop(void);
extern void startdelay_report_tone(int ms, APP_STATUS_INDICATION_T status); extern void startdelay_report_tone(int ms,APP_STATUS_INDICATION_T status);
extern void box_cmd_app_bt_enter_mono_pairing_mode(void); extern void box_cmd_app_bt_enter_mono_pairing_mode(void);
extern int app_nvrecord_rebuild(void); extern int app_nvrecord_rebuild(void);
extern void app_bt_power_off_customize(); extern void app_bt_power_off_customize();
//////////////////// ////////////////////
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
#endif //__FMDEC_H__ #endif//__FMDEC_H__

View File

@ -13,21 +13,21 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "cmsis_os.h"
#include "stdio.h" #include "stdio.h"
#include "cmsis_os.h"
#include "string.h" #include "string.h"
#include "app_key.h"
#include "hal_iomux.h" #include "hal_iomux.h"
#include "hal_sleep.h" #include "app_key.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_sleep.h"
#include "audioflinger.h"
#include "audiobuffer.h"
#include "app_thread.h" #include "app_thread.h"
#include "app_utils.h" #include "app_utils.h"
#include "audiobuffer.h"
#include "audioflinger.h"
#include "besbt.h"
#include "bt_drv_interface.h" #include "bt_drv_interface.h"
#include "besbt.h"
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
#include "anc_usb_app.h" #include "anc_usb_app.h"
@ -35,299 +35,278 @@
//#include "dualadc_audio_app.h" //#include "dualadc_audio_app.h"
#endif #endif
#define APP_TESTER_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3 #define APP_TESTER_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3
extern "C" int hal_analogif_reg_write(unsigned short reg, unsigned short val); extern "C" int hal_analogif_reg_write(unsigned short reg, unsigned short val);
extern "C" void OS_NotifyEvm(void); extern "C" void OS_NotifyEvm(void);
extern void app_anc_usb_init(void); extern void app_anc_usb_init(void);
#define REG(a) *(volatile uint32_t *)(a) #define REG(a) *(volatile uint32_t *)(a)
void bt_signaling_test(APP_KEY_STATUS *status, void *param) { void bt_signaling_test(APP_KEY_STATUS *status, void *param)
TRACE(3, "%s %d,%d", __func__, status->code, status->event); {
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK);
btdrv_testmode_start(); btdrv_testmode_start();
btdrv_enable_dut(); btdrv_enable_dut();
} }
void bt_stack_test(APP_KEY_STATUS *status, void *param) { void bt_stack_test(APP_KEY_STATUS *status, void *param)
TRACE(3, "%s %d,%d", __func__, status->code, status->event); {
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
btdrv_start_bt(); btdrv_start_bt();
BesbtInit(); BesbtInit();
} }
void bt_ble_test(APP_KEY_STATUS *status, void *param) { void bt_ble_test(APP_KEY_STATUS *status, void *param)
TRACE(3, "%s %d,%d", __func__, status->code, status->event); {
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK);
btdrv_testmode_start(); btdrv_testmode_start();
btdrv_hcioff(); btdrv_hcioff();
hal_iomux_set_uart1(); hal_iomux_set_uart1();
btdrv_uart_bridge_loop(); btdrv_uart_bridge_loop();
} }
void bt_test_104m(APP_KEY_STATUS *status, void *param) { void bt_test_104m(APP_KEY_STATUS *status, void *param)
TRACE(3, "%s %d,%d", __func__, status->code, status->event); {
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_analogif_reg_write(0x35, 0x0); hal_analogif_reg_write(0x35,0x0);
hal_analogif_reg_write(0x36, 0x8000); hal_analogif_reg_write(0x36,0x8000);
hal_analogif_reg_write(0x37, 0x1000); hal_analogif_reg_write(0x37,0x1000);
hal_analogif_reg_write(0x31, 0xfd31); hal_analogif_reg_write(0x31,0xfd31);
REG(0xd0350248) = 0X80C00000; REG(0xd0350248) = 0X80C00000;
hal_analogif_reg_write(0xC, 0x3790); hal_analogif_reg_write(0xC,0x3790);
} }
void bt_change_to_iic(APP_KEY_STATUS *status, void *param) { void bt_change_to_iic(APP_KEY_STATUS *status, void *param)
TRACE(3, "%s %d,%d", __func__, status->code, status->event); {
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_iomux_set_analog_i2c(); hal_iomux_set_analog_i2c();
} }
void bt_change_to_uart0(APP_KEY_STATUS *status, void *param) { void bt_change_to_uart0(APP_KEY_STATUS *status, void *param)
TRACE(3, "%s %d,%d", __func__, status->code, status->event); {
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_iomux_set_uart0(); hal_iomux_set_uart0();
} }
void app_switch_i2c_uart(APP_KEY_STATUS *status, void *param) { void app_switch_i2c_uart(APP_KEY_STATUS *status, void *param)
static uint32_t flag = 1; {
static uint32_t flag = 1;
TRACE(2, "[%s] flag = %d", __func__, flag); TRACE(2,"[%s] flag = %d",__func__, flag);
if (flag) { if(flag)
bt_change_to_iic(NULL, NULL); {
} else { bt_change_to_iic(NULL, NULL);
bt_change_to_uart0(NULL, NULL); }
} else
flag = !flag; {
bt_change_to_uart0(NULL, NULL);
}
flag = !flag;
} }
void test_power_off(APP_KEY_STATUS *status, void *param) { void test_power_off(APP_KEY_STATUS *status, void *param)
TRACE(0, "app_power_off\n"); {
TRACE(0,"app_power_off\n");
} }
extern APP_KEY_STATUS bt_key; extern APP_KEY_STATUS bt_key;
void test_bt_key(APP_KEY_STATUS *status, void *param) { void test_bt_key(APP_KEY_STATUS *status, void *param)
TRACE(3, "%s %d,%d", __func__, status->code, status->event); {
if (bt_key.code == 0xff) { TRACE(3,"%s %d,%d",__func__, status->code, status->event);
bt_key.code = status->code; if(bt_key.code == 0xff)
bt_key.event = status->event; {
OS_NotifyEvm(); bt_key.code = status->code;
} bt_key.event = status->event;
OS_NotifyEvm();
}
} }
#ifdef __APP_TEST_SDMMC__ #ifdef __APP_TEST_SDMMC__
#include "app_sdmmc.h" #include "app_sdmmc.h"
#define SD_BUF_SIZE (10) #define SD_BUF_SIZE (10)
uint8_t sd_buf[SD_BUF_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; uint8_t sd_buf[SD_BUF_SIZE]={0,1,2,3,4,5,6,7,8,9};
void test_sd_card() { void test_sd_card()
sd_open(); {
sd_open();
dump_data2sd(APP_SDMMC_DUMP_OPEN, NULL, 0); dump_data2sd(APP_SDMMC_DUMP_OPEN, NULL , 0);
dump_data2sd(APP_SDMMC_DUMP_WRITE, sd_buf, SD_BUF_SIZE); dump_data2sd(APP_SDMMC_DUMP_WRITE,sd_buf, SD_BUF_SIZE);
dump_data2sd(APP_SDMMC_DUMP_CLOSE, NULL, 0); dump_data2sd(APP_SDMMC_DUMP_CLOSE, NULL, 0);
} }
#endif #endif
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
extern void adc_looptester(bool on, enum AUD_IO_PATH_T input_path, extern void adc_looptester(bool on, enum AUD_IO_PATH_T input_path, enum AUD_SAMPRATE_T sample_rate);
enum AUD_SAMPRATE_T sample_rate); void test_codec_loop(APP_KEY_STATUS *status, void *param)
void test_codec_loop(APP_KEY_STATUS *status, void *param) { {
audio_buffer_init(); audio_buffer_init();
adc_looptester(true, AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_8000); adc_looptester(true, AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_8000);
} }
#ifdef ANC_APP #ifdef ANC_APP
void test_anc(APP_KEY_STATUS *status, void *param) { anc_usb_app((bool)param); } void test_anc(APP_KEY_STATUS *status, void *param)
{
anc_usb_app((bool)param);
}
void test_usb_audio(APP_KEY_STATUS *status, void *param) { void test_usb_audio(APP_KEY_STATUS *status, void *param)
usb_audio_app((bool)param); {
// dualadc_audio_app((bool)param); usb_audio_app((bool)param);
//dualadc_audio_app((bool)param);
} }
#endif #endif
#endif #endif
void bt_change_to_jlink(APP_KEY_STATUS *status, void *param) { void bt_change_to_jlink(APP_KEY_STATUS *status, void *param)
hal_iomux_set_jtag(); {
hal_iomux_set_jtag();
hal_cmu_jtag_clock_enable();
hal_cmu_jtag_clock_enable();
} }
void bt_enable_tports(void) { void bt_enable_tports(void)
hal_iomux_set_bt_tport(); {
bt_drv_bt_tport_type_config(); hal_iomux_set_bt_tport();
bt_drv_bt_tport_type_config();
} }
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
extern void da_tester(uint8_t on); extern void da_tester(uint8_t on);
void bt_test_dsp_process(APP_KEY_STATUS *status, void *param) { da_tester(1); } void bt_test_dsp_process(APP_KEY_STATUS *status, void *param)
{
da_tester(1);
}
#endif #endif
#define MENU_TITLE_MAX_SIZE (50) #define MENU_TITLE_MAX_SIZE (50)
APP_KEY_HANDLE app_testcase[] = { APP_KEY_HANDLE app_testcase[] = {
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
{{APP_KEY_CODE_FN2, APP_KEY_EVENT_UP}, {{APP_KEY_CODE_FN2,APP_KEY_EVENT_UP},"USB AUDIO TEST OFF",test_usb_audio, (void *)0},
"USB AUDIO TEST OFF", {{APP_KEY_CODE_FN5,APP_KEY_EVENT_UP},"USB AUDIO TEST ON",test_usb_audio, (void *)1},
test_usb_audio, {{APP_KEY_CODE_FN3,APP_KEY_EVENT_UP},"ANC TEST OFF",test_anc, (void *)0},
(void *)0}, {{APP_KEY_CODE_FN6,APP_KEY_EVENT_UP},"ANC TEST ON",test_anc, (void *)1},
{{APP_KEY_CODE_FN5, APP_KEY_EVENT_UP},
"USB AUDIO TEST ON",
test_usb_audio,
(void *)1},
{{APP_KEY_CODE_FN3, APP_KEY_EVENT_UP}, "ANC TEST OFF", test_anc, (void *)0},
{{APP_KEY_CODE_FN6, APP_KEY_EVENT_UP}, "ANC TEST ON", test_anc, (void *)1},
#else #else
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
{{APP_KEY_CODE_FN1, APP_KEY_EVENT_LONGPRESS}, {{APP_KEY_CODE_FN1,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: test_codec_loop",test_codec_loop, NULL},
"LONGPRESS: test_codec_loop",
test_codec_loop,
NULL},
#endif #endif
{{APP_KEY_CODE_FN1, APP_KEY_EVENT_UP}, {{APP_KEY_CODE_FN1,APP_KEY_EVENT_UP},"bt_signaling_test",bt_signaling_test, NULL},
"bt_signaling_test", {{APP_KEY_CODE_FN2,APP_KEY_EVENT_UP},"bt gogogogo" ,bt_stack_test, NULL},
bt_signaling_test, {{APP_KEY_CODE_FN3,APP_KEY_EVENT_UP},"bt change to 104m",bt_test_104m, NULL},
NULL}, {{APP_KEY_CODE_FN4,APP_KEY_EVENT_UP},"ble test mode" ,bt_ble_test, NULL},
{{APP_KEY_CODE_FN2, APP_KEY_EVENT_UP}, "bt gogogogo", bt_stack_test, NULL},
{{APP_KEY_CODE_FN3, APP_KEY_EVENT_UP},
"bt change to 104m",
bt_test_104m,
NULL},
{{APP_KEY_CODE_FN4, APP_KEY_EVENT_UP}, "ble test mode", bt_ble_test, NULL},
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
{{APP_KEY_CODE_FN5, APP_KEY_EVENT_UP}, {{APP_KEY_CODE_FN5,APP_KEY_EVENT_UP},"dsp eq test" ,bt_test_dsp_process, NULL},
"dsp eq test",
bt_test_dsp_process,
NULL},
#endif #endif
{{APP_KEY_CODE_FN5, APP_KEY_EVENT_LONGPRESS}, {{APP_KEY_CODE_FN5,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: bt volume up key" ,test_bt_key, NULL},
"LONGPRESS: bt volume up key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN6, APP_KEY_EVENT_UP}, {{APP_KEY_CODE_FN6,APP_KEY_EVENT_UP},"bt volume down key" ,test_bt_key, NULL},
"bt volume down key", {{APP_KEY_CODE_FN6,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: bt volume down key" ,test_bt_key, NULL},
test_bt_key,
NULL},
{{APP_KEY_CODE_FN6, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: bt volume down key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN7, APP_KEY_EVENT_CLICK}, {{APP_KEY_CODE_FN7,APP_KEY_EVENT_CLICK},"bt function key" ,test_bt_key, NULL},
"bt function key", {{APP_KEY_CODE_FN7,APP_KEY_EVENT_DOUBLECLICK},"DOUBLECLICK: bt function key" ,test_bt_key, NULL},
test_bt_key, {{APP_KEY_CODE_FN7,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: bt function key" ,test_bt_key, NULL},
NULL},
{{APP_KEY_CODE_FN7, APP_KEY_EVENT_DOUBLECLICK},
"DOUBLECLICK: bt function key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN7, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: bt function key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN8, APP_KEY_EVENT_UP}, {{APP_KEY_CODE_FN8,APP_KEY_EVENT_UP},"open jlink" ,bt_change_to_jlink, NULL},
"open jlink", {{APP_KEY_CODE_FN9,APP_KEY_EVENT_UP},"iic_map2_P3_0" ,bt_change_to_iic, NULL},
bt_change_to_jlink, {{APP_KEY_CODE_PWR,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: power off" ,test_power_off, NULL},
NULL},
{{APP_KEY_CODE_FN9, APP_KEY_EVENT_UP},
"iic_map2_P3_0",
bt_change_to_iic,
NULL},
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: power off",
test_power_off,
NULL},
#endif // !(APP_TEST_AUDIO && ANC_APP) #endif // !(APP_TEST_AUDIO && ANC_APP)
{{0xff, APP_KEY_EVENT_NONE}, NULL, (uint32_t)NULL, 0}, {{0xff, APP_KEY_EVENT_NONE}, NULL, (uint32_t)NULL, 0},
}; };
int app_testcase_disp_menu(APP_KEY_HANDLE *testcase, bool printall) { int app_testcase_disp_menu(APP_KEY_HANDLE* testcase, bool printall)
char buf[MENU_TITLE_MAX_SIZE + 1]; {
if (strlen(testcase->string) > (MENU_TITLE_MAX_SIZE - 15)) { char buf[MENU_TITLE_MAX_SIZE+1];
TRACE(0, "string too long, please check again\n"); if (strlen(testcase->string)>(MENU_TITLE_MAX_SIZE-15)){
return -1; TRACE(0,"string too long, please check again\n");
} return -1;
}
if (printall) { if (printall){
memset(buf, '-', sizeof(buf) - 3); memset(buf, '-', sizeof(buf)-3);
buf[0] = '|'; buf[0] = '|';
buf[MENU_TITLE_MAX_SIZE - 3] = '|'; buf[MENU_TITLE_MAX_SIZE-3] = '|';
buf[MENU_TITLE_MAX_SIZE - 2] = '\r'; buf[MENU_TITLE_MAX_SIZE-2] = '\r';
buf[MENU_TITLE_MAX_SIZE - 1] = '\n'; buf[MENU_TITLE_MAX_SIZE-1] = '\n';
buf[MENU_TITLE_MAX_SIZE] = '\0'; buf[MENU_TITLE_MAX_SIZE] = '\0';
TRACE(1, "%s", buf); TRACE(1,"%s", buf);
osDelay(1); osDelay(1);
} }
do { do{
snprintf(buf, sizeof(buf), "| (0x%X)%s", testcase->key_status.code, snprintf(buf, sizeof(buf), "| (0x%X)%s", testcase->key_status.code, testcase->string);
testcase->string); memset(buf+strlen(buf), ' ', sizeof(buf)-strlen(buf)-3);
memset(buf + strlen(buf), ' ', sizeof(buf) - strlen(buf) - 3); buf[MENU_TITLE_MAX_SIZE-3] = '|';
buf[MENU_TITLE_MAX_SIZE - 3] = '|'; buf[MENU_TITLE_MAX_SIZE-2] = '\r';
buf[MENU_TITLE_MAX_SIZE - 2] = '\r'; buf[MENU_TITLE_MAX_SIZE-1] = '\n';
buf[MENU_TITLE_MAX_SIZE - 1] = '\n'; buf[MENU_TITLE_MAX_SIZE] = '\0';
buf[MENU_TITLE_MAX_SIZE] = '\0'; TRACE(1,"%s", buf);
TRACE(1, "%s", buf); testcase++;
testcase++; }while(testcase->key_status.code != 0xff && printall);
} while (testcase->key_status.code != 0xff && printall);
if (printall) { if (printall){
memset(buf, '-', sizeof(buf) - 3); memset(buf, '-', sizeof(buf)-3);
buf[0] = '|'; buf[0] = '|';
buf[MENU_TITLE_MAX_SIZE - 3] = '|'; buf[MENU_TITLE_MAX_SIZE-3] = '|';
buf[MENU_TITLE_MAX_SIZE - 2] = '\r'; buf[MENU_TITLE_MAX_SIZE-2] = '\r';
buf[MENU_TITLE_MAX_SIZE - 1] = '\n'; buf[MENU_TITLE_MAX_SIZE-1] = '\n';
buf[MENU_TITLE_MAX_SIZE] = '\0'; buf[MENU_TITLE_MAX_SIZE] = '\0';
TRACE(1, "%s", buf); TRACE(1,"%s", buf);
osDelay(1); osDelay(1);
} }
return 0; return 0;
} }
int app_testcase_key_response(APP_MESSAGE_BODY *msg_body) { int app_testcase_key_response(APP_MESSAGE_BODY *msg_body)
uint8_t i = 0; {
APP_KEY_STATUS key_status; uint8_t i = 0;
APP_KEY_STATUS key_status;
APP_KEY_GET_CODE(msg_body->message_id, key_status.code); APP_KEY_GET_CODE(msg_body->message_id, key_status.code);
APP_KEY_GET_EVENT(msg_body->message_id, key_status.event); APP_KEY_GET_EVENT(msg_body->message_id, key_status.event);
if ((key_status.code) > (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE))) if ((key_status.code)>(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE)))
return -1; return -1;
for (i = 0; i < (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE)); i++) { for (i=0; i<(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE)); i++){
if (app_testcase[i].key_status.code == key_status.code && if (app_testcase[i].key_status.code == key_status.code && (app_testcase[i].key_status.event == key_status.event))
(app_testcase[i].key_status.event == key_status.event)) break;
break; }
}
if (i >= (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE))) if (i>=(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE)))
return -1; return -1;
if (app_testcase[i].function != (uint32_t)NULL) { if (app_testcase[i].function != (uint32_t)NULL){
if (app_testcase[i].string != (uint32_t)NULL) if (app_testcase[i].string != (uint32_t)NULL)
app_testcase_disp_menu(&app_testcase[i], 0); app_testcase_disp_menu(&app_testcase[i],0);
((APP_KEY_HANDLE_CB_T)app_testcase[i].function)(&key_status, ((APP_KEY_HANDLE_CB_T)app_testcase[i].function)(&key_status,app_testcase[i].param);
app_testcase[i].param); }
}
return 0; return 0;
} }
void app_test_init(void) { void app_test_init(void)
uint8_t i = 0; {
TRACE(1, "%s", __func__); uint8_t i = 0;
for (i = 0; i < (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE)); i++) { TRACE(1,"%s",__func__);
app_key_handle_registration(&app_testcase[i]); for (i=0; i<(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE)); i++){
} app_key_handle_registration(&app_testcase[i]);
app_testcase_disp_menu(app_testcase, 1); }
app_testcase_disp_menu(app_testcase, 1);
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
app_anc_usb_init(); app_anc_usb_init();
#endif #endif
} }

View File

@ -1,111 +0,0 @@
#ifndef COMMON_APP_IMPORTS
#define COMMON_APP_IMPORTS
#include "a2dp_api.h"
#include "app_audio.h"
#include "app_battery.h"
#include "app_ble_include.h"
#include "app_bt.h"
#include "app_bt_func.h"
#include "app_bt_media_manager.h"
#include "app_key.h"
#include "app_overlay.h"
#include "app_pwl.h"
#include "app_status_ind.h"
#include "app_thread.h"
#include "app_utils.h"
#include "audioflinger.h"
#include "besbt.h"
#include "bt_drv_interface.h"
#include "bt_if.h"
#include "btapp.h"
#include "cmsis_os.h"
#include "crash_dump_section.h"
#include "factory_section.h"
#include "gapm_task.h"
#include "hal_bootmode.h"
#include "hal_i2c.h"
#include "hal_sleep.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "list.h"
#include "log_section.h"
#include "me_api.h"
#include "norflash_api.h"
#include "nvrecord.h"
#include "nvrecord_dev.h"
#include "nvrecord_env.h"
#include "os_api.h"
#include "pmu.h"
#include "stdio.h"
#include "string.h"
#include "tgt_hardware.h"
#ifdef __AI_VOICE__
#include "ai_manager.h"
#include "app_ai_if.h"
#include "app_ai_manager_api.h"
#include "app_ai_tws.h"
#endif
#include "app_tws_ibrt_cmd_handler.h"
#include "audio_process.h"
#ifdef __PC_CMD_UART__
#include "app_cmd.h"
#endif
#ifdef __FACTORY_MODE_SUPPORT__
#include "app_factory.h"
#include "app_factory_bt.h"
#endif
#ifdef __INTERCONNECTION__
#include "app_ble_mode_switch.h"
#include "app_interconnection.h"
#include "app_interconnection_ble.h"
#include "app_interconnection_logic_protocol.h"
#endif
#ifdef __INTERACTION__
#include "app_interaction.h"
#endif
#ifdef BISTO_ENABLED
#include "app_ai_manager_api.h"
#include "gsound_custom_actions.h"
#include "gsound_custom_ota.h"
#include "gsound_custom_reset.h"
#include "nvrecord_gsound.h"
#endif
#ifdef IBRT_OTA
#include "ota_bes.h"
#endif
#ifdef MEDIA_PLAYER_SUPPORT
#include "app_media_player.h"
#include "resources.h"
#endif
#ifdef VOICE_DATAPATH
#include "app_voicepath.h"
#endif
#ifdef BT_USB_AUDIO_DUAL_MODE
#include "btusb_audio.h"
#include "usbaudio_thread.h"
#endif
#ifdef TILE_DATAPATH
#include "tile_target_ble.h"
#endif
#if defined(IBRT)
#include "app_ibrt_customif_cmd.h"
#include "app_ibrt_customif_ui.h"
#include "app_ibrt_if.h"
#include "app_ibrt_ui_test.h"
#include "app_ibrt_voice_report.h"
#include "app_tws_if.h"
#endif
#endif

View File

@ -1,68 +0,0 @@
// Google Fast pairing Service
#include "common_apps_imports.h"
#ifdef GFPS_ENABLED
#include "app_gfps.h"
#ifdef GFPS_ENABLED
static void app_tell_battery_info_handler(uint8_t *batteryValueCount,
uint8_t *batteryValue) {
GFPS_BATTERY_STATUS_E status;
if (app_battery_is_charging()) {
status = BATTERY_CHARGING;
} else {
status = BATTERY_NOT_CHARGING;
}
// TODO: add the charger case's battery level
#ifdef IBRT
if (app_tws_ibrt_tws_link_connected()) {
*batteryValueCount = 2;
} else {
*batteryValueCount = 1;
}
#else
*batteryValueCount = 1;
#endif
TRACE(2, "%s,*batteryValueCount is %d", __func__, *batteryValueCount);
if (1 == *batteryValueCount) {
batteryValue[0] = ((app_battery_current_level() + 1) * 10) | (status << 7);
} else {
batteryValue[0] = ((app_battery_current_level() + 1) * 10) | (status << 7);
batteryValue[1] = ((app_battery_current_level() + 1) * 10) | (status << 7);
}
}
#endif
#endif
#ifdef GFPS_ENABLED
static void app_tell_battery_info_handler(uint8_t *batteryValueCount,
uint8_t *batteryValue) {
GFPS_BATTERY_STATUS_E status;
if (app_battery_is_charging()) {
status = BATTERY_CHARGING;
} else {
status = BATTERY_NOT_CHARGING;
}
// TODO: add the charger case's battery level
#ifdef IBRT
if (app_tws_ibrt_tws_link_connected()) {
*batteryValueCount = 2;
} else {
*batteryValueCount = 1;
}
#else
*batteryValueCount = 1;
#endif
TRACE(2, "%s,*batteryValueCount is %d", __func__, *batteryValueCount);
if (1 == *batteryValueCount) {
batteryValue[0] = ((app_battery_current_level() + 1) * 10) | (status << 7);
} else {
batteryValue[0] = ((app_battery_current_level() + 1) * 10) | (status << 7);
batteryValue[1] = ((app_battery_current_level() + 1) * 10) | (status << 7);
}
}
#endif

View File

@ -1,32 +0,0 @@
#include "ibrt.h"
#include "common_apps_imports.h"
#include "hal_gpio.h"
#include "tgt_hardware.h"
extern struct BT_DEVICE_T app_bt_device;
extern void hal_gpio_pin_set(enum HAL_GPIO_PIN_T pin);
bool Curr_Is_Master(void) {
static ibrt_ctrl_t *p_ibrt_ctrl = app_tws_ibrt_get_bt_ctrl_ctx();
if (p_ibrt_ctrl->current_role == IBRT_MASTER)
return 1;
else
return 0;
}
bool Curr_Is_Slave(void) {
static ibrt_ctrl_t *p_ibrt_ctrl = app_tws_ibrt_get_bt_ctrl_ctx();
if (p_ibrt_ctrl->current_role == IBRT_SLAVE)
return 1;
else
return 0;
}
uint8_t get_curr_role(void) {
static ibrt_ctrl_t *p_ibrt_ctrl = app_tws_ibrt_get_bt_ctrl_ctx();
return p_ibrt_ctrl->current_role;
}
uint8_t get_nv_role(void) {
static ibrt_ctrl_t *p_ibrt_ctrl = app_tws_ibrt_get_bt_ctrl_ctx();
return p_ibrt_ctrl->nv_role;
}

View File

@ -1,15 +0,0 @@
#pragma once
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
bool Curr_Is_Master(void);
uint8_t get_curr_role(void);
bool Curr_Is_Slave(void);
uint8_t get_nv_role(void);
#ifdef __cplusplus
};
#endif

View File

@ -1,271 +0,0 @@
#include "a2dp_api.h"
#include "app_audio.h"
#include "app_battery.h"
#include "app_ble_include.h"
#include "app_bt.h"
#include "app_bt_func.h"
#include "app_bt_media_manager.h"
#include "app_key.h"
#include "app_overlay.h"
#include "app_pwl.h"
#include "app_status_ind.h"
#include "app_thread.h"
#include "app_tws_ibrt_cmd_handler.h"
#include "app_utils.h"
#include "apps.h"
#include "audio_process.h"
#include "audioflinger.h"
#include "besbt.h"
#include "bt_drv_interface.h"
#include "bt_if.h"
#include "btapp.h"
#include "cmsis_os.h"
#include "crash_dump_section.h"
#include "factory_section.h"
#include "gapm_task.h"
#include "hal_bootmode.h"
#include "hal_i2c.h"
#include "hal_sleep.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "list.h"
#include "log_section.h"
#include "me_api.h"
#include "norflash_api.h"
#include "nvrecord.h"
#include "nvrecord_dev.h"
#include "nvrecord_env.h"
#include "os_api.h"
#include "pmu.h"
#include "stdio.h"
#include "string.h"
#include "tgt_hardware.h"
#ifdef __INTERCONNECTION__
#include "app_ble_mode_switch.h"
#include "app_interconnection.h"
#include "app_interconnection_ble.h"
#include "app_interconnection_logic_protocol.h"
#endif
#include "app_ibrt_customif_cmd.h"
#include "app_ibrt_customif_ui.h"
#include "app_ibrt_if.h"
#include "app_ibrt_ui_test.h"
#include "app_ibrt_voice_report.h"
#include "app_tws_if.h"
#include "app_anc.h"
extern struct BT_DEVICE_T app_bt_device;
/*
* handling of touch events when the devices are turned on
* Both pods active:
* Right Ear:
* Single tap : Play/Pause
* Double tap : Next track
* Hold : ANC on/off
* Triple tap : Volume Up
*
* Left Ear:
* Single tap : Play/Pause
* Double tap : Previous track
* Hold : ANC on/off
* Triple tap : Volume Down
* Single pod active:
* Single tap : Play/Pause
* Double tap : Next track
* Hold : Previous track
* Triple tap : Volume Up
* Quad tap : Volume Down
* We use app_ibrt_if_start_user_action for handling actions, as this will apply
locally if we are link master
* OR send it over the link to the other bud if we are not
*/
void send_vol_up(void) {
uint8_t action[] = {IBRT_ACTION_LOCAL_VOLUP};
app_ibrt_if_start_user_action(action, sizeof(action));
}
void send_play_pause(void) {
if (app_bt_device.a2dp_play_pause_flag != 0) {
uint8_t action[] = {IBRT_ACTION_PAUSE};
app_ibrt_if_start_user_action(action, sizeof(action));
} else {
uint8_t action[] = {IBRT_ACTION_PLAY};
app_ibrt_if_start_user_action(action, sizeof(action));
}
}
void send_vol_down(void) {
uint8_t action[] = {IBRT_ACTION_LOCAL_VOLDN};
app_ibrt_if_start_user_action(action, sizeof(action));
}
void send_next_track(void) {
uint8_t action[] = {IBRT_ACTION_FORWARD};
app_ibrt_if_start_user_action(action, sizeof(action));
}
void send_prev_track(void) {
uint8_t action[] = {IBRT_ACTION_BACKWARD};
app_ibrt_if_start_user_action(action, sizeof(action));
}
void app_key_single_tap(APP_KEY_STATUS *status, void *param) {
TRACE(2, "%s event %d", __func__, status->event);
if (!app_tws_ibrt_tws_link_connected()) {
// No other bud paired
TRACE(0, "Handling %s in single bud mode", __func__);
send_play_pause();
} else {
// Bud's are working as a pair
if (app_tws_is_left_side()) {
TRACE(0, "Handling %s as left bud", __func__);
// Lefty
send_play_pause();
} else {
TRACE(0, "Handling %s as right bud", __func__);
// Righty
send_play_pause();
}
}
}
void app_key_double_tap(APP_KEY_STATUS *status, void *param) {
TRACE(2, "%s event %d", __func__, status->event);
if (!app_tws_ibrt_tws_link_connected()) {
// No other bud paired
TRACE(0, "Handling %s in single bud mode", __func__);
send_next_track();
} else {
// Bud's are working as a pair
if (app_tws_is_left_side()) {
TRACE(0, "Handling %s as left bud", __func__);
// Lefty
send_prev_track();
} else {
TRACE(0, "Handling %s as right bud", __func__);
// Righty
send_next_track();
}
}
}
void app_key_triple_tap(APP_KEY_STATUS *status, void *param) {
TRACE(2, "%s event %d", __func__, status->event);
if (!app_tws_ibrt_tws_link_connected()) {
// No other bud paired
TRACE(0, "Handling %s in single bud mode", __func__);
send_vol_up();
} else {
// Bud's are working as a pair
if (app_tws_is_left_side()) {
TRACE(0, "Handling %s as left bud", __func__);
// Lefty
send_vol_down();
} else {
TRACE(0, "Handling %s as right bud", __func__);
// Righty
send_vol_up();
}
}
}
void app_key_quad_tap(APP_KEY_STATUS *status, void *param) {
TRACE(2, "%s event %d", __func__, status->event);
if (!app_tws_ibrt_tws_link_connected()) {
// No other bud paired
TRACE(0, "Handling %s in single bud mode", __func__);
send_vol_down();
} else {
// Bud's are working as a pair
if (app_tws_is_left_side()) {
TRACE(0, "Handling %s as left bud", __func__);
// Lefty
} else {
TRACE(0, "Handling %s as right bud", __func__);
// Righty
}
}
}
void app_key_long_press_down(APP_KEY_STATUS *status, void *param) {
TRACE(2, "%s event %d", __func__, status->event);
if (!app_tws_ibrt_tws_link_connected()) {
// No other bud paired
TRACE(0, "Handling %s in single bud mode", __func__);
send_prev_track();
} else {
// Bud's are working as a pair
app_anc_key(status, param);
}
}
void app_key_reboot(APP_KEY_STATUS *status, void *param) {
TRACE(1, "%s ", __func__);
hal_cmu_sys_reboot();
}
void app_key_init(void) {
uint8_t i = 0;
TRACE(1, "%s", __func__);
const APP_KEY_HANDLE key_cfg[] = {
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_CLICK}, "", app_key_single_tap, NULL},
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_DOUBLECLICK},
"",
app_key_double_tap,
NULL},
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_TRIPLECLICK},
"",
app_key_triple_tap,
NULL},
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_ULTRACLICK},
"",
app_key_quad_tap,
NULL},
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_LONGPRESS},
"",
app_key_long_press_down,
NULL},
};
app_key_handle_clear();
for (i = 0; i < (sizeof(key_cfg) / sizeof(APP_KEY_HANDLE)); i++) {
app_key_handle_registration(&key_cfg[i]);
}
}
void app_key_init_on_charging(void) {
uint8_t i = 0;
const APP_KEY_HANDLE key_cfg[] = {
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_LONGLONGPRESS},
"long press reboot",
app_key_reboot,
NULL},
// {{APP_KEY_CODE_PWR,APP_KEY_EVENT_CLICK},"bt function
// key",app_dfu_key_handler, NULL},
#ifdef __USB_COMM__
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_LONGPRESS},
"usb cdc key",
app_usb_cdc_comm_key_handler,
NULL},
#endif
};
TRACE(1, "%s", __func__);
for (i = 0; i < (sizeof(key_cfg) / sizeof(APP_KEY_HANDLE)); i++) {
app_key_handle_registration(&key_cfg[i]);
}
}

View File

@ -1,5 +0,0 @@
#pragma once
void app_key_init(void);
void app_key_init_on_charging(void);

View File

@ -1,40 +0,0 @@
#include "led_control.h"
#include "common_apps_imports.h"
#include "ibrt.h"
/******************************LED_status_timer*********************************************************/
osTimerId LED_statusid = NULL;
osTimerDef(defLED_status, LED_statusfun);
void LED_statusinit(void) {
LED_statusid = osTimerCreate(osTimer(defLED_status), osTimerOnce, (void *)0);
}
void LED_statusfun(const void *) {
// TRACE("\n\n!!!!!!enter %s\n\n",__func__);
if ((Curr_Is_Slave() || app_device_bt_is_connected()) &&
(!app_battery_is_charging())) {
app_status_indication_set(APP_STATUS_INDICATION_CONNECTED);
} else if (!app_device_bt_is_connected() && (!app_battery_is_charging())) {
app_status_indication_set(APP_STATUS_INDICATION_BOTHSCAN);
} else if (app_battery_is_charging()) {
app_status_indication_set(APP_STATUS_INDICATION_CHARGING);
}
// unsigned char firstaddr;
// I2C_ReadByte(decice_firstreg,&firstaddr);
// TRACE(3,"0X00 REG = 0x%x",firstaddr);
startLED_status(1000);
}
void startLED_status(int ms) {
// TRACE("\n\n !!!!!!!!!!start %s\n\n",__func__);
osTimerStart(LED_statusid, ms);
}
void stopLED_status(void) {
// TRACE("\n\n!!!!!!!!!! stop %s\n\n",__func__);
osTimerStop(LED_statusid);
}
/********************************LED_status_timer*******************************************************/

View File

@ -1,6 +0,0 @@
#pragma once
void LED_statusinit(void);
void startLED_status(int ms);
void stopLED_status(void);
void LED_statusfun(const void *);

View File

@ -1,41 +0,0 @@
// LHDC needs a licence key
// We dont have one; so probably cant ever officially use this. But its here for
// preservation at the least
#if defined(A2DP_LHDC_ON)
extern "C" {
typedef struct bes_bt_local_info_t {
uint8_t bt_addr[BTIF_BD_ADDR_SIZE];
const char *bt_name;
uint8_t bt_len;
uint8_t ble_addr[BTIF_BD_ADDR_SIZE];
const char *ble_name;
uint8_t ble_len;
} bes_bt_local_info;
typedef int (*LHDC_GET_BT_INFO)(bes_bt_local_info *bt_info);
extern bool lhdcSetLicenseKeyTable(uint8_t *licTable, LHDC_GET_BT_INFO pFunc);
}
extern int bes_bt_local_info_get(bes_bt_local_info *local_info);
void lhdc_license_check() {
uint8_t lhdc_license_key = 0;
uint8_t *lhdc_license_data = (uint8_t *)__lhdc_license_start + 0x98;
TRACE(5, "lhdc_license_data:%p, lhdc license %02x %02x %02x %02x",
lhdc_license_data, lhdc_license_data[0], lhdc_license_data[1],
lhdc_license_data[2], lhdc_license_data[3]);
app_overlay_select(APP_OVERLAY_A2DP_LHDC);
TRACE(1, "current_overlay = %d", app_get_current_overlay());
lhdc_license_key =
lhdcSetLicenseKeyTable(lhdc_license_data, bes_bt_local_info_get);
TRACE(0, "lhdc_license_key:%d", lhdc_license_key);
if (lhdc_license_key) {
TRACE(0, "LHDC OK");
} else {
TRACE(0, "LHDC ERROR");
}
}
#endif

View File

@ -1,29 +0,0 @@
#ifdef RB_CODEC
extern bool app_rbcodec_check_hfp_active(void);
void app_switch_player_key(APP_KEY_STATUS *status, void *param) {
TRACE(3, "%s %d,%d", __func__, status->code, status->event);
if (!rb_ctl_is_init_done()) {
TRACE(0, "rb ctl not init done");
return;
}
if (app_rbcodec_check_hfp_active()) {
app_bt_key(status, param);
return;
}
app_rbplay_audio_reset_pause_status();
if (app_rbplay_mode_switch()) {
app_voice_report(APP_STATUS_INDICATION_POWERON, 0);
app_rbcodec_ctr_play_onoff(true);
} else {
app_rbcodec_ctr_play_onoff(false);
app_voice_report(APP_STATUS_INDICATION_POWEROFF, 0);
}
return;
}
#endif

View File

@ -1,7 +0,0 @@
#pragma once
#ifdef RB_CODEC
extern int rb_ctl_init();
extern bool rb_ctl_is_init_done(void);
extern void app_rbplay_audio_reset_pause_status(void);
#endif

View File

@ -14,212 +14,241 @@
* *
****************************************************************************/ ****************************************************************************/
//#include "mbed.h" //#include "mbed.h"
#include <assert.h>
#include <stdio.h> #include <stdio.h>
#include <assert.h>
#include "cmsis_os.h"
#include "tgt_hardware.h"
#include "hal_uart.h"
#include "hal_timer.h"
#include "audioflinger.h"
#include "lockcqueue.h"
#include "hal_trace.h"
#include "hal_cmu.h"
#include "hal_chipid.h"
#include "analog.h" #include "analog.h"
#include "app_audio.h"
#include "app_bt_stream.h" #include "app_bt_stream.h"
#include "app_overlay.h" #include "app_overlay.h"
#include "app_audio.h"
#include "app_utils.h" #include "app_utils.h"
#include "apps.h"
#include "audioflinger.h"
#include "cmsis_os.h"
#include "hal_chipid.h"
#include "hal_cmu.h"
#include "hal_codec.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_uart.h"
#include "lockcqueue.h"
#include "nvrecord.h" #include "nvrecord.h"
#include "nvrecord_env.h" #include "nvrecord_env.h"
#include "tgt_hardware.h" #include "hal_codec.h"
#include "apps.h"
#include "app_ring_merge.h" #include "app_ring_merge.h"
#include "app_bt_func.h"
#include "app_mic.h"
#include "besbt.h"
#include "bt_drv.h" #include "bt_drv.h"
#include "bt_xtal_sync.h" #include "bt_xtal_sync.h"
#include "besbt.h"
#include "app_bt_func.h"
#include "app_mic.h"
#include "app_bt_media_manager.h"
#include "app_hfp.h"
#include "app_thread.h" #include "app_thread.h"
#include "btapp.h"
#include "cqueue.h" #include "cqueue.h"
#include "hal_codec.h" #include "btapp.h"
#include "hal_location.h" #include "app_bt_media_manager.h"
#include "hal_sleep.h"
#include "string.h" #include "string.h"
#include "hal_location.h"
#include "hal_codec.h"
#include "hal_sleep.h"
#include "app_hfp.h"
extern bool app_hfp_siri_is_active(void); extern bool app_hfp_siri_is_active(void);
extern int a2dp_volume_2_level_convert(uint8_t vol); extern int a2dp_volume_2_level_convert(uint8_t vol);
extern bool mic_is_already_on; extern bool mic_is_already_on;
typedef enum { typedef enum {
MIC_EVENT_START, MIC_EVENT_START,
MIC_EVENT_STOP, MIC_EVENT_STOP,
MIC_EVENT_CHECK, MIC_EVENT_CHECK,
} MIC_EVENT_TYPE; }MIC_EVENT_TYPE;
static MIC_APP_TYPE current_mictype = MIC_APP_NONE; static MIC_APP_TYPE current_mictype = MIC_APP_NONE;
static struct AF_STREAM_CONFIG_T mic_config[MIC_APP_MAX]; static struct AF_STREAM_CONFIG_T mic_config[MIC_APP_MAX];
osMutexId app_mic_mutex_id = NULL; osMutexId app_mic_mutex_id = NULL;
osMutexDef(app_mic_mutex); osMutexDef(app_mic_mutex);
// flag of is first mic date, if true ,will delete to avoid POP voice // flag of is first mic date, if true ,will delete to avoid POP voice
bool first_mic_in = false; bool first_mic_in = false;
static int internal_mic_start(MIC_APP_TYPE new_mictype) { static int internal_mic_start(MIC_APP_TYPE new_mictype)
TRACE(1, "MIC_EVENT_START,current_mictype=%d", current_mictype); {
assert(new_mictype != MIC_APP_NONE); TRACE(1,"MIC_EVENT_START,current_mictype=%d",current_mictype);
if (current_mictype != MIC_APP_NONE) { assert(new_mictype != MIC_APP_NONE);
TRACE(0, "MIC START ERROR################"); if (current_mictype != MIC_APP_NONE) {
TRACE(0,"MIC START ERROR################");
return false;
}
if (new_mictype == MIC_APP_SOC_CALL)
{
if (btapp_hfp_get_call_state() || app_hfp_siri_is_active())
{
TRACE(2,"[%s] tws_mic_start_telephone_call: %d", __func__, mic_config[new_mictype].sample_rate);
if (mic_config[new_mictype].data_ptr != NULL)
{
}
else
{
TRACE(1,"[%s] Warning sco play not started",__func__);
}
current_mictype = MIC_APP_SOC_CALL;
}
}
else if (new_mictype == MIC_APP_SPEECH_RECO)
{
}
else if (new_mictype == MIC_APP_CSPOTTER)
{
first_mic_in = true;
current_mictype = MIC_APP_CSPOTTER;
}
else if (new_mictype == MIC_APP_MICRECORD)
{
current_mictype = MIC_APP_MICRECORD;
}
else if (new_mictype == MIC_APP_OTHER)
{
TRACE(0,"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &mic_config[new_mictype]);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
return false; return false;
} }
if (new_mictype == MIC_APP_SOC_CALL) {
if (btapp_hfp_get_call_state() || app_hfp_siri_is_active()) { static int internal_mic_stop(MIC_APP_TYPE new_mictype)
TRACE(2, "[%s] tws_mic_start_telephone_call: %d", __func__, {
mic_config[new_mictype].sample_rate); TRACE(1,"MIC_EVENT_STOP,current_mictype=%d",current_mictype);
if (mic_config[new_mictype].data_ptr != NULL) { //assert(currentMicStauts == currentStatus);
} else { if (new_mictype != current_mictype) {
TRACE(1, "[%s] Warning sco play not started", __func__); TRACE(0,"MIC STOP ERROR ################");
} return false;
current_mictype = MIC_APP_SOC_CALL;
} }
} else if (new_mictype == MIC_APP_SPEECH_RECO) { af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
} else if (new_mictype == MIC_APP_CSPOTTER) { af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
first_mic_in = true; first_mic_in = false;
current_mictype = MIC_APP_CSPOTTER; current_mictype = MIC_APP_NONE;
} else if (new_mictype == MIC_APP_MICRECORD) { app_sysfreq_req(APP_SYSFREQ_USER_APP_3, APP_SYSFREQ_32K);
current_mictype = MIC_APP_MICRECORD; return true;
} else if (new_mictype == MIC_APP_OTHER) {
TRACE(0, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &mic_config[new_mictype]);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
return false;
} }
static int internal_mic_stop(MIC_APP_TYPE new_mictype) { static int app_mic_process(APP_MESSAGE_BODY *msg_body)
TRACE(1, "MIC_EVENT_STOP,current_mictype=%d", current_mictype); {
// assert(currentMicStauts == currentStatus); MIC_EVENT_TYPE mic_event = (MIC_EVENT_TYPE)msg_body->message_id;
if (new_mictype != current_mictype) { MIC_APP_TYPE new_mictype = (MIC_APP_TYPE)msg_body->message_ptr;
TRACE(0, "MIC STOP ERROR ################"); int ret = -1;
return false; TRACE(4,"%s mic_event:%d new_mictype:%d current_mictype:%d",__func__,mic_event, new_mictype, current_mictype);
}
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
first_mic_in = false;
current_mictype = MIC_APP_NONE;
app_sysfreq_req(APP_SYSFREQ_USER_APP_3, APP_SYSFREQ_32K);
return true;
}
static int app_mic_process(APP_MESSAGE_BODY *msg_body) { osMutexWait(app_mic_mutex_id, osWaitForever);
MIC_EVENT_TYPE mic_event = (MIC_EVENT_TYPE)msg_body->message_id; if (mic_event == MIC_EVENT_START)
MIC_APP_TYPE new_mictype = (MIC_APP_TYPE)msg_body->message_ptr; ret = internal_mic_start(new_mictype);
int ret = -1; else if (mic_event == MIC_EVENT_STOP)
TRACE(4, "%s mic_event:%d new_mictype:%d current_mictype:%d", __func__, ret = internal_mic_stop(new_mictype);
mic_event, new_mictype, current_mictype); else if (mic_event == MIC_EVENT_CHECK)
{
osMutexWait(app_mic_mutex_id, osWaitForever); TRACE(1,"MIC_EVENT_CHECK,current_mictype=%d",current_mictype);
if (mic_event == MIC_EVENT_START) if (current_mictype != new_mictype)
ret = internal_mic_start(new_mictype); {
else if (mic_event == MIC_EVENT_STOP) if (current_mictype != MIC_APP_NONE)
ret = internal_mic_stop(new_mictype); internal_mic_stop(current_mictype);
else if (mic_event == MIC_EVENT_CHECK) { if (new_mictype != MIC_APP_CSPOTTER)
TRACE(1, "MIC_EVENT_CHECK,current_mictype=%d", current_mictype); internal_mic_start(new_mictype);
if (current_mictype != new_mictype) { ret = 0;
if (current_mictype != MIC_APP_NONE) }
internal_mic_stop(current_mictype);
if (new_mictype != MIC_APP_CSPOTTER)
internal_mic_start(new_mictype);
ret = 0;
} }
} else else
assert(0); assert(0);
osMutexRelease(app_mic_mutex_id); osMutexRelease(app_mic_mutex_id);
return ret; return ret;
} }
void app_mic_init() { void app_mic_init()
app_mic_mutex_id = osMutexCreate((osMutex(app_mic_mutex))); {
app_set_threadhandle(APP_MODUAL_MIC, app_mic_process); app_mic_mutex_id = osMutexCreate((osMutex(app_mic_mutex)));
app_set_threadhandle(APP_MODUAL_MIC, app_mic_process);
} }
int app_mic_register(MIC_APP_TYPE mic_type, int app_mic_register(MIC_APP_TYPE mic_type, struct AF_STREAM_CONFIG_T *newStream)
struct AF_STREAM_CONFIG_T *newStream) { {
TRACE(2, "app_mic_registration mic_type:%d,newStream=%p\n", mic_type, TRACE(2,"app_mic_registration mic_type:%d,newStream=%p\n",mic_type,newStream);
newStream); if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX)
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX) { {
osMutexWait(app_mic_mutex_id, osWaitForever); osMutexWait(app_mic_mutex_id, osWaitForever);
if (memcmp(&mic_config[mic_type], newStream, if (memcmp(&mic_config[mic_type],newStream,sizeof(struct AF_STREAM_CONFIG_T)) != 0)
sizeof(struct AF_STREAM_CONFIG_T)) != 0) { {
TRACE(0, "app_mic_registration Warning mic stream config changed!!!"); TRACE(0,"app_mic_registration Warning mic stream config changed!!!");
}
memcpy(&mic_config[mic_type],newStream,sizeof(struct AF_STREAM_CONFIG_T));
osMutexRelease(app_mic_mutex_id);
return 0;
} }
memcpy(&mic_config[mic_type], newStream, sizeof(struct AF_STREAM_CONFIG_T)); return -1;
osMutexRelease(app_mic_mutex_id);
return 0;
}
return -1;
} }
int app_mic_deregister(MIC_APP_TYPE mic_type) { int app_mic_deregister(MIC_APP_TYPE mic_type)
TRACE(1, "app_mic_deregister mic_type:%d\n", mic_type); {
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX) { TRACE(1,"app_mic_deregister mic_type:%d\n",mic_type);
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX)
{
osMutexWait(app_mic_mutex_id, osWaitForever);
memset(&mic_config[mic_type],0,sizeof(struct AF_STREAM_CONFIG_T));
osMutexRelease(app_mic_mutex_id);
return 0;
}
return -1;
}
bool app_mic_is_registed(MIC_APP_TYPE mic_type)
{
TRACE(1,"app_mic_is_registed mic_type:%d\n",mic_type);
bool ret = false;
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX)
{
osMutexWait(app_mic_mutex_id, osWaitForever);
ret = mic_config[mic_type].data_ptr != NULL;
osMutexRelease(app_mic_mutex_id);
}
return ret;
}
bool app_mic_start(MIC_APP_TYPE mic_type)
{
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_START;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
bool app_mic_stop(MIC_APP_TYPE mic_type)
{
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_STOP;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
void app_mic_check(MIC_APP_TYPE mic_type)
{
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_CHECK;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
}
MIC_APP_TYPE app_mic_status(void)
{
MIC_APP_TYPE ret;
osMutexWait(app_mic_mutex_id, osWaitForever); osMutexWait(app_mic_mutex_id, osWaitForever);
memset(&mic_config[mic_type], 0, sizeof(struct AF_STREAM_CONFIG_T)); ret= current_mictype;
osMutexRelease(app_mic_mutex_id); osMutexRelease(app_mic_mutex_id);
return 0; return ret;
}
return -1;
} }
bool app_mic_is_registed(MIC_APP_TYPE mic_type) {
TRACE(1, "app_mic_is_registed mic_type:%d\n", mic_type);
bool ret = false;
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX) {
osMutexWait(app_mic_mutex_id, osWaitForever);
ret = mic_config[mic_type].data_ptr != NULL;
osMutexRelease(app_mic_mutex_id);
}
return ret;
}
bool app_mic_start(MIC_APP_TYPE mic_type) {
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_START;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
bool app_mic_stop(MIC_APP_TYPE mic_type) {
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_STOP;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
void app_mic_check(MIC_APP_TYPE mic_type) {
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_CHECK;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
}
MIC_APP_TYPE app_mic_status(void) {
MIC_APP_TYPE ret;
osMutexWait(app_mic_mutex_id, osWaitForever);
ret = current_mictype;
osMutexRelease(app_mic_mutex_id);
return ret;
}

View File

@ -30,6 +30,7 @@ ccflags-y += \
-Iapps/i2c_sensor \ -Iapps/i2c_sensor \
-Iplatform/drivers/bt \ -Iplatform/drivers/bt \
-Iplatform/drivers/ana \ -Iplatform/drivers/ana \
-Iplatform/drivers/usb/usb_dev/inc \
-Iapps/battery -Iapps/battery
ifeq ($(AUDIO_RESAMPLE),1) ifeq ($(AUDIO_RESAMPLE),1)

View File

@ -13,18 +13,18 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_bt_stream.h"
#include "app_media_player.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "resources.h" #include "resources.h"
#include "app_bt_stream.h"
#include "app_media_player.h"
//#include "app_factory.h" //#include "app_factory.h"
#include "string.h" #include "string.h"
// for audio // for audio
#include "audioflinger.h"
#include "app_audio.h" #include "app_audio.h"
#include "app_utils.h" #include "app_utils.h"
#include "audioflinger.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "app_mic_alg.h" #include "app_mic_alg.h"
@ -42,22 +42,26 @@
#include "apps.h" #include "apps.h"
#ifdef WEBRTC_AGC #ifdef WEBRTC_AGC
#include "agc_main.h" #include "agc_main.h"
#endif #endif
#ifdef WL_NSX #ifdef WL_NSX
#define WEBRTC_NSX_BUFF_SIZE (14000) #define WEBRTC_NSX_BUFF_SIZE (14000)
#endif #endif
#ifdef WL_VAD #ifdef WL_VAD
#include "vad_user.h" #include "vad_user.h"
#endif #endif
#ifdef WL_DEBUG_MODE #ifdef WL_DEBUG_MODE
#include "nvrecord_env.h" #include "nvrecord_env.h"
#endif #endif
#ifdef REMOTE_UART #ifdef REMOTE_UART
#include "app_remoter_uart.h" #include "app_remoter_uart.h"
#endif #endif
@ -71,69 +75,77 @@
#include "app_i2c_sensor.h" #include "app_i2c_sensor.h"
#endif #endif
static inline float clampf(float v, float min, float max) { static inline float clampf(float v, float min, float max){
return v < min ? min : (v > max ? max : v); return v < min ? min : (v > max ? max : v);
} }
#ifdef WL_NSX_5MS #ifdef WL_NSX_5MS
#define BT_AUDIO_FACTORMODE_BUFF_SIZE (160 * 2) #define BT_AUDIO_FACTORMODE_BUFF_SIZE (160*2)
#else #else
#define BT_AUDIO_FACTORMODE_BUFF_SIZE (6 * 320 * 16) #define BT_AUDIO_FACTORMODE_BUFF_SIZE (6*320*16)
#endif #endif
#define NSX_FRAME_SIZE 160 #define NSX_FRAME_SIZE 160
static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY; static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY;
#if defined(WL_AEC) #if defined(WL_AEC)
static short POSSIBLY_UNUSED aec_out[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2]; static short POSSIBLY_UNUSED aec_out[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
static short POSSIBLY_UNUSED far_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2]; static short POSSIBLY_UNUSED far_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
#endif #endif
static short POSSIBLY_UNUSED out_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static short POSSIBLY_UNUSED tmp_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
// static short revert_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED out_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
// static short audio_uart_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED tmp_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
//static short revert_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
//static short audio_uart_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2
static short POSSIBLY_UNUSED one_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2]; static short POSSIBLY_UNUSED one_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
static short POSSIBLY_UNUSED two_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2]; static short POSSIBLY_UNUSED two_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
static short POSSIBLY_UNUSED left_out[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2]; static short POSSIBLY_UNUSED left_out[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
static short POSSIBLY_UNUSED right_out[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2]; static short POSSIBLY_UNUSED right_out[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
static void POSSIBLY_UNUSED aaudio_div_stero_to_rmono(int16_t *dst_buf, static void POSSIBLY_UNUSED aaudio_div_stero_to_rmono(int16_t *dst_buf, int16_t *src_buf, uint32_t src_len)
int16_t *src_buf, {
uint32_t src_len) { // Copy from tail so that it works even if dst_buf == src_buf
// Copy from tail so that it works even if dst_buf == src_buf for (uint32_t i = 0; i < src_len>>1; i++)
for (uint32_t i = 0; i < src_len >> 1; i++) { {
dst_buf[i] = src_buf[i * 2 + 1]; dst_buf[i] = src_buf[i*2 + 1];
} }
} }
static void POSSIBLY_UNUSED aaudio_div_stero_to_lmono(int16_t *dst_buf, static void POSSIBLY_UNUSED aaudio_div_stero_to_lmono(int16_t *dst_buf, int16_t *src_buf, uint32_t src_len)
int16_t *src_buf, {
uint32_t src_len) { // Copy from tail so that it works even if dst_buf == src_buf
// Copy from tail so that it works even if dst_buf == src_buf for (uint32_t i = 0; i < src_len>>1; i++)
for (uint32_t i = 0; i < src_len >> 1; i++) { {
dst_buf[i] = src_buf[i * 2 + 0]; dst_buf[i] = src_buf[i*2 + 0];
} }
} }
static void POSSIBLY_UNUSED audio_mono2stereo_16bits(int16_t *dst_buf,
int16_t *left_buf, static void POSSIBLY_UNUSED audio_mono2stereo_16bits(int16_t *dst_buf, int16_t *left_buf, int16_t *right_buf, uint32_t src_len)
int16_t *right_buf, {
uint32_t src_len) { uint32_t i = 0;
uint32_t i = 0; for (i = 0; i < src_len; ++i) {
for (i = 0; i < src_len; ++i) { dst_buf[i*2 + 0] = left_buf[i];
dst_buf[i * 2 + 0] = left_buf[i]; dst_buf[i*2 + 1] = right_buf[i];
dst_buf[i * 2 + 1] = right_buf[i]; }
}
} }
#elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3 #elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3
#elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 4 #elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 4
#endif #endif
@ -143,93 +155,105 @@ extern uint32_t transfer_factor;
extern uint32_t diff_energy; extern uint32_t diff_energy;
extern uint32_t level_shift; extern uint32_t level_shift;
static inline double convert_multiple_to_db(uint32_t multiple) { static inline double convert_multiple_to_db(uint32_t multiple)
return 20 * log10(multiple); {
return 20*log10(multiple);
} }
#define DUMP_FRAME_LEN 0x3C0 #define DUMP_FRAME_LEN 0x3C0
static short POSSIBLY_UNUSED revert_buff[2 + 1 * DUMP_FRAME_LEN]; static short POSSIBLY_UNUSED revert_buff[2+1*DUMP_FRAME_LEN];
int32_t tx_pcmbuf32[960]; int32_t tx_pcmbuf32[960];
extern int app_reset(void); extern int app_reset(void);
extern void app_bt_volumeup(); extern void app_bt_volumeup();
extern void app_bt_volumedown(); extern void app_bt_volumedown();
void vol_state_process(uint32_t db_val) { void vol_state_process(uint32_t db_val)
TRACE(2, "db value is:%d volume_is:%d ", db_val, {
app_bt_stream_local_volume_get()); TRACE(2,"db value is:%d volume_is:%d ",db_val,app_bt_stream_local_volume_get());
if ((db_val < 52) && (app_bt_stream_local_volume_get() > 10)) { if((db_val < 52) && (app_bt_stream_local_volume_get() > 10))
app_bt_volumedown(); {
} else if ((db_val > 60) && (app_bt_stream_local_volume_get() < 13)) { app_bt_volumedown();
app_bt_volumeup(); }
} else if ((db_val > 72) && (app_bt_stream_local_volume_get() < 15)) { else if((db_val > 60) && (app_bt_stream_local_volume_get() < 13))
app_bt_volumeup(); {
} app_bt_volumeup();
} }
else if((db_val > 72) && (app_bt_stream_local_volume_get() < 15))
static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len) { {
uint32_t pcm_len = len >> 1; app_bt_volumeup();
short POSSIBLY_UNUSED *tx_pcmbuf16 = (short *)buf;
// DUMP16("%d, ",tx_pcmbuf16,30);
// memcpy(tmp_buff,pcm_buff,len);
int32_t stime = 0;
static int32_t nsx_cnt = 0;
static int32_t dump_cnt = 0;
nsx_cnt++;
dump_cnt++;
DUMP16("%d,", tx_pcmbuf16, 30);
if (false == (nsx_cnt & 0x3F)) {
stime = hal_sys_timer_get();
// TRACE("aecm echo time: lens:%d g_time_cnt:%d ",len, g_time_cnt);
}
#ifdef WL_DET
if (nsx_cnt > 100) {
static double last_sum = 0, last_avg = 0;
uint32_t sum_ss = 0;
// short db_val = 0;
double db_sum = 0;
for (uint32_t i_cnt = 0; i_cnt < pcm_len; i_cnt++) {
sum_ss += ABS(tx_pcmbuf16[i_cnt]);
} }
sum_ss = 1 * sum_ss / pcm_len; }
db_sum = convert_multiple_to_db(sum_ss); static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len)
// db_val = (short)(100*db_sum); {
last_sum += db_sum; uint32_t pcm_len = len>>1;
last_avg = last_sum / nsx_cnt;
db_sum = db_sum * (double)0.02 + last_avg * (double)0.98; short POSSIBLY_UNUSED *tx_pcmbuf16 = (short*)buf;
// TRACE(2,"db value is:%d sum_ss:%d ",(uint32_t)db_sum,sum_ss); //DUMP16("%d, ",tx_pcmbuf16,30);
// TRACE(2,"db value is:%d ",(uint32_t)db_sum); // memcpy(tmp_buff,pcm_buff,len);
vol_state_process((uint32_t)db_sum);
} int32_t stime = 0;
static int32_t nsx_cnt = 0;
static int32_t dump_cnt = 0;
nsx_cnt++;
dump_cnt++;
DUMP16("%d,",tx_pcmbuf16,30);
if(false == (nsx_cnt & 0x3F))
{
stime = hal_sys_timer_get();
//TRACE("aecm echo time: lens:%d g_time_cnt:%d ",len, g_time_cnt);
}
#ifdef WL_DET
if(nsx_cnt > 100)
{
static double last_sum = 0,last_avg = 0;
uint32_t sum_ss = 0;
//short db_val = 0;
double db_sum = 0;
for (uint32_t i_cnt = 0; i_cnt < pcm_len; i_cnt++)
{
sum_ss += ABS(tx_pcmbuf16[i_cnt]);
}
sum_ss = 1*sum_ss/pcm_len;
db_sum = convert_multiple_to_db(sum_ss);
//db_val = (short)(100*db_sum);
last_sum += db_sum;
last_avg = last_sum/nsx_cnt;
db_sum = db_sum*(double)0.02 + last_avg*(double)0.98;
//TRACE(2,"db value is:%d sum_ss:%d ",(uint32_t)db_sum,sum_ss);
//TRACE(2,"db value is:%d ",(uint32_t)db_sum);
vol_state_process((uint32_t)db_sum);
}
#endif #endif
if (false == (nsx_cnt & 0x3F)) {
// TRACE("drc 48 mic_alg 16k nsx 3 agc 15 closed speed time:%d ms and
// pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime),
// pcm_len,hal_sysfreq_get()); TRACE("notch 500 mic_alg 16k nsx 3 agc 15
// closed speed time:%d ms and pcm_lens:%d freq:%d ",
// TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get());
TRACE(2, "denoise det speed time:%d ms and pcm_lens:%d freq:%d ",
TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len, hal_sysfreq_get());
}
if (a2dp_cache_status == APP_AUDIO_CACHE_QTY) { if(false == (nsx_cnt & 0x3F))
a2dp_cache_status = APP_AUDIO_CACHE_OK; {
} //TRACE("drc 48 mic_alg 16k nsx 3 agc 15 closed speed time:%d ms and pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get());
return len; //TRACE("notch 500 mic_alg 16k nsx 3 agc 15 closed speed time:%d ms and pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get());
TRACE(2,"denoise det speed time:%d ms and pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get());
}
if (a2dp_cache_status == APP_AUDIO_CACHE_QTY){
a2dp_cache_status = APP_AUDIO_CACHE_OK;
}
return len;
} }
// static uint32_t app_mic_uart_playback_data(uint8_t *buf, uint32_t len) // static uint32_t app_mic_uart_playback_data(uint8_t *buf, uint32_t len)
@ -238,14 +262,13 @@ static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len) {
// #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2 // #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2
// #ifdef WL_AEC // #ifdef WL_AEC
// app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2); // app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2);
// app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, // app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, app_audioloop_play_cache, len/2/2);
// app_audioloop_play_cache, len/2/2); #else // #else
// app_audio_pcmbuff_get((uint8_t *)buf, len); // app_audio_pcmbuff_get((uint8_t *)buf, len);
// #endif // #endif
// #else // #else
// app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2); // app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2);
// app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, // app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, app_audioloop_play_cache, len/2/2);
// app_audioloop_play_cache, len/2/2);
// #endif // #endif
// } // }
// return len; // return len;
@ -253,63 +276,68 @@ static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len) {
static uint8_t buff_capture[BT_AUDIO_FACTORMODE_BUFF_SIZE]; static uint8_t buff_capture[BT_AUDIO_FACTORMODE_BUFF_SIZE];
int app_mic_alg_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq) { int app_mic_alg_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq)
struct AF_STREAM_CONFIG_T stream_cfg; {
static bool isRun = false; struct AF_STREAM_CONFIG_T stream_cfg;
static bool isRun = false;
TRACE(2, "app_mic_alg work:%d op:%d freq:%d", isRun, on, freq); TRACE(2,"app_mic_alg work:%d op:%d freq:%d", isRun, on, freq);
if (isRun == on) if (isRun==on)
return 0;
if (on){
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
a2dp_cache_status = APP_AUDIO_CACHE_QTY;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.vol = CODEC_SADC_VOL;
stream_cfg.io_path = AUD_INPUT_PATH_ASRMIC;
stream_cfg.handler = app_mic_alg_data_come;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture);
stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*stream_cfg.channel_num;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
// stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
// stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
// stream_cfg.handler = app_mic_uart_playback_data;
// stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play);
// stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*2;
// af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
//af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
TRACE(2,"app_mic_uart ss loopback on");
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
//af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
//af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
TRACE(2,"app_mic_16k loopback off");
//app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
}
isRun=on;
return 0; return 0;
if (on) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
a2dp_cache_status = APP_AUDIO_CACHE_QTY;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.vol = CODEC_SADC_VOL;
stream_cfg.io_path = AUD_INPUT_PATH_ASRMIC;
stream_cfg.handler = app_mic_alg_data_come;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture);
stream_cfg.data_size =
BT_AUDIO_FACTORMODE_BUFF_SIZE * stream_cfg.channel_num;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
// stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
// stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
// stream_cfg.handler = app_mic_uart_playback_data;
// stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play);
// stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*2;
// af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
// af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
TRACE(2, "app_mic_uart ss loopback on");
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
// af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
// af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
TRACE(2, "app_mic_16k loopback off");
// app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
}
isRun = on;
return 0;
} }

View File

@ -13,179 +13,173 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_pwl.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "tgt_hardware.h"
#include "hal_gpio.h" #include "hal_gpio.h"
#include "hal_iomux.h" #include "hal_iomux.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "pmu.h" #include "pmu.h"
#include "app_pwl.h"
#include "string.h" #include "string.h"
#include "tgt_hardware.h"
#define APP_PWL_TRACE(s, ...) #define APP_PWL_TRACE(s,...)
// TRACE(s, ##__VA_ARGS__) //TRACE(s, ##__VA_ARGS__)
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
static void app_pwl_timehandler(void const *param); static void app_pwl_timehandler(void const *param);
osTimerDef(APP_PWL_TIMER0, app_pwl_timehandler); // define timers osTimerDef (APP_PWL_TIMER0, app_pwl_timehandler); // define timers
#if (CFG_HW_PLW_NUM == 2) #if (CFG_HW_PLW_NUM == 2)
osTimerDef(APP_PWL_TIMER1, app_pwl_timehandler); osTimerDef (APP_PWL_TIMER1, app_pwl_timehandler);
#endif #endif
struct APP_PWL_T { struct APP_PWL_T {
enum APP_PWL_ID_T id; enum APP_PWL_ID_T id;
struct APP_PWL_CFG_T config; struct APP_PWL_CFG_T config;
uint8_t partidx; uint8_t partidx;
osTimerId timer; osTimerId timer;
}; };
static struct APP_PWL_T app_pwl[APP_PWL_ID_QTY]; static struct APP_PWL_T app_pwl[APP_PWL_ID_QTY];
static void app_pwl_timehandler(void const *param) { static void app_pwl_timehandler(void const *param)
struct APP_PWL_T *pwl = (struct APP_PWL_T *)param; {
struct APP_PWL_CFG_T *cfg = &(pwl->config); struct APP_PWL_T *pwl = (struct APP_PWL_T *)param;
APP_PWL_TRACE(2, "%s %x", __func__, param); struct APP_PWL_CFG_T *cfg = &(pwl->config);
APP_PWL_TRACE(2,"%s %x",__func__, param);
osTimerStop(pwl->timer); osTimerStop(pwl->timer);
pwl->partidx++; pwl->partidx++;
if (cfg->periodic) { if (cfg->periodic){
if (pwl->partidx >= cfg->parttotal) { if (pwl->partidx >= cfg->parttotal){
pwl->partidx = 0; pwl->partidx = 0;
}
}else{
if (pwl->partidx >= cfg->parttotal){
return;
}
} }
} else {
if (pwl->partidx >= cfg->parttotal) {
return;
}
}
APP_PWL_TRACE(3, "idx:%d pin:%d lvl:%d", pwl->partidx, APP_PWL_TRACE(3,"idx:%d pin:%d lvl:%d", pwl->partidx, cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level);
cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level); if(!cfg->part[pwl->partidx].level){
if (!cfg->part[pwl->partidx].level) {
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__) #if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, true);
: PMU_VIORISE_REQ_USER_PWL1,
true);
#endif #endif
hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin); hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
} else { }else{
hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin); hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__) #if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, false);
: PMU_VIORISE_REQ_USER_PWL1,
false);
#endif #endif
} }
osTimerStart(pwl->timer, cfg->part[pwl->partidx].time); osTimerStart(pwl->timer, cfg->part[pwl->partidx].time);
} }
#endif #endif
int app_pwl_open(void) { int app_pwl_open(void)
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
uint8_t i; uint8_t i;
APP_PWL_TRACE(1, "%s", __func__); APP_PWL_TRACE(1,"%s",__func__);
for (i = 0; i < APP_PWL_ID_QTY; i++) { for (i=0;i<APP_PWL_ID_QTY;i++){
app_pwl[i].id = APP_PWL_ID_QTY; app_pwl[i].id = APP_PWL_ID_QTY;
memset(&(app_pwl[i].config), 0, sizeof(struct APP_PWL_CFG_T)); memset(&(app_pwl[i].config), 0, sizeof(struct APP_PWL_CFG_T));
hal_iomux_init((struct HAL_IOMUX_PIN_FUNCTION_MAP *)&cfg_hw_pinmux_pwl[i], hal_iomux_init((struct HAL_IOMUX_PIN_FUNCTION_MAP *)&cfg_hw_pinmux_pwl[i], 1);
1); hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[i].pin, HAL_GPIO_DIR_OUT, 1);
hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[i].pin, }
HAL_GPIO_DIR_OUT, 1); app_pwl[APP_PWL_ID_0].timer = osTimerCreate (osTimer(APP_PWL_TIMER0), osTimerOnce, &app_pwl[APP_PWL_ID_0]);
}
app_pwl[APP_PWL_ID_0].timer = osTimerCreate(
osTimer(APP_PWL_TIMER0), osTimerOnce, &app_pwl[APP_PWL_ID_0]);
#if (CFG_HW_PLW_NUM == 2) #if (CFG_HW_PLW_NUM == 2)
app_pwl[APP_PWL_ID_1].timer = osTimerCreate( app_pwl[APP_PWL_ID_1].timer = osTimerCreate (osTimer(APP_PWL_TIMER1), osTimerOnce, &app_pwl[APP_PWL_ID_1]);
osTimer(APP_PWL_TIMER1), osTimerOnce, &app_pwl[APP_PWL_ID_1]);
#endif #endif
#endif #endif
return 0; return 0;
} }
int app_pwl_start(enum APP_PWL_ID_T id) { int app_pwl_start(enum APP_PWL_ID_T id)
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
struct APP_PWL_T *pwl = NULL; struct APP_PWL_T *pwl = NULL;
struct APP_PWL_CFG_T *cfg = NULL; struct APP_PWL_CFG_T *cfg = NULL;
if (id >= APP_PWL_ID_QTY) {
return -1;
}
APP_PWL_TRACE(2, "%s %d", __func__, id); if (id >= APP_PWL_ID_QTY) {
return -1;
}
pwl = &app_pwl[id]; APP_PWL_TRACE(2,"%s %d",__func__, id);
cfg = &(pwl->config);
if (pwl->id == APP_PWL_ID_QTY) { pwl = &app_pwl[id];
return -1; cfg = &(pwl->config);
}
pwl->partidx = 0; if (pwl->id == APP_PWL_ID_QTY){
if (pwl->partidx >= cfg->parttotal) { return -1;
return -1; }
}
osTimerStop(pwl->timer); pwl->partidx = 0;
if (pwl->partidx >= cfg->parttotal){
return -1;
}
APP_PWL_TRACE(3, "idx:%d pin:%d lvl:%d", pwl->partidx, osTimerStop(pwl->timer);
cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level);
if (!cfg->part[pwl->partidx].level) { APP_PWL_TRACE(3,"idx:%d pin:%d lvl:%d", pwl->partidx, cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level);
if(!cfg->part[pwl->partidx].level){
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__) #if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, false);
: PMU_VIORISE_REQ_USER_PWL1,
false);
#endif #endif
hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin); hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
} else { }else{
hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin); hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__) #if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, false);
: PMU_VIORISE_REQ_USER_PWL1,
false);
#endif #endif
} }
osTimerStart(pwl->timer, cfg->part[pwl->partidx].time); osTimerStart(pwl->timer, cfg->part[pwl->partidx].time);
#endif #endif
return 0; return 0;
} }
int app_pwl_setup(enum APP_PWL_ID_T id, struct APP_PWL_CFG_T *cfg) { int app_pwl_setup(enum APP_PWL_ID_T id, struct APP_PWL_CFG_T *cfg)
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
if (cfg == NULL || id >= APP_PWL_ID_QTY) { if (cfg == NULL || id >= APP_PWL_ID_QTY) {
return -1; return -1;
} }
APP_PWL_TRACE(2, "%s %d", __func__, id); APP_PWL_TRACE(2,"%s %d",__func__, id);
hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin, hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin, HAL_GPIO_DIR_OUT, cfg->startlevel?0:1);
HAL_GPIO_DIR_OUT, cfg->startlevel ? 0 : 1); app_pwl[id].id = id;
app_pwl[id].id = id; memcpy(&(app_pwl[id].config), cfg, sizeof(struct APP_PWL_CFG_T));
memcpy(&(app_pwl[id].config), cfg, sizeof(struct APP_PWL_CFG_T));
osTimerStop(app_pwl[id].timer); osTimerStop(app_pwl[id].timer);
#endif #endif
return 0; return 0;
} }
int app_pwl_stop(enum APP_PWL_ID_T id) { int app_pwl_stop(enum APP_PWL_ID_T id)
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
if (id >= APP_PWL_ID_QTY) { if (id >= APP_PWL_ID_QTY) {
return -1; return -1;
} }
osTimerStop(app_pwl[id].timer); osTimerStop(app_pwl[id].timer);
hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin); hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin);
#endif #endif
return 0; return 0;
} }
int app_pwl_close(void) { int app_pwl_close(void)
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
uint8_t i; uint8_t i;
for (i = 0; i < APP_PWL_ID_QTY; i++) { for (i=0;i<APP_PWL_ID_QTY;i++){
if (app_pwl[i].id != APP_PWL_ID_QTY) if (app_pwl[i].id != APP_PWL_ID_QTY)
app_pwl_stop((enum APP_PWL_ID_T)i); app_pwl_stop((enum APP_PWL_ID_T)i);
} }
#endif #endif
return 0; return 0;
} }

14
apps/sdmmc/Makefile Normal file
View File

@ -0,0 +1,14 @@
cur_dir := $(dir $(lastword $(MAKEFILE_LIST)))
obj-y := $(patsubst $(cur_dir)%,%,$(wildcard $(cur_dir)*.c $(cur_dir)*.cpp $(cur_dir)*.S))
obj-y := $(obj-y:.c=.o)
obj-y := $(obj-y:.cpp=.o)
obj-y := $(obj-y:.S=.o)
subdir-ccflags-y += -Iservices/fs/sd \
-Iservices/fs/fat \
-Iservices/fs/fat/ChaN
ifeq ($(APP_TEST_SDMMC),1)
ccflags-y += -D__APP_TEST_SDMMC__
endif

200
apps/sdmmc/app_sdmmc.cpp Normal file
View File

@ -0,0 +1,200 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "cmsis_os.h"
#include "hal_trace.h"
//#include "app_thread.h"
//#include "hal_sdmmc.h"
#include "SDFileSystem.h"
#include "audioflinger.h"
#include "audiobuffer.h"
#include "app_sdmmc.h"
#define APP_TEST_PLAYBACK_BUFF_SIZE (120 * 20)
#define APP_TEST_CAPTURE_BUFF_SIZE (120 * 20)
extern uint8_t app_test_playback_buff[APP_TEST_PLAYBACK_BUFF_SIZE] __attribute__ ((aligned(4)));
extern uint8_t app_test_capture_buff[APP_TEST_CAPTURE_BUFF_SIZE] __attribute__ ((aligned(4)));
SDFileSystem sdfs("sd");
int sd_open()
{
DIR *d = opendir("/sd");
if (!d)
{
TRACE(0,"sd file system borked\n");
return -1;
}
TRACE(0,"---------root---------\n");
struct dirent *p;
while ((p = readdir(d)))
{
int len = sizeof( dirent);
TRACE(2,"%s %d\n", p->d_name, len);
}
closedir(d);
TRACE(0,"--------root end-------\n");
}
extern uint32_t play_wav_file(char *file_path);
extern uint32_t stop_wav_file(void);
extern uint32_t wav_file_audio_more_data(uint8_t *buf, uint32_t len);
void test_wave_play(bool on)
{
struct AF_STREAM_CONFIG_T stream_cfg;
uint32_t reallen;
uint32_t totalreadsize;
uint32_t stime, etime;
char wave[] = "/sd/test_music.wav";
static bool isRun = false;
if (isRun==on)
return;
else
isRun=on;
TRACE(2,"%s %d\n", __func__, on);
memset(&stream_cfg, 0, sizeof(stream_cfg));
if (on){
play_wav_file(wave);
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = 0x03;
stream_cfg.handler = wav_file_audio_more_data;
stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}else{
stop_wav_file();
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}
return;
}
FIL pcm_fil;
FRESULT pcm_res;
UINT pcm_num;
uint32_t pcm_save_more_data(uint8_t *buf, uint32_t len)
{
// TRACE(2,"%s\n len:%d", __func__, len);
audio_buffer_set_stereo2mono_16bits(buf, len, 1);
pcm_res = f_write(&pcm_fil,(uint8_t *)buf,len>>1,&pcm_num);
if(pcm_res != FR_OK)
{
TRACE(2,"[%s]:error-->res = %d", __func__, pcm_res);
}
return 0;
}
void ad_tester(bool run)
{
char filename[] = "/sd/audio_dump.bin";
struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(2,"%s %d\n", __func__, run);
if (run){
memset(&stream_cfg, 0, sizeof(stream_cfg));
pcm_res = f_open(&pcm_fil,"test2.bin",FA_CREATE_ALWAYS | FA_WRITE);
if (pcm_res) {
TRACE(2,"[%s]:Cannot creat test2.bin...%d",__func__, pcm_res);
return;
}
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.vol = 0x03;
stream_cfg.handler = pcm_save_more_data;
stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
}else{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
osDelay(1000);
f_close(&pcm_fil);
}
}
// if dump data into sd, buffer length should make sd card speed enough
// Bench32.exe can test sd card speed in PC, then make sure bufer length, buffer length < 16k(sd driver)
void dump_data2sd(enum APP_SDMMC_DUMP_T opt, uint8_t *buf, uint32_t len)
{
static FIL sd_fil;
FRESULT res;
ASSERT(opt < APP_SDMMC_DUMP_NUM, "[%s] opt(%d) >= APP_SDMMC_DUMP_NUM", __func__, opt);
if(opt == APP_SDMMC_DUMP_OPEN)
{
// res = f_open(&sd_fil,"dump.bin",FA_CREATE_ALWAYS | FA_WRITE);
res = f_open(&sd_fil,"test.txt",FA_READ);
// ASSERT(pcm_res == FR_OK,"[%s]:Cannot creat dump.bin, res = %d",__func__, pcm_res);
}
if(opt == APP_SDMMC_DUMP_READ)
{
res = f_read(&sd_fil, buf, len, &pcm_num);
// ASSERT(pcm_res == FR_OK,"[%s]:Cannot creat dump.bin, res = %d",__func__, pcm_res);
}
else if(opt == APP_SDMMC_DUMP_WRITE)
{
res = f_write(&sd_fil, buf, len, &pcm_num);
// ASSERT(pcm_res == FR_OK,"[%s]:Write dump.bin failed, res = %d", __func__, pcm_res);
}
else if(opt == APP_SDMMC_DUMP_CLOSE)
{
res = f_close(&sd_fil);
}
if(res == FR_OK)
{
TRACE(3,"[%s] SUCESS: opt = %d, res = %d",__func__, opt, res);
}
else
{
TRACE(3,"[%s] ERROR: opt = %d, res = %d",__func__, opt, res);
}
}

39
apps/sdmmc/app_sdmmc.h Normal file
View File

@ -0,0 +1,39 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#ifndef __APP_SDMMC_H__
#define __APP_SDMMC_H__
#ifdef __cplusplus
extern "C" {
#endif
enum APP_SDMMC_DUMP_T{
APP_SDMMC_DUMP_OPEN = 0,
APP_SDMMC_DUMP_READ,
APP_SDMMC_DUMP_WRITE,
APP_SDMMC_DUMP_CLOSE,
APP_SDMMC_DUMP_NUM
};
int sd_open();
void dump_data2sd(enum APP_SDMMC_DUMP_T opt, uint8_t *buf, uint32_t len);
#ifdef __cplusplus
}
#endif
#endif//__FMDEC_H__

193
apps/usbaudio/Makefile Normal file
View File

@ -0,0 +1,193 @@
cur_dir := $(dir $(lastword $(MAKEFILE_LIST)))
obj-y := $(patsubst $(cur_dir)%,%,$(wildcard $(cur_dir)*.c $(cur_dir)*.cpp $(cur_dir)*.S))
obj-y += ../../tests/anc_usb/usb_audio_app.c
obj-y += ../../tests/anc_usb/safe_queue.c
obj-y += ../../tests/anc_usb/memutils.c
ifeq ($(USB_AUDIO_SPEECH),1)
obj-y += ../../tests/anc_usb/speech_process.c
endif
ifeq ($(ANC_APP),1)
obj-y += ../../tests/anc_usb/anc_usb_app.c
endif
obj-y := $(obj-y:.c=.o)
obj-y := $(obj-y:.cpp=.o)
obj-y := $(obj-y:.S=.o)
ccflags-y += \
-Iutils/boot_struct \
-Iutils/crc32 \
-Iutils/hexdump \
-Iutils/hwtimer_list \
-Itests/programmer \
-Iplatform/drivers/usb/usb_dev/inc \
-Iplatform/drivers/ana \
-Iservices/multimedia/audio/process/adp/include \
-Iservices/multimedia/audio/process/anc/include \
-Iservices/multimedia/audio/process/filters/include \
-Iservices/multimedia/audio/process/resample/include \
-Iservices/multimedia/speech/inc \
-Iservices/audio_process \
-Iservices/nv_section/aud_section \
-Iservices/nv_section/include \
-Iservices/overlay \
-Itests/anc_usb
CFLAGS_usbaudio_entry.o += -DUSB_AUDIO_APP
CFLAGS_usb_audio_app.o += -DAUDIO_OUTPUT_VOLUME_DEFAULT=$(AUDIO_OUTPUT_VOLUME_DEFAULT)
CFLAGS_adda_loop_app.o += -DAUDIO_OUTPUT_VOLUME_DEFAULT=$(AUDIO_OUTPUT_VOLUME_DEFAULT)
ANC_USB_CFG_FLAGS :=
# ANC option
ifeq ($(ANC_APP),1)
ANC_USB_CFG_FLAGS += -DANC_APP
endif
# USB audio option
ifeq ($(USB_AUDIO_APP),1)
ANC_USB_CFG_FLAGS += -DUSB_AUDIO_APP
endif
ifeq ($(USB_HIGH_SPEED),1)
ANC_USB_CFG_FLAGS += -DUSB_HIGH_SPEED
endif
ifeq ($(AUDIO_RESAMPLE),1)
ANC_USB_CFG_FLAGS += -D__AUDIO_RESAMPLE__
endif
ifeq ($(ADC_CH_SEP_BUFF),1)
ANC_USB_CFG_FLAGS += -DADC_CH_SEP_BUFF
endif
include platform/drivers/usb/usb_dev/uaud_cfg_flags.mk
platform/drivers/usb/usb_dev/uaud_cfg_flags.mk: ;
ANC_USB_CFG_FLAGS += $(UAUD_CFG_FLAGS)
# USB audio configuration
ifeq ($(USB_AUDIO_DYN_CFG),1)
ifneq ($(AUDIO_RESAMPLE),1)
SW_CAPTURE_RESAMPLE ?= 1
endif
endif
ifeq ($(AUDIO_PLAYBACK_24BIT),1)
ANC_USB_CFG_FLAGS += -DAUDIO_PLAYBACK_24BIT
endif
# DSD configuration
ifeq ($(HW_FIR_DSD_PROCESS),1)
ANC_USB_CFG_FLAGS += -D__HW_FIR_DSD_PROCESS__
endif
# EQ configuration
ifeq ($(HW_FIR_EQ_PROCESS),1)
ANC_USB_CFG_FLAGS += -D__HW_FIR_EQ_PROCESS__
endif
ifeq ($(HW_IIR_EQ_PROCESS),1)
ANC_USB_CFG_FLAGS += -D__HW_IIR_EQ_PROCESS__
endif
ifeq ($(SW_IIR_EQ_PROCESS),1)
ANC_USB_CFG_FLAGS += -D__SW_IIR_EQ_PROCESS__
endif
ifeq ($(HW_DAC_IIR_EQ_PROCESS),1)
ANC_USB_CFG_FLAGS += -D__HW_DAC_IIR_EQ_PROCESS__
endif
ifeq ($(SW_CAPTURE_RESAMPLE),1)
ANC_USB_CFG_FLAGS += -DSW_CAPTURE_RESAMPLE
endif
CFLAGS_usbaudio_entry.o += $(ANC_USB_CFG_FLAGS)
CFLAGS_usb_audio_app.o += $(ANC_USB_CFG_FLAGS)
CFLAGS_anc_usb_app.o += $(ANC_USB_CFG_FLAGS)
ifeq ($(ANC_KEY_DOUBLE_CLICK_ON_OFF),1)
CFLAGS_anc_usb_app.o += -DANC_KEY_DOUBLE_CLICK_ON_OFF
endif
ifeq ($(ANC_FF_ENABLED),1)
CFLAGS_anc_usb_app.o += -DANC_FF_ENABLED
endif
ifeq ($(ANC_FB_ENABLED),1)
CFLAGS_anc_usb_app.o += -DANC_FB_ENABLED
endif
ifeq ($(AUDIO_SECTION_SUPPT),1)
CFLAGS_anc_usb_app.o += -D__AUDIO_SECTION_SUPPT__
endif
ifeq ($(ANC_INIT_OFF),1)
CFLAGS_anc_usb_app.o += -DANC_INIT_OFF
endif
ifeq ($(PC_CMD_UART),1)
CFLAGS_usbaudio_entry.o += -D__PC_CMD_UART__
endif
ifeq ($(DELAY_STREAM_OPEN),1)
CFLAGS_usb_audio_app.o += -DDELAY_STREAM_OPEN
endif
ifeq ($(NOISE_GATING),1)
CFLAGS_usb_audio_app.o += -DNOISE_GATING
endif
ifeq ($(NOISE_REDUCTION),1)
CFLAGS_usb_audio_app.o += -DNOISE_REDUCTION
endif
ifeq ($(ANC_L_R_MISALIGN_WORKAROUND),1)
CFLAGS_usb_audio_app.o += -DANC_L_R_MISALIGN_WORKAROUND
endif
ifeq ($(ANDROID_ACCESSORY_SPEC),1)
CFLAGS_usb_audio_app.o += -DANDROID_ACCESSORY_SPEC
ifeq ($(ANDROID_VOICE_CMD_KEY),1)
CFLAGS_usb_audio_app.o += -DANDROID_VOICE_CMD_KEY
endif
endif
ifeq ($(DUAL_AUX_MIC_MORE_FILTER),1)
CFLAGS_usb_audio_app.o += -DDUAL_AUX_MIC_MORE_FILTER
endif
ifeq ($(FREQ_RESP_EQ),1)
CFLAGS_usb_audio_app.o += -DFREQ_RESP_EQ
endif
ifeq ($(KEEP_SAME_LATENCY),1)
CFLAGS_usb_audio_app.o += -DKEEP_SAME_LATENCY
CFLAGS_speech_process.o += -DKEEP_SAME_LATENCY
endif
ifeq ($(USB_AUDIO_PWRKEY_TEST),1)
CFLAGS_usb_audio_app.o += -DUSB_AUDIO_PWRKEY_TEST
endif
ifeq ($(AUDIO_RESAMPLE),1)
# If neither best1000 nor best2000
ifeq ($(filter best1000 best2000,$(CHIP)),)
PLL_TUNE_SAMPLE_RATE ?= 1
endif
ifeq ($(PLL_TUNE_SAMPLE_RATE),1)
CFLAGS_usb_audio_app.o += -DPLL_TUNE_SAMPLE_RATE
endif
endif
ifeq ($(USB_AUDIO_SPEECH),1)
CFLAGS_usbaudio_entry.o += -DUSB_AUDIO_SPEECH
CFLAGS_usb_audio_app.o += -DUSB_AUDIO_SPEECH
endif

View File

@ -0,0 +1,347 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "plat_addr_map.h"
#include "hal_cmu.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_iomux.h"
#include "hal_dma.h"
#include "hal_key.h"
#include "hal_gpadc.h"
#include "hal_sleep.h"
#include "hal_sysfreq.h"
#include "cmsis.h"
#include "pmu.h"
#include "analog.h"
#include "string.h"
#include "hwtimer_list.h"
#include "audioflinger.h"
#if defined(ANC_APP)
#include "anc_usb_app.h"
#endif
#include "usb_audio_app.h"
#include "dualadc_audio_app.h"
#include "usb_audio_frm_defs.h"
#include "tgt_hardware.h"
#include "audio_process.h"
#ifdef RTOS
#include "cmsis_os.h"
#endif
#ifdef __PC_CMD_UART__
#include "hal_cmd.h"
#endif
#ifdef USB_AUDIO_SPEECH
#define CODEC_BUFF_FRAME_NUM (2 * 16)
#define USB_BUFF_FRAME_NUM (CODEC_BUFF_FRAME_NUM * 2)
#else
#define CODEC_BUFF_FRAME_NUM 4
#define USB_BUFF_FRAME_NUM 8
#endif
#if (CODEC_BUFF_FRAME_NUM >= USB_BUFF_FRAME_NUM)
#error "Codec buffer frame num should be less than usb buffer frame num (on the requirement of conflict ctrl)"
#endif
#ifdef USB_AUDIO_DYN_CFG
#define USB_AUDIO_PLAYBACK_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_PLAYBACK * CODEC_BUFF_FRAME_NUM, DAC_BUFF_ALIGN)
#define USB_AUDIO_CAPTURE_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_CAPTURE * CODEC_BUFF_FRAME_NUM, ADC_BUFF_ALIGN)
#define USB_AUDIO_RECV_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_RECV * USB_BUFF_FRAME_NUM, RECV_BUFF_ALIGN)
#define USB_AUDIO_SEND_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_SEND * USB_BUFF_FRAME_NUM, SEND_BUFF_ALIGN)
#if defined(CHIP_BEST1000)
// FIR EQ is working on 16-bit
// FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int16_t)
#define USB_AUDIO_FIR_EQ_BUFF_SIZE USB_AUDIO_PLAYBACK_BUFF_SIZE
#elif defined(CHIP_BEST2000)
// FIR EQ is working on 32-bit
// FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int32_t)
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE*2)
#elif defined(CHIP_BEST2300) || defined(CHIP_BEST2300P)
// FIR EQ is working on 32-bit
// FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int32_t)
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE*2)
#endif
#else
#define USB_AUDIO_PLAYBACK_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_PLAYBACK * CODEC_BUFF_FRAME_NUM, DAC_BUFF_ALIGN)
#define USB_AUDIO_CAPTURE_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_CAPTURE * CODEC_BUFF_FRAME_NUM, ADC_BUFF_ALIGN)
#define USB_AUDIO_RECV_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_RECV * USB_BUFF_FRAME_NUM, RECV_BUFF_ALIGN)
#define USB_AUDIO_SEND_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_SEND * USB_BUFF_FRAME_NUM, SEND_BUFF_ALIGN)
#if defined(CHIP_BEST1000)
// FIR EQ is working on 16-bit
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int16_t) / SAMPLE_SIZE_PLAYBACK)
#elif defined(CHIP_BEST2000)
// FIR EQ is working on 16-bit
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int32_t) / SAMPLE_SIZE_PLAYBACK)
#elif defined(CHIP_BEST2300) || defined(CHIP_BEST2300P)
// FIR EQ is working on 16-bit
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int32_t) / SAMPLE_SIZE_PLAYBACK)
#endif
#endif
#if (defined(CHIP_BEST1000) && (defined(ANC_APP) || defined(_DUAL_AUX_MIC_))) && (CHAN_NUM_CAPTURE == CHAN_NUM_SEND)
// Resample input buffer size should be (half_of_max_sample_num * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE).
// half_of_max_sample_num = 48000 / 1000 * CODEC_BUFF_FRAME_NUM / 2 * 48 / 44
#define RESAMPLE_INPUT_BUFF_SIZE ALIGN(48000 / 1000 * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE * CODEC_BUFF_FRAME_NUM / 2 * 48 / 44, 4)
#else
#define RESAMPLE_INPUT_BUFF_SIZE 0
#endif
// Resample history buffer size should be
// sizeof(struct RESAMPLE_CTRL_T) + ((SAMPLE_NUM + phase_coef_num) * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE)
#define RESAMPLE_HISTORY_BUFF_SIZE (50 + (256 * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE))
#define USB_AUDIO_RESAMPLE_BUFF_SIZE (RESAMPLE_INPUT_BUFF_SIZE + RESAMPLE_HISTORY_BUFF_SIZE)
#define ALIGNED4 ALIGNED(4)
#if defined(USB_AUDIO_APP) || defined(DUALADC_AUDIO_TEST)
#ifdef AUDIO_ANC_FB_MC
static uint8_t ALIGNED4 playback_buff[USB_AUDIO_PLAYBACK_BUFF_SIZE * 9];//max 48->384 or 44.1->44.1*8;
#else
static uint8_t ALIGNED4 playback_buff[USB_AUDIO_PLAYBACK_BUFF_SIZE];
#endif
static uint8_t ALIGNED4 capture_buff[USB_AUDIO_CAPTURE_BUFF_SIZE];
#endif
#ifdef USB_AUDIO_APP
#if defined(__HW_FIR_EQ_PROCESS__) && defined(__HW_IIR_EQ_PROCESS__)
static uint8_t ALIGNED4 eq_buff[USB_AUDIO_FIR_EQ_BUFF_SIZE+USB_AUDIO_IIR_EQ_BUFF_SIZE];
#elif defined(__HW_FIR_EQ_PROCESS__) && !defined(__HW_IIR_EQ_PROCESS__)
static uint8_t ALIGNED4 eq_buff[USB_AUDIO_FIR_EQ_BUFF_SIZE];
#elif !defined(__HW_FIR_EQ_PROCESS__) && defined(__HW_IIR_EQ_PROCESS__)
static uint8_t ALIGNED4 eq_buff[USB_AUDIO_IIR_EQ_BUFF_SIZE];
#else
static uint8_t ALIGNED4 eq_buff[0];
#endif
#ifdef SW_CAPTURE_RESAMPLE
static uint8_t ALIGNED4 resample_buff[USB_AUDIO_RESAMPLE_BUFF_SIZE];
#else
static uint8_t ALIGNED4 resample_buff[0];
#endif
static uint8_t ALIGNED4 recv_buff[USB_AUDIO_RECV_BUFF_SIZE];
static uint8_t ALIGNED4 send_buff[USB_AUDIO_SEND_BUFF_SIZE];
#endif
#ifdef CFG_HW_KEY_LED_PIN
const struct HAL_IOMUX_PIN_FUNCTION_MAP pinmux_key_led[1] = {
{CFG_HW_KEY_LED_PIN, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL},
};
#endif
#ifdef CFG_MIC_KEY
extern void mic_key_open (void);
#endif
static void uart_i2c_switch(void)
{
static int flag = 0;
flag ^= 1;
if (flag) {
hal_iomux_set_analog_i2c();
} else {
hal_iomux_set_uart0();
}
}
static int POSSIBLY_UNUSED key_event_process(uint32_t key_code, uint8_t key_event)
{
TRACE(3,"%s: code=0x%X, event=%u", __FUNCTION__, key_code, key_event);
#ifdef CFG_HW_KEY_LED_PIN
if (key_event == HAL_KEY_EVENT_DOWN) {
hal_gpio_pin_set(CFG_HW_KEY_LED_PIN);
} else if (key_event == HAL_KEY_EVENT_UP) {
hal_gpio_pin_clr(CFG_HW_KEY_LED_PIN);
}
#endif
#ifdef USB_AUDIO_APP
if (usb_audio_app_key(key_code, key_event) == 0) {
return 0;
}
#endif
#ifdef ANC_APP
if (anc_usb_app_key(key_code, key_event) == 0) {
return 0;
}
#endif
if (key_event == HAL_KEY_EVENT_CLICK) {
if (key_code == HAL_KEY_CODE_FN9) {
uart_i2c_switch();
}
}
return 0;
}
void anc_usb_open(void)
{
TRACE(1,"%s", __FUNCTION__);
#ifdef __AUDIO_RESAMPLE__
hal_cmu_audio_resample_enable();
#endif
#ifdef USB_AUDIO_APP
struct USB_AUDIO_BUF_CFG cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.play_buf = playback_buff;
#ifdef AUDIO_ANC_FB_MC
cfg.play_size = sizeof(playback_buff) / 9;
#else
cfg.play_size = sizeof(playback_buff);
#endif
cfg.cap_buf = capture_buff;
cfg.cap_size = sizeof(capture_buff);
cfg.recv_buf = recv_buff;
cfg.recv_size = sizeof(recv_buff);
cfg.send_buf = send_buff;
cfg.send_size = sizeof(send_buff);
cfg.eq_buf = eq_buff;
cfg.eq_size = sizeof(eq_buff);
cfg.resample_buf = resample_buff;
cfg.resample_size = sizeof(resample_buff);
usb_audio_app_init(&cfg);
usb_audio_app(1);
#endif
#ifdef ANC_APP
anc_usb_app_init(AUD_INPUT_PATH_MAINMIC, SAMPLE_RATE_PLAYBACK, SAMPLE_RATE_CAPTURE);
#endif
#ifdef DUALADC_AUDIO_TEST
dualadc_audio_app_init(playback_buff, USB_AUDIO_PLAYBACK_BUFF_SIZE,
capture_buff, USB_AUDIO_CAPTURE_BUFF_SIZE);
dualadc_audio_app(1);
#endif
#if defined(CFG_MIC_KEY)
mic_key_open();
#endif
#ifdef BT_USB_AUDIO_DUAL_MODE
return;
#endif
// Allow sleep
hal_sysfreq_req(HAL_SYSFREQ_USER_INIT, HAL_CMU_FREQ_32K);
while (1) {
#ifdef USB_AUDIO_APP
usb_audio_app_loop();
#endif
#ifdef ANC_APP
anc_usb_app_loop();
#endif
#ifdef RTOS
// Let the task sleep
osDelay(20);
#else // !RTOS
#ifdef __PC_CMD_UART__
hal_cmd_run();
#endif
hal_sleep_enter_sleep();
#endif // !RTOS
}
}
void anc_usb_close(void)
{
usb_audio_app(0);
}
#ifdef CFG_HW_GPADCKEY
void gpadc_key_handler(uint16_t irq_val, HAL_GPADC_MV_T volt)
{
static uint16_t stable_cnt = 0;
static uint16_t click_cnt = 0;
static uint32_t click_time;
uint32_t time;
enum HAL_KEY_EVENT_T event;
bool send_event = false;
time = hal_sys_timer_get();
if (volt < 100) {
stable_cnt++;
//TRACE(5,"adc_key down: volt=%u stable=%u click_cnt=%u click_time=%u time=%u", volt, stable_cnt, click_cnt, click_time, time);
} else {
if (stable_cnt > 1) {
//TRACE(5,"adc_key up: volt=%u stable=%u click_cnt=%u click_time=%u time=%u", volt, stable_cnt, click_cnt, click_time, time);
if (click_cnt == 0 || (time - click_time) < MS_TO_TICKS(500)) {
click_time = time;
click_cnt++;
if (click_cnt >= 3) {
send_event = true;
}
} else {
send_event = true;
}
}
stable_cnt = 0;
if (click_cnt > 0 && (time - click_time) >= MS_TO_TICKS(500)) {
send_event = true;
}
if (send_event) {
//TRACE(5,"adc_key click: volt=%u stable=%u click_cnt=%u click_time=%u time=%u", volt, stable_cnt, click_cnt, click_time, time);
if (click_cnt == 1) {
event = HAL_KEY_EVENT_CLICK;
} else if (click_cnt == 2) {
event = HAL_KEY_EVENT_DOUBLECLICK;
} else {
event = HAL_KEY_EVENT_TRIPLECLICK;
}
key_event_process(CFG_HW_GPADCKEY, event);
click_cnt = 0;
}
}
}
#endif
// GDB can set a breakpoint on the main function only if it is
// declared as below, when linking with STD libraries.
int btusbaudio_entry(void)
{
anc_usb_open();
return 0;
}
void btusbaudio_exit(void)
{
anc_usb_close();
}

7
apps/usbhost/Makefile Normal file
View File

@ -0,0 +1,7 @@
cur_dir := $(dir $(lastword $(MAKEFILE_LIST)))
obj-y := $(patsubst $(cur_dir)%,%,$(wildcard $(cur_dir)*.c $(cur_dir)*.cpp $(cur_dir)*.S))
obj-y := $(obj-y:.c=.o)
obj-y := $(obj-y:.cpp=.o)
obj-y := $(obj-y:.S=.o)

View File

@ -0,0 +1,21 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#include "cmsis_os.h"
#include "hal_trace.h"
#include "app_thread.h"

View File

@ -0,0 +1,27 @@
/***************************************************************************
*
* Copyright 2015-2019 BES.
* All rights reserved. All unpublished rights reserved.
*
* No part of this work may be used or reproduced in any form or by any
* means, or stored in a database or retrieval system, without prior written
* permission of BES.
*
* Use of this work is governed by a license granted by BES.
* This work contains confidential and proprietary information of
* BES. which is protected by copyright, trade secret,
* trademark and other intellectual property rights.
*
****************************************************************************/
#ifndef __APP_USBHOST_H__
#define __APP_USBHOST_H__
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
}
#endif
#endif//__FMDEC_H__

View File

@ -1,22 +1,20 @@
#include "app_voice_detector.h"
#include "app_thread.h"
#include "audioflinger.h"
#include "cmsis_os.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "tgt_hardware.h"
#include "voice_detector.h"
#include <assert.h>
#include <stdio.h> #include <stdio.h>
#include <assert.h>
#include "cmsis_os.h"
#include "tgt_hardware.h"
#include "audioflinger.h"
#include "hal_trace.h"
#include "hal_timer.h"
#include "app_thread.h"
#include "voice_detector.h"
#include "app_voice_detector.h"
#define APP_VD_DEBUG #define APP_VD_DEBUG
#ifdef APP_VD_DEBUG #ifdef APP_VD_DEBUG
#define APP_VD_LOG(str, ...) LOG_DEBUG(LOG_MOD(AUD), str, ##__VA_ARGS__) #define APP_VD_LOG(str, ...) LOG_DEBUG(LOG_MOD(AUD), str, ##__VA_ARGS__)
#else #else
#define APP_VD_LOG(...) \ #define APP_VD_LOG(...) do{}while(0)
do { \
} while (0)
#endif #endif
#define APP_VD_ERR(str, ...) LOG_ERROR(LOG_MOD(AUD), str, ##__VA_ARGS__) #define APP_VD_ERR(str, ...) LOG_ERROR(LOG_MOD(AUD), str, ##__VA_ARGS__)
@ -24,8 +22,10 @@ osMutexId vd_mutex_id = NULL;
osMutexDef(vd_mutex); osMutexDef(vd_mutex);
static int cmd_arr_evt_vad_start[] = { static int cmd_arr_evt_vad_start[] = {
VOICE_DET_CMD_AUD_CAP_STOP, VOICE_DET_CMD_AUD_CAP_CLOSE, VOICE_DET_CMD_AUD_CAP_STOP,
VOICE_DET_CMD_VAD_OPEN, VOICE_DET_CMD_VAD_START, VOICE_DET_CMD_AUD_CAP_CLOSE,
VOICE_DET_CMD_VAD_OPEN,
VOICE_DET_CMD_VAD_START,
VOICE_DET_CMD_SYS_CLK_32K, VOICE_DET_CMD_SYS_CLK_32K,
}; };
#if 0 #if 0
@ -44,8 +44,10 @@ static int cmd_arr_evt_cap_start[] = {
}; };
#endif #endif
static int cmd_arr_evt_close[] = { static int cmd_arr_evt_close[] = {
VOICE_DET_CMD_AUD_CAP_STOP, VOICE_DET_CMD_AUD_CAP_CLOSE, VOICE_DET_CMD_AUD_CAP_STOP,
VOICE_DET_CMD_VAD_STOP, VOICE_DET_CMD_VAD_CLOSE, VOICE_DET_CMD_AUD_CAP_CLOSE,
VOICE_DET_CMD_VAD_STOP,
VOICE_DET_CMD_VAD_CLOSE,
VOICE_DET_CMD_EXIT, VOICE_DET_CMD_EXIT,
}; };
#if 1 #if 1
@ -61,191 +63,205 @@ static int cmd_arr_evt_vad_close[] = {
VOICE_DET_CMD_EXIT, VOICE_DET_CMD_EXIT,
}; };
static int app_voice_detector_process(APP_MESSAGE_BODY *msg_body) { static int app_voice_detector_process(APP_MESSAGE_BODY *msg_body)
enum voice_detector_id id = (enum voice_detector_id)msg_body->message_id; {
enum voice_detector_evt evt = (enum voice_detector_evt)msg_body->message_ptr; enum voice_detector_id id = (enum voice_detector_id)msg_body->message_id;
int ret = 0, num, *cmds; enum voice_detector_evt evt = (enum voice_detector_evt)msg_body->message_ptr;
int ret = 0, num, *cmds;
voice_detector_enhance_perform(id); // set sys clock to 104M or 208M voice_detector_enhance_perform(id);// set sys clock to 104M or 208M
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
switch (evt) { switch(evt) {
case VOICE_DET_EVT_VAD_START: case VOICE_DET_EVT_VAD_START:
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) { if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) {
cmds = &cmd_arr_evt_vad_start[0]; cmds = &cmd_arr_evt_vad_start[0];
num = ARRAY_SIZE(cmd_arr_evt_vad_start); num = ARRAY_SIZE(cmd_arr_evt_vad_start);
} else { } else {
cmds = &cmd_arr_evt_vad_start[2]; cmds = &cmd_arr_evt_vad_start[2];
num = ARRAY_SIZE(cmd_arr_evt_vad_start) - 2; num = ARRAY_SIZE(cmd_arr_evt_vad_start) - 2;
}
break;
case VOICE_DET_EVT_AUD_CAP_START:
cmds = cmd_arr_evt_cap_start;
num = ARRAY_SIZE(cmd_arr_evt_cap_start);
break;
case VOICE_DET_EVT_CLOSE:
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) {
cmds = &cmd_arr_evt_cap_close[0];
num = ARRAY_SIZE(cmd_arr_evt_cap_close);
} else {
cmds = &cmd_arr_evt_vad_close[0];
num = ARRAY_SIZE(cmd_arr_evt_vad_close);
}
break;
default:
cmds = cmd_arr_evt_close;
num = ARRAY_SIZE(cmd_arr_evt_close);
break;
} }
break; ret = voice_detector_send_cmd_array(id, cmds, num);
case VOICE_DET_EVT_AUD_CAP_START: if (ret) {
cmds = cmd_arr_evt_cap_start; APP_VD_ERR("%s, send cmd error %d", __func__, ret);
num = ARRAY_SIZE(cmd_arr_evt_cap_start);
break;
case VOICE_DET_EVT_CLOSE:
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) {
cmds = &cmd_arr_evt_cap_close[0];
num = ARRAY_SIZE(cmd_arr_evt_cap_close);
} else {
cmds = &cmd_arr_evt_vad_close[0];
num = ARRAY_SIZE(cmd_arr_evt_vad_close);
} }
break; ret = voice_detector_run(id, VOICE_DET_MODE_EXEC_CMD);
default: if (ret) {
cmds = cmd_arr_evt_close; APP_VD_ERR("%s, run cmd error %d", __func__, ret);
num = ARRAY_SIZE(cmd_arr_evt_close); }
break; if (evt == VOICE_DET_EVT_CLOSE) {
} voice_detector_close(id);
ret = voice_detector_send_cmd_array(id, cmds, num); }
if (ret) { osMutexRelease(vd_mutex_id);
APP_VD_ERR("%s, send cmd error %d", __func__, ret); return ret;
}
ret = voice_detector_run(id, VOICE_DET_MODE_EXEC_CMD);
if (ret) {
APP_VD_ERR("%s, run cmd error %d", __func__, ret);
}
if (evt == VOICE_DET_EVT_CLOSE) {
voice_detector_close(id);
}
osMutexRelease(vd_mutex_id);
return ret;
} }
static void voice_detector_send_msg(uint32_t id, uint32_t evt) { static void voice_detector_send_msg(uint32_t id, uint32_t evt)
APP_MESSAGE_BLOCK msg; {
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_VOICE_DETECTOR; msg.mod_id = APP_MODUAL_VOICE_DETECTOR;
msg.msg_body.message_id = id; msg.msg_body.message_id = id;
msg.msg_body.message_ptr = evt; msg.msg_body.message_ptr = evt;
app_mailbox_put(&msg); app_mailbox_put(&msg);
} }
static void voice_detector_wakeup_system(int state, void *param) { static void voice_detector_wakeup_system(int state, void *param)
enum voice_detector_id id = VOICE_DETECTOR_ID_0; {
enum voice_detector_id id = VOICE_DETECTOR_ID_0;
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) { if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) {
app_voice_detector_send_event(id, VOICE_DET_EVT_AUD_CAP_START); app_voice_detector_send_event(id, VOICE_DET_EVT_AUD_CAP_START);
} }
APP_VD_LOG("%s, state=%d", __func__, state); APP_VD_LOG("%s, state=%d", __func__, state);
// APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0)); // APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0));
} }
static void voice_not_detector_wakeup_system(int state, void *param) { static void voice_not_detector_wakeup_system(int state, void *param)
enum voice_detector_id id = VOICE_DETECTOR_ID_0; {
enum voice_detector_id id = VOICE_DETECTOR_ID_0;
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) { if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) {
app_voice_detector_send_event(id, VOICE_DET_EVT_VAD_START); app_voice_detector_send_event(id, VOICE_DET_EVT_VAD_START);
} }
APP_VD_LOG("%s, state=%d", __func__, state); APP_VD_LOG("%s, state=%d", __func__, state);
// APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0)); // APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0));
} }
void app_voice_detector_init(void) { void app_voice_detector_init(void)
APP_VD_LOG("%s", __func__); {
APP_VD_LOG("%s", __func__);
if (vd_mutex_id == NULL) { if(vd_mutex_id == NULL){
vd_mutex_id = osMutexCreate((osMutex(vd_mutex))); vd_mutex_id = osMutexCreate((osMutex(vd_mutex)));
app_set_threadhandle(APP_MODUAL_VOICE_DETECTOR, app_voice_detector_process); app_set_threadhandle(APP_MODUAL_VOICE_DETECTOR, app_voice_detector_process);
} }
} }
int app_voice_detector_open(enum voice_detector_id id, int app_voice_detector_open(enum voice_detector_id id, enum AUD_VAD_TYPE_T vad_type)
enum AUD_VAD_TYPE_T vad_type) { {
int r; int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_open(id, vad_type); r = voice_detector_open(id, vad_type);
if (!r) { if (!r) {
voice_detector_setup_callback(id, VOICE_DET_FIND_APP, voice_detector_setup_callback(id, VOICE_DET_FIND_APP,
voice_detector_wakeup_system, NULL); voice_detector_wakeup_system, NULL);
voice_detector_setup_callback(id, VOICE_DET_NOT_FIND_APP, voice_detector_setup_callback(id, VOICE_DET_NOT_FIND_APP,
voice_not_detector_wakeup_system, NULL); voice_not_detector_wakeup_system, NULL);
} }
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_setup_vad(enum voice_detector_id id, int app_voice_detector_setup_vad(enum voice_detector_id id,
struct AUD_VAD_CONFIG_T *conf) { struct AUD_VAD_CONFIG_T *conf)
int r; {
int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_setup_vad(id, conf); r = voice_detector_setup_vad(id, conf);
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_setup_stream(enum voice_detector_id id, int app_voice_detector_setup_stream(enum voice_detector_id id,
enum AUD_STREAM_T stream_id, enum AUD_STREAM_T stream_id,
struct AF_STREAM_CONFIG_T *stream) { struct AF_STREAM_CONFIG_T *stream)
int r; {
int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_setup_stream(id, stream_id, stream); r = voice_detector_setup_stream(id, stream_id, stream);
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_setup_callback(enum voice_detector_id id, int app_voice_detector_setup_callback(enum voice_detector_id id,
enum voice_detector_cb_id func_id, enum voice_detector_cb_id func_id,
voice_detector_cb_t func, void *param) { voice_detector_cb_t func,
int r; void *param)
{
int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_setup_callback(id, func_id, func, param); r = voice_detector_setup_callback(id, func_id, func, param);
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_send_event(enum voice_detector_id id, int app_voice_detector_send_event(enum voice_detector_id id,
enum voice_detector_evt evt) { enum voice_detector_evt evt)
APP_VD_LOG("%s, id=%d, evt=%d", __func__, id, evt); {
APP_VD_LOG("%s, id=%d, evt=%d", __func__, id, evt);
voice_detector_send_msg(id, evt); voice_detector_send_msg(id, evt);
return 0; return 0;
} }
void app_voice_detector_close(enum voice_detector_id id) { void app_voice_detector_close(enum voice_detector_id id)
APP_VD_LOG("%s", __func__); {
APP_VD_LOG("%s", __func__);
voice_detector_send_msg(id, VOICE_DET_EVT_CLOSE); voice_detector_send_msg(id, VOICE_DET_EVT_CLOSE);
} }
void app_voice_detector_capture_start(enum voice_detector_id id) { void app_voice_detector_capture_start(enum voice_detector_id id)
APP_VD_LOG("%s", __func__); {
APP_VD_LOG("%s", __func__);
voice_detector_send_msg(id, VOICE_DET_EVT_AUD_CAP_START); voice_detector_send_msg(id, VOICE_DET_EVT_AUD_CAP_START);
} }
void app_voice_detector_get_vad_data_info( void app_voice_detector_get_vad_data_info(enum voice_detector_id id,
enum voice_detector_id id, struct CODEC_VAD_BUF_INFO_T *vad_buf_info) { struct CODEC_VAD_BUF_INFO_T* vad_buf_info)
voice_detector_get_vad_data_info(id, vad_buf_info); {
voice_detector_get_vad_data_info(id, vad_buf_info);
} }

File diff suppressed because it is too large Load Diff

View File

@ -1,20 +0,0 @@
#!/usr/bin/env bash
BKPPATH="firmware-backups"
mkdir -p "$BKPPATH"
NOW=$(date +%s)
num=$(find /dev -name 'ttyACM*' | sort | rev | cut -c 1)
echo com is: "$num"
mapfile -t splitPorts <<< "$num"
echo "This tool assumes your buds are the only thing connected and are enumerated {right,left} order. YMMV"
echo "Right bud is at ${splitPorts[0]}"
echo "Left bud is at ${splitPorts[1]}"
echo "Please disconnect and reconnect the bud on the right"
bestool read-image --port "/dev/ttyACM${splitPorts[0]}" "${BKPPATH}/firmware-${NOW}-${splitPorts[0]}.bin.bkp"
echo "Please disconnect and reconnect the bud on the left"
bestool read-image --port "/dev/ttyACM${splitPorts[1]}" "${BKPPATH}/firmware-${NOW}-${splitPorts[1]}.bin.bkp"

View File

@ -1,8 +1,9 @@
#!/usr/bin/env sh #!/bin/bash
make -j T=open_source DEBUG=1 >log.txt 2>&1
if make -j "$(nproc)" T=open_source DEBUG=1 >log.txt 2>&1; then if [ $? -eq 0 ]; then
echo "build success" echo "build success"
else else
echo "build failed and call log.txt" echo "build failed and call log.txt"
grep "error:" log.txt cat log.txt | grep "error:*"
fi fi

View File

@ -1,3 +1,2 @@
#!/usr/bin/env sh #!/bin/bash
make T=open_source -j DEBUG=1 clean
make -j "$(nproc)" T=open_source DEBUG=1 clean

Some files were not shown because too many files have changed in this diff Show More