Formatting

Formatting Pass 1

Lots of fixups to adding stdint and stdbool all over the place

Formatting Pass 2
Formatting Pass 3
Formatting Pass 4

Update app_bt_stream.cpp
This commit is contained in:
Ben V. Brown 2023-02-02 07:52:54 +11:00
parent dcb8fed27b
commit 75381150fd
794 changed files with 240573 additions and 256459 deletions

View file

@ -17,30 +17,29 @@
#define __ANC_WNR_H__ #define __ANC_WNR_H__
// #include "plat_types.h" // #include "plat_types.h"
#include <stdint.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
typedef enum typedef enum {
{ ANC_WNR_OPEN_MODE_STANDALONE = 0,
ANC_WNR_OPEN_MODE_STANDALONE = 0, ANC_WNR_OPEN_MODE_CONFIGURE,
ANC_WNR_OPEN_MODE_CONFIGURE,
ANC_WNR_OPEN_MODE_QTY ANC_WNR_OPEN_MODE_QTY
} anc_wnr_open_mode_t; } anc_wnr_open_mode_t;
void anc_release_gain(void); void anc_release_gain(void);
typedef enum typedef enum {
{ APP_WNR_NOTIFY_DETECT_RESULT,
APP_WNR_NOTIFY_DETECT_RESULT, APP_WNR_REQUEST_DETECT_RESULT,
APP_WNR_REQUEST_DETECT_RESULT, APP_WNR_RESPONSE_DETECT_RESULT,
APP_WNR_RESPONSE_DETECT_RESULT, APP_WNR_PROCESS_DETECT_RESULT,
APP_WNR_PROCESS_DETECT_RESULT, APP_WNR_SET_TRIGGER,
APP_WNR_SET_TRIGGER, APP_WNR_EXCUTE_TRIGGER,
APP_WNR_EXCUTE_TRIGGER, APP_WNR_SHARE_MODULE_INFO,
APP_WNR_SHARE_MODULE_INFO,
} anc_wnr_sync_ctrl_internal_event_e; } anc_wnr_sync_ctrl_internal_event_e;
int32_t anc_wnr_ctrl(int32_t sample_rate, int32_t frame_len); int32_t anc_wnr_ctrl(int32_t sample_rate, int32_t frame_len);

View file

@ -1,6 +1,5 @@
/*************************************************************************** /***************************************************************************
* *
* Copyright 2015-2019 BES. * Copyright 2015-2019 BES.
@ -17,49 +16,43 @@
* *
****************************************************************************/ ****************************************************************************/
#include "anc_assist.h" #include "anc_assist.h"
#include "hal_trace.h" #include "anc_assist_algo.h"
#include "anc_process.h"
#include "arm_math.h" #include "arm_math.h"
#include "audio_dump.h" #include "audio_dump.h"
#include "speech_cfg.h"
#include "anc_process.h"
#include "audioflinger.h" #include "audioflinger.h"
#include "anc_assist_algo.h"
#include "hal_codec.h"
#include "audioflinger.h"
#include "hal_timer.h"
#include "hal_aud.h" #include "hal_aud.h"
#include "hal_codec.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "speech_cfg.h"
#include "speech_memory.h"
#include "speech_ssat.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include "hal_aud.h"
#include "anc_process.h"
#include "anc_assist_algo.h"
#include "speech_memory.h"
#include "speech_ssat.h"
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
#include "main_classify.h" #include "main_classify.h"
#endif #endif
static void _close_mic_anc_assist(); static void _close_mic_anc_assist();
static void _open_mic_anc_assist(); static void _open_mic_anc_assist();
#define _SAMPLE_RATE (16000) #define _SAMPLE_RATE (16000)
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
#define _FRAME_LEN (128) #define _FRAME_LEN (128)
#else #else
#define _FRAME_LEN (160) #define _FRAME_LEN (160)
#endif #endif
#define _CHANNEL_NUM_MAX (3) #define _CHANNEL_NUM_MAX (3)
#define SAMPLE_BYTES (sizeof(ASSIST_PCM_T)) #define SAMPLE_BYTES (sizeof(ASSIST_PCM_T))
#define AF_STREAM_BUFF_SIZE (_FRAME_LEN * SAMPLE_BYTES * _CHANNEL_NUM_MAX * 2) #define AF_STREAM_BUFF_SIZE (_FRAME_LEN * SAMPLE_BYTES * _CHANNEL_NUM_MAX * 2)
#define ANC_ADPT_STREAM_ID AUD_STREAM_ID_3 #define ANC_ADPT_STREAM_ID AUD_STREAM_ID_3
#define _FRAME_LEN_MAX (160) #define _FRAME_LEN_MAX (160)
#define _SAMPLE_BITS_MAX (32) #define _SAMPLE_BITS_MAX (32)
static uint8_t __attribute__((aligned(4))) af_stream_buff[AF_STREAM_BUFF_SIZE]; static uint8_t __attribute__((aligned(4))) af_stream_buff[AF_STREAM_BUFF_SIZE];
static ASSIST_PCM_T af_stream_mic1[_FRAME_LEN_MAX * (_SAMPLE_BITS_MAX / 8)]; static ASSIST_PCM_T af_stream_mic1[_FRAME_LEN_MAX * (_SAMPLE_BITS_MAX / 8)];
@ -69,377 +62,322 @@ int MIC_NUM = 0;
int MIC_MAP = 0; int MIC_MAP = 0;
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
#define _PLAY_SAMPLE_RATE (8000) #define _PLAY_SAMPLE_RATE (8000)
#define _PLAY_FRAME_LEN (80) #define _PLAY_FRAME_LEN (80)
#define AF_PLAY_STREAM_BUFF_SIZE (_PLAY_FRAME_LEN * SAMPLE_BYTES * 1 * 2) #define AF_PLAY_STREAM_BUFF_SIZE (_PLAY_FRAME_LEN * SAMPLE_BYTES * 1 * 2)
static uint8_t __attribute__((aligned(4))) af_play_stream_buff[AF_PLAY_STREAM_BUFF_SIZE]; static uint8_t __attribute__((aligned(4)))
af_play_stream_buff[AF_PLAY_STREAM_BUFF_SIZE];
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
ClassifyState * NoiseClassify_st = NULL; ClassifyState *NoiseClassify_st = NULL;
#endif #endif
#if defined(ANC_ASSIST_PILOT_ENABLED) || defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) || defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED) || defined(ANC_ASSIST_HESS_ENABLED) || \
defined(ANC_ASSIST_PNC_ENABLED) || \
defined(ANC_ASSIST_DEHOWLING_ENABLED) || \
defined(ANC_ASSIST_WNR_ENABLED) || \
defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
extern const struct_anc_cfg * anc_coef_list_48k[1]; extern const struct_anc_cfg *anc_coef_list_48k[1];
void anc_assist_change_curve(int curve_id){ void anc_assist_change_curve(int curve_id) {
TRACE(2,"[%s] change anc curve %d",__func__,curve_id); TRACE(2, "[%s] change anc curve %d", __func__, curve_id);
anc_set_cfg(anc_coef_list_48k[0],ANC_FEEDFORWARD,ANC_GAIN_NO_DELAY); anc_set_cfg(anc_coef_list_48k[0], ANC_FEEDFORWARD, ANC_GAIN_NO_DELAY);
anc_set_cfg(anc_coef_list_48k[0],ANC_FEEDBACK,ANC_GAIN_NO_DELAY); anc_set_cfg(anc_coef_list_48k[0], ANC_FEEDBACK, ANC_GAIN_NO_DELAY);
} }
bool audio_engine_tt_is_on(){ bool audio_engine_tt_is_on() { return 1; }
return 1;
}
#define _tgt_ff_gain (512) #define _tgt_ff_gain (512)
void anc_assist_set_anc_gain(float gain_ch_l, float gain_ch_r,enum ANC_TYPE_T anc_type){ void anc_assist_set_anc_gain(float gain_ch_l, float gain_ch_r,
enum ANC_TYPE_T anc_type) {
TRACE(2,"[%s] set anc gain %d",__func__,(int)(100*gain_ch_l)); TRACE(2, "[%s] set anc gain %d", __func__, (int)(100 * gain_ch_l));
uint32_t tgt_ff_gain_l,tgt_ff_gain_r; uint32_t tgt_ff_gain_l, tgt_ff_gain_r;
tgt_ff_gain_l = (uint32_t)(_tgt_ff_gain*gain_ch_l); tgt_ff_gain_l = (uint32_t)(_tgt_ff_gain * gain_ch_l);
tgt_ff_gain_r = (uint32_t)(_tgt_ff_gain*gain_ch_r); tgt_ff_gain_r = (uint32_t)(_tgt_ff_gain * gain_ch_r);
anc_set_gain(tgt_ff_gain_l,tgt_ff_gain_r,anc_type); anc_set_gain(tgt_ff_gain_l, tgt_ff_gain_r, anc_type);
} }
#endif #endif
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
static LeakageDetectionState * pilot_st = NULL; static LeakageDetectionState *pilot_st = NULL;
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
static ANCAssistMultiState * anc_assist_multi_st = NULL; static ANCAssistMultiState *anc_assist_multi_st = NULL;
#endif #endif
ANC_ASSIST_MODE_T g_anc_assist_mode = ANC_ASSIST_MODE_QTY; ANC_ASSIST_MODE_T g_anc_assist_mode = ANC_ASSIST_MODE_QTY;
void anc_assist_open(ANC_ASSIST_MODE_T mode){ void anc_assist_open(ANC_ASSIST_MODE_T mode) {
g_anc_assist_mode = mode; g_anc_assist_mode = mode;
// normal init
//normal init
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
pilot_st = LeakageDetection_create(160,0); pilot_st = LeakageDetection_create(160, 0);
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \
anc_assist_multi_st = ANCAssistMulti_create(_SAMPLE_RATE,_FRAME_LEN,128); defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
anc_assist_multi_st = ANCAssistMulti_create(_SAMPLE_RATE, _FRAME_LEN, 128);
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
NoiseClassify_st = classify_create(_SAMPLE_RATE, _FRAME_LEN); NoiseClassify_st = classify_create(_SAMPLE_RATE, _FRAME_LEN);
#endif #endif
// audio_dump_init(160,sizeof(short),3); // audio_dump_init(160,sizeof(short),3);
if (mode == ANC_ASSIST_MODE_QTY) {
if( mode == ANC_ASSIST_MODE_QTY){ return;
return; } else {
if (mode == ANC_ASSIST_STANDALONE || mode == ANC_ASSIST_MUSIC) {
_open_mic_anc_assist();
} }
else{ if (mode == ANC_ASSIST_PHONE_8K) {
if(mode == ANC_ASSIST_STANDALONE || mode == ANC_ASSIST_MUSIC ){ // normal init 8k
_open_mic_anc_assist(); } else if (mode == ANC_ASSIST_PHONE_16K) {
} // normal init 16k
if(mode == ANC_ASSIST_PHONE_8K){
// normal init 8k
}
else if(mode == ANC_ASSIST_PHONE_16K){
// normal init 16k
}
} }
}
} }
void anc_assist_close() {
void anc_assist_close(){
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
LeakageDetection_destroy(pilot_st); LeakageDetection_destroy(pilot_st);
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \
ANCAssistMulti_destroy(anc_assist_multi_st); defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
ANCAssistMulti_destroy(anc_assist_multi_st);
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
classify_destroy(NoiseClassify_st); classify_destroy(NoiseClassify_st);
#endif #endif
// ext_heap_deinit(); // ext_heap_deinit();
if( g_anc_assist_mode == ANC_ASSIST_MODE_QTY){ if (g_anc_assist_mode == ANC_ASSIST_MODE_QTY) {
return; return;
} else {
if (g_anc_assist_mode == ANC_ASSIST_STANDALONE ||
g_anc_assist_mode == ANC_ASSIST_MUSIC) {
_close_mic_anc_assist();
} }
else{ if (g_anc_assist_mode == ANC_ASSIST_PHONE_8K) {
if(g_anc_assist_mode == ANC_ASSIST_STANDALONE || g_anc_assist_mode == ANC_ASSIST_MUSIC ){ // normal init 8k
_close_mic_anc_assist(); } else if (g_anc_assist_mode == ANC_ASSIST_PHONE_16K) {
} // normal init 16k
if(g_anc_assist_mode == ANC_ASSIST_PHONE_8K){
// normal init 8k
}
else if(g_anc_assist_mode == ANC_ASSIST_PHONE_16K){
// normal init 16k
}
} }
}
} }
extern ASSIST_PCM_T ref_buf_data[80]; extern ASSIST_PCM_T ref_buf_data[80];
void anc_assist_process(uint8_t * buf, int len){ void anc_assist_process(uint8_t *buf, int len) {
int32_t frame_len = len / SAMPLE_BYTES / MIC_NUM;
ASSERT(frame_len == _FRAME_LEN, "[%s] frame len(%d) is invalid.", __func__,
frame_len);
ASSIST_PCM_T *pcm_buf = (ASSIST_PCM_T *)buf;
int32_t frame_len = len / SAMPLE_BYTES / MIC_NUM; ASSIST_PCM_T *mic1 = (ASSIST_PCM_T *)af_stream_mic1;
ASSERT(frame_len == _FRAME_LEN, "[%s] frame len(%d) is invalid.", __func__, frame_len); ASSIST_PCM_T *mic2 = (ASSIST_PCM_T *)af_stream_mic2;
ASSIST_PCM_T *pcm_buf = (ASSIST_PCM_T *)buf; ASSIST_PCM_T *mic3 = (ASSIST_PCM_T *)af_stream_mic3;
ASSIST_PCM_T *mic1 = (ASSIST_PCM_T *)af_stream_mic1; for (int32_t i = 0; i < frame_len; i++) {
ASSIST_PCM_T *mic2 = (ASSIST_PCM_T *)af_stream_mic2; mic1[i] = pcm_buf[MIC_NUM * i + 0];
ASSIST_PCM_T *mic3 = (ASSIST_PCM_T *)af_stream_mic3; mic2[i] = pcm_buf[MIC_NUM * i + 1];
mic3[i] = pcm_buf[MIC_NUM * i + 2];
for (int32_t i=0; i<frame_len; i++) { }
mic1[i] = pcm_buf[MIC_NUM*i + 0]; // audio_dump_clear_up();
mic2[i] = pcm_buf[MIC_NUM*i + 1]; // audio_dump_add_channel_data(0,mic1,160);
mic3[i] = pcm_buf[MIC_NUM*i + 2]; // audio_dump_add_channel_data(1,mic2,160);
} // audio_dump_add_channel_data(2,mic3,160);
// audio_dump_clear_up(); // audio_dump_run();
// audio_dump_add_channel_data(0,mic1,160); // TRACE(2,"in callback");
// audio_dump_add_channel_data(1,mic2,160);
// audio_dump_add_channel_data(2,mic3,160);
// audio_dump_run();
// TRACE(2,"in callback");
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
LeakageDetection_process(pilot_st,AF_ANC_OFF,mic3,ref_buf_data,frame_len); LeakageDetection_process(pilot_st, AF_ANC_OFF, mic3, ref_buf_data, frame_len);
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED) #if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_PNC_ENABLED) || \
ANCAssistMulti_process(anc_assist_multi_st,mic1,mic2,mic3,frame_len); defined(ANC_ASSIST_DEHOWLING_ENABLED) || defined(ANC_ASSIST_WNR_ENABLED)
ANCAssistMulti_process(anc_assist_multi_st, mic1, mic2, mic3, frame_len);
#endif #endif
#if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
static int last_classify_res = -1; static int last_classify_res = -1;
classify_process(NoiseClassify_st, mic1, last_classify_res); classify_process(NoiseClassify_st, mic1, last_classify_res);
#endif #endif
if(g_anc_assist_mode == ANC_ASSIST_PHONE_16K){ if (g_anc_assist_mode == ANC_ASSIST_PHONE_16K) {
//down sample // down sample
} }
//process fft // process fft
// wnr
// pnc
// hess
// pilot adpt
// wnr
// pnc
// hess
// pilot adpt
} }
static uint32_t anc_assist_callback(uint8_t *buf, uint32_t len) {
static uint32_t anc_assist_callback(uint8_t *buf, uint32_t len){
#ifdef TEST_MIPS #ifdef TEST_MIPS
start_ticks = hal_fast_sys_timer_get(); start_ticks = hal_fast_sys_timer_get();
#endif #endif
anc_assist_process(buf,len); anc_assist_process(buf, len);
#ifdef TEST_MIPS #ifdef TEST_MIPS
end_ticks = hal_fast_sys_timer_get(); end_ticks = hal_fast_sys_timer_get();
used_mips = (end_ticks - start_ticks) * 1000 / (start_ticks - pre_ticks); used_mips = (end_ticks - start_ticks) * 1000 / (start_ticks - pre_ticks);
TRACE(2,"[%s] Usage: %d in a thousand (MIPS).", __func__, used_mips); TRACE(2, "[%s] Usage: %d in a thousand (MIPS).", __func__, used_mips);
//wnr_ticks = start_ticks; // wnr_ticks = start_ticks;
//TRACE(2,"[%s] WNR frame takes %d ms.", __func__, FAST_TICKS_TO_MS((start_ticks - pre_ticks)*100)); // TRACE(2,"[%s] WNR frame takes %d ms.", __func__,
pre_ticks = start_ticks; // FAST_TICKS_TO_MS((start_ticks - pre_ticks)*100));
pre_ticks = start_ticks;
#endif #endif
return 0; return 0;
} }
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
static uint32_t anc_assist_playback_callback(uint8_t *buf, uint32_t len){ static uint32_t anc_assist_playback_callback(uint8_t *buf, uint32_t len) {
get_pilot_data(buf,len); get_pilot_data(buf, len);
// TRACE(2,"playing data %d",len); // TRACE(2,"playing data %d",len);
return 0; return 0;
} }
#endif #endif
static void _open_mic_anc_assist(void) {
static void _open_mic_anc_assist(void) int anc_assist_mic_num = 0;
{
int anc_assist_mic_num = 0;
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FB_MIC; anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FB_MIC;
#endif #endif
#if defined(ANC_ASSIST_HESS_ENABLED) || defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED) #if defined(ANC_ASSIST_HESS_ENABLED) || \
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC; defined(ANC_ASSIST_NOISE_ADAPTIVE_ENABLED)
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC;
#endif #endif
#if defined(ANC_ASSIST_PNC_ENABLED) #if defined(ANC_ASSIST_PNC_ENABLED)
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC; anc_assist_mic_num =
anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC;
#endif #endif
#if defined(ANC_ASSIST_DEHOWLING_ENABLED) #if defined(ANC_ASSIST_DEHOWLING_ENABLED)
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC; anc_assist_mic_num =
anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FB_MIC;
#endif #endif
#if defined(ANC_ASSIST_WNR_ENABLED) #if defined(ANC_ASSIST_WNR_ENABLED)
anc_assist_mic_num = anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FF2_MIC; anc_assist_mic_num =
anc_assist_mic_num | ANC_ASSIST_FF1_MIC | ANC_ASSIST_FF2_MIC;
#endif #endif
switch(anc_assist_mic_num){ switch (anc_assist_mic_num) {
case(0): case (0): {
{ TRACE(2, "[%s] no mic is used", __func__);
TRACE(2,"[%s] no mic is used",__func__); return;
return; } break;
} case (1): {
break; TRACE(2, "[%s] use fb mic only", __func__);
case(1):
{
TRACE(2,"[%s] use fb mic only",__func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
}
break;
case(4):
{
TRACE(2,"[%s] use ff mic only",__func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_ANC_WNR;
}
break;
case(5):
{
TRACE(2,"[%s] use ff mic and fb mic",__func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_ANC_WNR;
}
break;
case(6):
{
TRACE(2,"[%s] use ff1 mic and ff2 mic",__func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
}
break;
case(7):
{
TRACE(2,"[%s] use ff1 mic and ff2 mic and fb mic",__func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
}
break;
default:
{
TRACE(2,"[%s] invalid mic order is used",__func__);
}
break;
}
MIC_NUM = 3; MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_AF_ANC; MIC_MAP = AUD_INPUT_PATH_AF_ANC;
struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(1,"[%s] ...", __func__);
memset(&stream_cfg, 0, sizeof(stream_cfg)); } break;
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)MIC_NUM; case (4): {
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_SAMPLE_RATE; TRACE(2, "[%s] use ff mic only", __func__);
stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS; MIC_NUM = 3;
stream_cfg.vol = 12; MIC_MAP = AUD_INPUT_PATH_ANC_WNR;
stream_cfg.chan_sep_buf = false;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = (enum AUD_IO_PATH_T)MIC_MAP;
stream_cfg.handler = anc_assist_callback;
stream_cfg.data_size = _FRAME_LEN * SAMPLE_BYTES * 2 * MIC_NUM;
stream_cfg.data_ptr = af_stream_buff;
ASSERT(stream_cfg.channel_num == MIC_NUM, "[%s] channel number(%d) is invalid.", __func__, stream_cfg.channel_num);
TRACE(2,"[%s] sample_rate:%d, data_size:%d", __func__, stream_cfg.sample_rate, stream_cfg.data_size);
TRACE(2,"[%s] af_stream_buff = %p", __func__, af_stream_buff);
af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg); } break;
af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE); case (5): {
TRACE(2, "[%s] use ff mic and fb mic", __func__);
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_ANC_WNR;
} break;
case (6): {
TRACE(2, "[%s] use ff1 mic and ff2 mic", __func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
} break;
case (7): {
TRACE(2, "[%s] use ff1 mic and ff2 mic and fb mic", __func__);
MIC_NUM = 2;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
} break;
default: {
TRACE(2, "[%s] invalid mic order is used", __func__);
} break;
}
MIC_NUM = 3;
MIC_MAP = AUD_INPUT_PATH_AF_ANC;
struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(1, "[%s] ...", __func__);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)MIC_NUM;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = false;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = (enum AUD_IO_PATH_T)MIC_MAP;
stream_cfg.handler = anc_assist_callback;
stream_cfg.data_size = _FRAME_LEN * SAMPLE_BYTES * 2 * MIC_NUM;
stream_cfg.data_ptr = af_stream_buff;
ASSERT(stream_cfg.channel_num == MIC_NUM,
"[%s] channel number(%d) is invalid.", __func__,
stream_cfg.channel_num);
TRACE(2, "[%s] sample_rate:%d, data_size:%d", __func__,
stream_cfg.sample_rate, stream_cfg.data_size);
TRACE(2, "[%s] af_stream_buff = %p", __func__, af_stream_buff);
af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
#if defined(ANC_ASSIST_PILOT_ENABLED) #if defined(ANC_ASSIST_PILOT_ENABLED)
// struct AF_STREAM_CONFIG_T stream_cfg; // struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(1,"[%s] set play ...", __func__); TRACE(1, "[%s] set play ...", __func__);
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_PLAY_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)_SAMPLE_BITS; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)_PLAY_SAMPLE_RATE; stream_cfg.vol = 15;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.handler = anc_assist_playback_callback;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.data_ptr = af_play_stream_buff;
stream_cfg.vol = 15; stream_cfg.data_size = sizeof(af_play_stream_buff);
stream_cfg.handler = anc_assist_playback_callback; af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg);
stream_cfg.data_ptr = af_play_stream_buff; af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK);
stream_cfg.data_size = sizeof(af_play_stream_buff);
af_stream_open(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(ANC_ADPT_STREAM_ID, AUD_STREAM_PLAYBACK);
#endif #endif
} }
static void _close_mic_anc_assist() {
TRACE(1, "[%s] ...", __func__);
af_stream_stop(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_close(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
if (g_anc_assist_mode == ANC_ASSIST_STANDALONE ||
g_anc_assist_mode == ANC_ASSIST_MUSIC) {
// close capture
}
// destroy
static void _close_mic_anc_assist(){
TRACE(1,"[%s] ...", __func__);
af_stream_stop(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_close(ANC_ADPT_STREAM_ID, AUD_STREAM_CAPTURE);
if(g_anc_assist_mode == ANC_ASSIST_STANDALONE || g_anc_assist_mode == ANC_ASSIST_MUSIC ){
// close capture
}
// destroy
} }

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -13,8 +13,8 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "math.h"
#include "peak_detector.h" #include "peak_detector.h"
#include "math.h"
// #define PKD_FACTOR_UP (0.6) // #define PKD_FACTOR_UP (0.6)
// #define PKD_FACTOR_DOWN (2.0) // #define PKD_FACTOR_DOWN (2.0)
@ -27,93 +27,93 @@ static float pkd_factor1 = 0.0f;
static float pkd_factor2 = 0.0f; static float pkd_factor2 = 0.0f;
static float pkd_reduce_rate = 1.0f; static float pkd_reduce_rate = 1.0f;
#define FABS(x) ( (x) >= 0.f ? (x) : -(x) ) #define FABS(x) ((x) >= 0.f ? (x) : -(x))
#define Max(a,b) ((a)>(b) ? (a):(b)) #define Max(a, b) ((a) > (b) ? (a) : (b))
// Depend on codec_dac_vol // Depend on codec_dac_vol
// const float pkd_vol_multiple[18] = {0.089125, 0.0, 0.005623, 0.007943, 0.011220, 0.015849, 0.022387, 0.031623, 0.044668, 0.063096, 0.089125, 0.125893, 0.177828, 0.251189, 0.354813, 0.501187, 0.707946, 1.000000}; // const float pkd_vol_multiple[18] = {0.089125, 0.0, 0.005623, 0.007943,
// 0.011220, 0.015849, 0.022387, 0.031623, 0.044668, 0.063096, 0.089125,
// 0.125893, 0.177828, 0.251189, 0.354813, 0.501187, 0.707946, 1.000000};
// static uint32_t test_num = 0; // static uint32_t test_num = 0;
// int app_bt_stream_local_volume_get(void); // int app_bt_stream_local_volume_get(void);
// y = 20log(x) // y = 20log(x)
static inline float convert_multiple_to_db(float multiple) static inline float convert_multiple_to_db(float multiple) {
{ return 20 * (float)log10(multiple);
return 20*(float)log10(multiple);
} }
// x = 10^(y/20) // x = 10^(y/20)
static inline float convert_db_to_multiple(float db) static inline float convert_db_to_multiple(float db) {
{ return (float)pow(10, db / 20);
return (float)pow(10, db/20);
} }
void peak_detector_init(void) void peak_detector_init(void) {
{ pkd_alphaR = 0.0f;
pkd_alphaR = 0.0f; pkd_alphaA = 0.0f;
pkd_alphaA = 0.0f; pkd_factor1 = 0.0f;
pkd_factor1 = 0.0f; pkd_factor2 = 0.0f;
pkd_factor2 = 0.0f; pkd_reduce_rate = 1.0f;
pkd_reduce_rate = 1.0f; // TRACE(3,"[%s] pkd_alphaR = %f, pkd_alphaA = %f", __func__,
// TRACE(3,"[%s] pkd_alphaR = %f, pkd_alphaA = %f", __func__, (double)pkd_alphaR, (double)pkd_alphaA); // (double)pkd_alphaR, (double)pkd_alphaA);
} }
void peak_detector_setup(PEAK_DETECTOR_CFG_T *cfg) void peak_detector_setup(PEAK_DETECTOR_CFG_T *cfg) {
{ pkd_samp_bits = cfg->bits;
pkd_samp_bits = cfg->bits; pkd_alphaR = (float)exp(-1 / (cfg->factor_down * cfg->fs));
pkd_alphaR = (float)exp(-1/(cfg->factor_down * cfg->fs)); pkd_alphaA = (float)exp(-1 / (cfg->factor_up * cfg->fs));
pkd_alphaA = (float)exp(-1/(cfg->factor_up * cfg->fs)); pkd_reduce_rate = convert_db_to_multiple(cfg->reduce_dB);
pkd_reduce_rate = convert_db_to_multiple(cfg->reduce_dB);
} }
static void peak_detector_run_16bits(int16_t *buf, uint32_t len, float vol_multiple) static void peak_detector_run_16bits(int16_t *buf, uint32_t len,
{ float vol_multiple) {
float normal_rate = 1.0; float normal_rate = 1.0;
float tgt_rate = 1.0; float tgt_rate = 1.0;
for(uint32_t i = 0; i < len; i++) for (uint32_t i = 0; i < len; i++) {
{ pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1);
pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1); pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1;
pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1;
normal_rate = pkd_factor2/32768; normal_rate = pkd_factor2 / 32768;
tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple; tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple;
if(tgt_rate > 1.0) if (tgt_rate > 1.0) {
{ tgt_rate = 1.0;
tgt_rate = 1.0;
}
// rate += (tgt_rate - rate) / 10000.0;
// if(pkd_factor2>)
// {
// normal_rate = 0.25;
// }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int16_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
} }
// if(test_num == 500) // rate += (tgt_rate - rate) / 10000.0;
// if(pkd_factor2>)
// { // {
// test_num = 0; // normal_rate = 0.25;
// TRACE(0,"START>>>");
// TRACE(2,"vol_level = %d, pkd_vol_multiple = %f", vol_level, pkd_vol_multiple[vol_level]);
// TRACE(3,"buf = %d, pkd_alphaR = %f, pkd_alphaA = %f", buf[len-1], pkd_alphaR, pkd_alphaA);
// TRACE(4,"pkd_factor1 = %f, pkd_factor2 = %f, normal_rate = %f, tgt_rate = %f", pkd_factor1, pkd_factor2, normal_rate, tgt_rate);
// TRACE(0,"END<<<");
// // TRACE(7,"[%s] buf = %d, pkd_alphaR = %f, pkd_alphaA = %f, pkd_factor1 = %f, pkd_factor2 = %f, normal_rate = %f", __func__, buf[len-1], pkd_alphaR, pkd_alphaA, pkd_factor1, pkd_factor2, (1.0 - pkd_factor2/32768));
// } // }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int16_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
}
// if(test_num == 500)
// {
// test_num = 0;
// TRACE(0,"START>>>");
// TRACE(2,"vol_level = %d, pkd_vol_multiple = %f", vol_level,
// pkd_vol_multiple[vol_level]); TRACE(3,"buf = %d, pkd_alphaR = %f,
// pkd_alphaA = %f", buf[len-1], pkd_alphaR, pkd_alphaA);
// TRACE(4,"pkd_factor1 = %f, pkd_factor2 = %f, normal_rate = %f, tgt_rate =
// %f", pkd_factor1, pkd_factor2, normal_rate, tgt_rate); TRACE(0,"END<<<");
// // TRACE(7,"[%s] buf = %d, pkd_alphaR = %f, pkd_alphaA = %f, pkd_factor1 =
// %f, pkd_factor2 = %f, normal_rate = %f", __func__, buf[len-1], pkd_alphaR,
// pkd_alphaA, pkd_factor1, pkd_factor2, (1.0 - pkd_factor2/32768));
// }
#if 0 #if 0
short sample; short sample;
@ -139,58 +139,54 @@ static void peak_detector_run_16bits(int16_t *buf, uint32_t len, float vol_multi
#endif #endif
} }
static void peak_detector_run_24bits(int32_t *buf, uint32_t len, float vol_multiple) static void peak_detector_run_24bits(int32_t *buf, uint32_t len,
{ float vol_multiple) {
float normal_rate = 1.0; float normal_rate = 1.0;
float tgt_rate = 1.0; float tgt_rate = 1.0;
for(uint32_t i = 0; i < len; i++) for (uint32_t i = 0; i < len; i++) {
{ pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1);
pkd_factor1 = Max(buf[i], pkd_alphaR * pkd_factor1); pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1;
pkd_factor2 = pkd_alphaA * pkd_factor2 + (1 - pkd_alphaA) * pkd_factor1;
normal_rate = pkd_factor2/32768; normal_rate = pkd_factor2 / 32768;
tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple; tgt_rate = pkd_reduce_rate / normal_rate / vol_multiple;
if(tgt_rate > 1.0) if (tgt_rate > 1.0) {
{ tgt_rate = 1.0;
tgt_rate = 1.0;
}
// rate += (tgt_rate - rate) / 10000.0;
// if(pkd_factor2>)
// {
// normal_rate = 0.25;
// }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int32_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
}
}
void peak_detector_run(uint8_t *buf, uint32_t len, float vol_multiple)
{
// int vol_level = 0;
if (pkd_samp_bits <= AUD_BITS_16) {
len = len / sizeof(int16_t);
peak_detector_run_16bits((int16_t *)buf, len, vol_multiple);
} else {
len = len / sizeof(int32_t);
peak_detector_run_24bits((int32_t *)buf, len, vol_multiple);
} }
// test_num++; // rate += (tgt_rate - rate) / 10000.0;
// vol_level = app_bt_stream_local_volume_get(); // if(pkd_factor2>)
// {
// normal_rate = 0.25;
// }
// else
// {
// normal_rate = 0.25;
// }
// normal_rate *= 1.0 - pkd_factor2/32768;
buf[i] = (int32_t)(buf[i] * tgt_rate);
// buf[i] = 0;
//
// TRACE(2,"%d, %d", buf[i], pkd_factor2);
}
} }
void peak_detector_run(uint8_t *buf, uint32_t len, float vol_multiple) {
// int vol_level = 0;
if (pkd_samp_bits <= AUD_BITS_16) {
len = len / sizeof(int16_t);
peak_detector_run_16bits((int16_t *)buf, len, vol_multiple);
} else {
len = len / sizeof(int32_t);
peak_detector_run_24bits((int32_t *)buf, len, vol_multiple);
}
// test_num++;
// vol_level = app_bt_stream_local_volume_get();
}

View file

@ -13,20 +13,20 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_thread.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "app_thread.h"
#include "hal_timer.h"
#include "app_audtest_pattern.h" #include "app_audtest_pattern.h"
#include "hal_timer.h"
#include "hal_aud.h" #include "app_utils.h"
#include "audioflinger.h"
#include "audiobuffer.h" #include "audiobuffer.h"
#include "audioflinger.h"
#include "eq_export.h"
#include "hal_aud.h"
#include "stdbool.h" #include "stdbool.h"
#include <string.h> #include <string.h>
#include "eq_export.h"
#include "app_utils.h"
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
#include "anc_usb_app.h" #include "anc_usb_app.h"
@ -35,28 +35,28 @@
//#include "dualadc_audio_app.h" //#include "dualadc_audio_app.h"
#endif #endif
#define USB_AUDIO_PLAYBACK_BUFF_SIZE (FRAME_SIZE_PLAYBACK * 4) #define USB_AUDIO_PLAYBACK_BUFF_SIZE (FRAME_SIZE_PLAYBACK * 4)
#define USB_AUDIO_CAPTURE_BUFF_SIZE (FRAME_SIZE_CAPTURE * 4) #define USB_AUDIO_CAPTURE_BUFF_SIZE (FRAME_SIZE_CAPTURE * 4)
#define USB_AUDIO_RECV_BUFF_SIZE (FRAME_SIZE_RECV * 8) #define USB_AUDIO_RECV_BUFF_SIZE (FRAME_SIZE_RECV * 8)
#define USB_AUDIO_SEND_BUFF_SIZE (FRAME_SIZE_SEND * 8) #define USB_AUDIO_SEND_BUFF_SIZE (FRAME_SIZE_SEND * 8)
#define APP_TEST_PLAYBACK_BUFF_SIZE (128 * 20) #define APP_TEST_PLAYBACK_BUFF_SIZE (128 * 20)
#define APP_TEST_CAPTURE_BUFF_SIZE (128 * 20) #define APP_TEST_CAPTURE_BUFF_SIZE (128 * 20)
#if (USB_AUDIO_PLAYBACK_BUFF_SIZE > APP_TEST_PLAYBACK_BUFF_SIZE) #if (USB_AUDIO_PLAYBACK_BUFF_SIZE > APP_TEST_PLAYBACK_BUFF_SIZE)
#define REAL_PLAYBACK_BUFF_SIZE USB_AUDIO_PLAYBACK_BUFF_SIZE #define REAL_PLAYBACK_BUFF_SIZE USB_AUDIO_PLAYBACK_BUFF_SIZE
#else #else
#define REAL_PLAYBACK_BUFF_SIZE APP_TEST_PLAYBACK_BUFF_SIZE #define REAL_PLAYBACK_BUFF_SIZE APP_TEST_PLAYBACK_BUFF_SIZE
#endif #endif
#if (USB_AUDIO_CAPTURE_BUFF_SIZE > APP_TEST_CAPTURE_BUFF_SIZE) #if (USB_AUDIO_CAPTURE_BUFF_SIZE > APP_TEST_CAPTURE_BUFF_SIZE)
#define REAL_CAPTURE_BUFF_SIZE USB_AUDIO_CAPTURE_BUFF_SIZE #define REAL_CAPTURE_BUFF_SIZE USB_AUDIO_CAPTURE_BUFF_SIZE
#else #else
#define REAL_CAPTURE_BUFF_SIZE APP_TEST_CAPTURE_BUFF_SIZE #define REAL_CAPTURE_BUFF_SIZE APP_TEST_CAPTURE_BUFF_SIZE
#endif #endif
#define ALIGNED4 ALIGNED(4) #define ALIGNED4 ALIGNED(4)
static uint8_t ALIGNED4 app_test_playback_buff[REAL_PLAYBACK_BUFF_SIZE]; static uint8_t ALIGNED4 app_test_playback_buff[REAL_PLAYBACK_BUFF_SIZE];
static uint8_t ALIGNED4 app_test_capture_buff[REAL_CAPTURE_BUFF_SIZE]; static uint8_t ALIGNED4 app_test_capture_buff[REAL_CAPTURE_BUFF_SIZE];
@ -66,242 +66,225 @@ static uint8_t ALIGNED4 app_test_recv_buff[USB_AUDIO_RECV_BUFF_SIZE];
static uint8_t ALIGNED4 app_test_send_buff[USB_AUDIO_SEND_BUFF_SIZE]; static uint8_t ALIGNED4 app_test_send_buff[USB_AUDIO_SEND_BUFF_SIZE];
#endif #endif
uint32_t pcm_1ksin_more_data(uint8_t *buf, uint32_t len) uint32_t pcm_1ksin_more_data(uint8_t *buf, uint32_t len) {
{ static uint32_t nextPbufIdx = 0;
static uint32_t nextPbufIdx = 0; uint32_t remain_size = len;
uint32_t remain_size = len; uint32_t curr_size = 0;
uint32_t curr_size = 0; static uint32_t pcm_preIrqTime = 0;
static uint32_t pcm_preIrqTime = 0;; ;
uint32_t stime = 0; uint32_t stime = 0;
stime = hal_sys_timer_get();
TRACE(3, "pcm_1ksin_more_data irqDur:%d readbuff:0x%08x %d\n ",
TICKS_TO_MS(stime - pcm_preIrqTime), buf, len);
pcm_preIrqTime = stime;
stime = hal_sys_timer_get(); // TRACE(2,"[pcm_1ksin_more_data] len=%d nextBuf:%d\n", len, nextPbufIdx);
TRACE(3,"pcm_1ksin_more_data irqDur:%d readbuff:0x%08x %d\n ", TICKS_TO_MS(stime - pcm_preIrqTime), buf, len); if (remain_size > sizeof(sinwave)) {
pcm_preIrqTime = stime; do {
if (nextPbufIdx) {
// TRACE(2,"[pcm_1ksin_more_data] len=%d nextBuf:%d\n", len, nextPbufIdx); curr_size = sizeof(sinwave) - nextPbufIdx;
if (remain_size > sizeof(sinwave)) memcpy(buf, &sinwave[nextPbufIdx / 2], curr_size);
{ remain_size -= curr_size;
do{ nextPbufIdx = 0;
if (nextPbufIdx) } else if (remain_size > sizeof(sinwave)) {
{ memcpy(buf + curr_size, sinwave, sizeof(sinwave));
curr_size = sizeof(sinwave)-nextPbufIdx; curr_size += sizeof(sinwave);
memcpy(buf,&sinwave[nextPbufIdx/2], curr_size); remain_size -= sizeof(sinwave);
remain_size -= curr_size; } else {
nextPbufIdx = 0; memcpy(buf + curr_size, sinwave, remain_size);
} nextPbufIdx = remain_size;
else if (remain_size>sizeof(sinwave)) remain_size = 0;
{ }
memcpy(buf+curr_size,sinwave,sizeof(sinwave)); } while (remain_size);
curr_size += sizeof(sinwave); } else {
remain_size -= sizeof(sinwave); if ((sizeof(sinwave) - nextPbufIdx) >= len) {
} memcpy(buf, &sinwave[nextPbufIdx / 2], len);
else nextPbufIdx += len;
{ } else {
memcpy(buf+curr_size,sinwave,remain_size); curr_size = sizeof(sinwave) - nextPbufIdx;
nextPbufIdx = remain_size; memcpy(buf, &sinwave[nextPbufIdx / 2], curr_size);
remain_size = 0; nextPbufIdx = len - curr_size;
} memcpy(buf + curr_size, sinwave, nextPbufIdx);
}while(remain_size);
}
else
{
if ((sizeof(sinwave) - nextPbufIdx) >= len)
{
memcpy(buf, &sinwave[nextPbufIdx/2],len);
nextPbufIdx += len;
}
else
{
curr_size = sizeof(sinwave)-nextPbufIdx;
memcpy(buf, &sinwave[nextPbufIdx/2],curr_size);
nextPbufIdx = len - curr_size;
memcpy(buf+curr_size,sinwave, nextPbufIdx);
}
} }
}
return 0; return 0;
} }
uint32_t pcm_mute_more_data(uint8_t *buf, uint32_t len) uint32_t pcm_mute_more_data(uint8_t *buf, uint32_t len) {
{ memset(buf, 0, len);
memset(buf, 0 , len); return 0;
return 0;
} }
void da_output_sin1k(bool on) void da_output_sin1k(bool on) {
{ static bool isRun = false;
static bool isRun = false; struct AF_STREAM_CONFIG_T stream_cfg;
struct AF_STREAM_CONFIG_T stream_cfg; memset(&stream_cfg, 0, sizeof(stream_cfg));
memset(&stream_cfg, 0, sizeof(stream_cfg));
if (isRun==on) if (isRun == on)
return; return;
else else
isRun=on; isRun = on;
TRACE(2,"%s %d\n", __func__, on); TRACE(2, "%s %d\n", __func__, on);
if (on){ if (on) {
stream_cfg.bits = AUD_BITS_16; stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_44100; stream_cfg.sample_rate = AUD_SAMPRATE_44100;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = 16; stream_cfg.vol = 16;
stream_cfg.handler = pcm_1ksin_more_data; stream_cfg.handler = pcm_1ksin_more_data;
stream_cfg.data_ptr = app_test_playback_buff; stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE; stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}else{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}
} }
void da_tester(uint8_t on) void da_tester(uint8_t on) { da_output_sin1k(on); }
{
da_output_sin1k(on);
}
extern int voicecvsd_audio_init(void); extern int voicecvsd_audio_init(void);
extern uint32_t voicecvsd_audio_more_data(uint8_t *buf, uint32_t len); extern uint32_t voicecvsd_audio_more_data(uint8_t *buf, uint32_t len);
extern int get_voicecvsd_buffer_size(void); extern int get_voicecvsd_buffer_size(void);
extern int store_voice_pcm2cvsd(unsigned char *buf, unsigned int len); extern int store_voice_pcm2cvsd(unsigned char *buf, unsigned int len);
static uint32_t pcm_data_capture(uint8_t *buf, uint32_t len) static uint32_t pcm_data_capture(uint8_t *buf, uint32_t len) {
{ uint32_t stime, etime;
uint32_t stime, etime; static uint32_t preIrqTime = 0;
static uint32_t preIrqTime = 0;
stime = hal_sys_timer_get(); stime = hal_sys_timer_get();
// audio_buffer_set_stereo2mono_16bits(buf, len, 1); // audio_buffer_set_stereo2mono_16bits(buf, len, 1);
audio_buffer_set(buf, len); audio_buffer_set(buf, len);
etime = hal_sys_timer_get(); etime = hal_sys_timer_get();
TRACE(4,"%s irqDur:%d fsSpend:%d, Len:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len); TRACE(4, "%s irqDur:%d fsSpend:%d, Len:%d", __func__,
preIrqTime = stime; TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len);
return 0; preIrqTime = stime;
return 0;
} }
static uint32_t pcm_data_playback(uint8_t *buf, uint32_t len) static uint32_t pcm_data_playback(uint8_t *buf, uint32_t len) {
{ uint32_t stime, etime;
uint32_t stime, etime; static uint32_t preIrqTime = 0;
static uint32_t preIrqTime = 0; stime = hal_sys_timer_get();
stime = hal_sys_timer_get(); // audio_buffer_get_mono2stereo_16bits(buf, len);
// audio_buffer_get_mono2stereo_16bits(buf, len); audio_buffer_get(buf, len);
audio_buffer_get(buf, len); etime = hal_sys_timer_get();
etime = hal_sys_timer_get(); TRACE(4, "%s irqDur:%d fsSpend:%d, Len:%d", __func__,
TRACE(4,"%s irqDur:%d fsSpend:%d, Len:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len); TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len);
preIrqTime = stime; preIrqTime = stime;
return 0; return 0;
} }
uint32_t pcm_cvsd_data_capture(uint8_t *buf, uint32_t len) uint32_t pcm_cvsd_data_capture(uint8_t *buf, uint32_t len) {
{ uint32_t stime, etime;
uint32_t stime, etime; static uint32_t preIrqTime = 0;
static uint32_t preIrqTime = 0;
//TRACE(1,"%s enter", __func__); // TRACE(1,"%s enter", __func__);
stime = hal_sys_timer_get(); stime = hal_sys_timer_get();
len >>= 1; len >>= 1;
audio_stereo2mono_16bits(0, (uint16_t *)buf, (uint16_t *)buf, len); audio_stereo2mono_16bits(0, (uint16_t *)buf, (uint16_t *)buf, len);
store_voice_pcm2cvsd(buf, len); store_voice_pcm2cvsd(buf, len);
etime = hal_sys_timer_get(); etime = hal_sys_timer_get();
TRACE(4,"%s exit irqDur:%d fsSpend:%d, add:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len); TRACE(4, "%s exit irqDur:%d fsSpend:%d, add:%d", __func__,
preIrqTime = stime; TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len);
return 0; preIrqTime = stime;
return 0;
} }
uint32_t pcm_cvsd_data_playback(uint8_t *buf, uint32_t len) uint32_t pcm_cvsd_data_playback(uint8_t *buf, uint32_t len) {
{ int n;
int n; uint32_t stime, etime;
uint32_t stime, etime; static uint32_t preIrqTime = 0;
static uint32_t preIrqTime = 0;
//TRACE(1,"%s enter", __func__); // TRACE(1,"%s enter", __func__);
stime = hal_sys_timer_get(); stime = hal_sys_timer_get();
pcm_1ksin_more_data(buf, len); pcm_1ksin_more_data(buf, len);
voicecvsd_audio_more_data(buf, len); voicecvsd_audio_more_data(buf, len);
n = get_voicecvsd_buffer_size(); n = get_voicecvsd_buffer_size();
etime = hal_sys_timer_get(); etime = hal_sys_timer_get();
TRACE(5,"%s exit irqDur:%d fsSpend:%d, get:%d remain:%d", __func__, TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len, n); TRACE(5, "%s exit irqDur:%d fsSpend:%d, get:%d remain:%d", __func__,
preIrqTime = stime; TICKS_TO_MS(stime - preIrqTime), TICKS_TO_MS(etime - stime), len, n);
return 0; preIrqTime = stime;
return 0;
} }
void adc_looptester(bool on, enum AUD_IO_PATH_T input_path, enum AUD_SAMPRATE_T sample_rate) void adc_looptester(bool on, enum AUD_IO_PATH_T input_path,
{ enum AUD_SAMPRATE_T sample_rate) {
struct AF_STREAM_CONFIG_T stream_cfg; struct AF_STREAM_CONFIG_T stream_cfg;
static bool isRun = false; static bool isRun = false;
if (isRun==on) if (isRun == on)
return; return;
else else
isRun=on; isRun = on;
if (on){ if (on) {
audio_buffer_init(); audio_buffer_init();
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16; stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = sample_rate; stream_cfg.sample_rate = sample_rate;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = input_path; stream_cfg.io_path = input_path;
stream_cfg.vol = 0x03; stream_cfg.vol = 0x03;
stream_cfg.handler = pcm_data_capture; stream_cfg.handler = pcm_data_capture;
stream_cfg.data_ptr = app_test_capture_buff; stream_cfg.data_ptr = app_test_capture_buff;
stream_cfg.data_size = APP_TEST_CAPTURE_BUFF_SIZE; stream_cfg.data_size = APP_TEST_CAPTURE_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
stream_cfg.handler = pcm_data_playback; stream_cfg.handler = pcm_data_playback;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.data_ptr = app_test_playback_buff; stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE; stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
}else{ } else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
} }
} }
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
void app_anc_usb_init(void) void app_anc_usb_init(void) {
{ app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M);
anc_usb_app_init(AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_96000, AUD_SAMPRATE_192000); anc_usb_app_init(AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_96000,
AUD_SAMPRATE_192000);
struct USB_AUDIO_BUF_CFG cfg; struct USB_AUDIO_BUF_CFG cfg;
memset(&cfg, 0, sizeof(cfg)); memset(&cfg, 0, sizeof(cfg));
cfg.play_buf = app_test_playback_buff; cfg.play_buf = app_test_playback_buff;
cfg.play_size = USB_AUDIO_PLAYBACK_BUFF_SIZE; cfg.play_size = USB_AUDIO_PLAYBACK_BUFF_SIZE;
cfg.cap_buf = app_test_capture_buff; cfg.cap_buf = app_test_capture_buff;
cfg.cap_size = USB_AUDIO_CAPTURE_BUFF_SIZE; cfg.cap_size = USB_AUDIO_CAPTURE_BUFF_SIZE;
cfg.recv_buf = app_test_recv_buff; cfg.recv_buf = app_test_recv_buff;
cfg.recv_size = USB_AUDIO_RECV_BUFF_SIZE; cfg.recv_size = USB_AUDIO_RECV_BUFF_SIZE;
cfg.send_buf = app_test_send_buff; cfg.send_buf = app_test_send_buff;
cfg.send_size = USB_AUDIO_SEND_BUFF_SIZE; cfg.send_size = USB_AUDIO_SEND_BUFF_SIZE;
usb_audio_app_init(&cfg); usb_audio_app_init(&cfg);
//dualadc_audio_app_init(app_test_playback_buff, USB_AUDIO_PLAYBACK_BUFF_SIZE, // dualadc_audio_app_init(app_test_playback_buff,
//app_test_capture_buff, USB_AUDIO_CAPTURE_BUFF_SIZE); // USB_AUDIO_PLAYBACK_BUFF_SIZE, app_test_capture_buff,
// USB_AUDIO_CAPTURE_BUFF_SIZE);
} }
#endif #endif

View file

@ -13,11 +13,10 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "audiobuffer.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "cqueue.h" #include "cqueue.h"
#include "string.h" #include "string.h"
#include "audiobuffer.h"
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
static osMutexId g_audio_queue_mutex_id = NULL; static osMutexId g_audio_queue_mutex_id = NULL;
@ -25,122 +24,121 @@ osMutexDef(g_audio_queue_mutex);
#endif #endif
static CQueue audio_queue; static CQueue audio_queue;
static unsigned char audio_queue_buf[AUDIO_BUFFER_FRAME_SIZE*AUDIO_BUFFER_FRAME_NUM]; static unsigned char
audio_queue_buf[AUDIO_BUFFER_FRAME_SIZE * AUDIO_BUFFER_FRAME_NUM];
void audio_mono2stereo_16bits(uint16_t *dst_buf, uint16_t *src_buf, uint32_t src_len) void audio_mono2stereo_16bits(uint16_t *dst_buf, uint16_t *src_buf,
{ uint32_t src_len) {
uint32_t i = 0; uint32_t i = 0;
for (i = 0; i < src_len; ++i) { for (i = 0; i < src_len; ++i) {
dst_buf[i*2 + 0] = dst_buf[i*2 + 1] = src_buf[i]; dst_buf[i * 2 + 0] = dst_buf[i * 2 + 1] = src_buf[i];
} }
} }
void audio_stereo2mono_16bits(uint8_t chnlsel, uint16_t *dst_buf, uint16_t *src_buf, uint32_t src_len) void audio_stereo2mono_16bits(uint8_t chnlsel, uint16_t *dst_buf,
{ uint16_t *src_buf, uint32_t src_len) {
uint32_t i = 0; uint32_t i = 0;
for (i = 0; i < src_len; i+=2) { for (i = 0; i < src_len; i += 2) {
dst_buf[i/2] = src_buf[i + chnlsel]; dst_buf[i / 2] = src_buf[i + chnlsel];
} }
} }
void audio_buffer_init(void) void audio_buffer_init(void) {
{
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
if (g_audio_queue_mutex_id == NULL) if (g_audio_queue_mutex_id == NULL)
g_audio_queue_mutex_id = osMutexCreate((osMutex(g_audio_queue_mutex))); g_audio_queue_mutex_id = osMutexCreate((osMutex(g_audio_queue_mutex)));
#endif #endif
InitCQueue(&audio_queue, sizeof(audio_queue_buf), (unsigned char *)&audio_queue_buf); InitCQueue(&audio_queue, sizeof(audio_queue_buf),
memset(&audio_queue_buf, 0x00, sizeof(audio_queue_buf)); (unsigned char *)&audio_queue_buf);
memset(&audio_queue_buf, 0x00, sizeof(audio_queue_buf));
} }
int audio_buffer_length(void) int audio_buffer_length(void) {
{ int len;
int len;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
len = LengthOfCQueue(&audio_queue); len = LengthOfCQueue(&audio_queue);
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return len; return len;
} }
int audio_buffer_set(uint8_t *buff, uint16_t len) int audio_buffer_set(uint8_t *buff, uint16_t len) {
{ int status;
int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
status = EnCQueue(&audio_queue, buff, len); status = EnCQueue(&audio_queue, buff, len);
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }
int audio_buffer_get(uint8_t *buff, uint16_t len) int audio_buffer_get(uint8_t *buff, uint16_t len) {
{ uint8_t *e1 = NULL, *e2 = NULL;
uint8_t *e1 = NULL, *e2 = NULL; unsigned int len1 = 0, len2 = 0;
unsigned int len1 = 0, len2 = 0; int status;
int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
status = PeekCQueue(&audio_queue, len, &e1, &len1, &e2, &len2); status = PeekCQueue(&audio_queue, len, &e1, &len1, &e2, &len2);
if (len==(len1+len2)){ if (len == (len1 + len2)) {
memcpy(buff,e1,len1); memcpy(buff, e1, len1);
memcpy(buff+len1,e2,len2); memcpy(buff + len1, e2, len2);
DeCQueue(&audio_queue, 0, len); DeCQueue(&audio_queue, 0, len);
DeCQueue(&audio_queue, 0, len2); DeCQueue(&audio_queue, 0, len2);
}else{ } else {
memset(buff, 0x00, len); memset(buff, 0x00, len);
status = -1; status = -1;
} }
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }
int audio_buffer_set_stereo2mono_16bits(uint8_t *buff, uint16_t len, uint8_t chnlsel) int audio_buffer_set_stereo2mono_16bits(uint8_t *buff, uint16_t len,
{ uint8_t chnlsel) {
int status; int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
audio_stereo2mono_16bits(chnlsel, (uint16_t *)buff, (uint16_t *)buff, len>>1); audio_stereo2mono_16bits(chnlsel, (uint16_t *)buff, (uint16_t *)buff,
status = EnCQueue(&audio_queue, buff, len>>1); len >> 1);
status = EnCQueue(&audio_queue, buff, len >> 1);
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }
int audio_buffer_get_mono2stereo_16bits(uint8_t *buff, uint16_t len) int audio_buffer_get_mono2stereo_16bits(uint8_t *buff, uint16_t len) {
{ uint8_t *e1 = NULL, *e2 = NULL;
uint8_t *e1 = NULL, *e2 = NULL; unsigned int len1 = 0, len2 = 0;
unsigned int len1 = 0, len2 = 0; int status;
int status;
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexWait(g_audio_queue_mutex_id, osWaitForever); osMutexWait(g_audio_queue_mutex_id, osWaitForever);
#endif #endif
status = PeekCQueue(&audio_queue, len>>1, &e1, &len1, &e2, &len2); status = PeekCQueue(&audio_queue, len >> 1, &e1, &len1, &e2, &len2);
if (len>>1== len1+len2){ if (len >> 1 == len1 + len2) {
audio_mono2stereo_16bits((uint16_t *)buff, (uint16_t *)e1, len1>>1); audio_mono2stereo_16bits((uint16_t *)buff, (uint16_t *)e1, len1 >> 1);
audio_mono2stereo_16bits((uint16_t *)(buff+(len1<<1)), (uint16_t *)e2, len2>>1); audio_mono2stereo_16bits((uint16_t *)(buff + (len1 << 1)), (uint16_t *)e2,
DeCQueue(&audio_queue, 0, len1); len2 >> 1);
DeCQueue(&audio_queue, 0, len2); DeCQueue(&audio_queue, 0, len1);
status = len; DeCQueue(&audio_queue, 0, len2);
}else{ status = len;
memset(buff, 0x00, len); } else {
status = -1; memset(buff, 0x00, len);
} status = -1;
}
#ifndef _AUDIO_NO_THREAD_ #ifndef _AUDIO_NO_THREAD_
osMutexRelease(g_audio_queue_mutex_id); osMutexRelease(g_audio_queue_mutex_id);
#endif #endif
return status; return status;
} }

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -14,124 +14,116 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include "a2dp_decoder_internal.h"
#include "cmsis.h" #include "cmsis.h"
#include "hal_location.h"
#include "heap_api.h"
#include "plat_types.h" #include "plat_types.h"
#include <string.h> #include <string.h>
#include "heap_api.h"
#include "hal_location.h"
#include "a2dp_decoder_internal.h"
static A2DP_AUDIO_CONTEXT_T *a2dp_audio_context_p = NULL; static A2DP_AUDIO_CONTEXT_T *a2dp_audio_context_p = NULL;
static A2DP_AUDIO_DECODER_LASTFRAME_INFO_T a2dp_audio_ldac_example_info; static A2DP_AUDIO_DECODER_LASTFRAME_INFO_T a2dp_audio_ldac_example_info;
static A2DP_AUDIO_OUTPUT_CONFIG_T a2dp_audio_example_output_config; static A2DP_AUDIO_OUTPUT_CONFIG_T a2dp_audio_example_output_config;
typedef struct { typedef struct {
uint16_t sequenceNumber; uint16_t sequenceNumber;
uint32_t timestamp; uint32_t timestamp;
uint8_t *buffer; uint8_t *buffer;
uint32_t buffer_len; uint32_t buffer_len;
} a2dp_audio_example_decoder_frame_t; } a2dp_audio_example_decoder_frame_t;
int a2dp_audio_example_decode_frame(uint8_t *buffer, uint32_t buffer_bytes) {
int a2dp_audio_example_decode_frame(uint8_t *buffer, uint32_t buffer_bytes) return A2DP_DECODER_NO_ERROR;
{
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_preparse_packet(btif_media_header_t * header, uint8_t *buffer, uint32_t buffer_bytes) int a2dp_audio_example_preparse_packet(btif_media_header_t *header,
{ uint8_t *buffer, uint32_t buffer_bytes) {
return A2DP_DECODER_NO_ERROR; return A2DP_DECODER_NO_ERROR;
} }
static void *a2dp_audio_example_frame_malloc(uint32_t packet_len) {
a2dp_audio_example_decoder_frame_t *decoder_frame_p = NULL;
uint8_t *buffer = NULL;
static void *a2dp_audio_example_frame_malloc(uint32_t packet_len) buffer = (uint8_t *)a2dp_audio_heap_malloc(packet_len);
{ decoder_frame_p =
a2dp_audio_example_decoder_frame_t *decoder_frame_p = NULL; (a2dp_audio_example_decoder_frame_t *)a2dp_audio_heap_malloc(
uint8_t *buffer = NULL; sizeof(a2dp_audio_example_decoder_frame_t));
decoder_frame_p->buffer = buffer;
buffer = (uint8_t *)a2dp_audio_heap_malloc(packet_len); decoder_frame_p->buffer_len = packet_len;
decoder_frame_p = (a2dp_audio_example_decoder_frame_t *)a2dp_audio_heap_malloc(sizeof(a2dp_audio_example_decoder_frame_t)); return (void *)decoder_frame_p;
decoder_frame_p->buffer = buffer;
decoder_frame_p->buffer_len = packet_len;
return (void *)decoder_frame_p;
} }
void a2dp_audio_example_free(void *packet) void a2dp_audio_example_free(void *packet) {
{ a2dp_audio_example_decoder_frame_t *decoder_frame_p =
a2dp_audio_example_decoder_frame_t *decoder_frame_p = (a2dp_audio_example_decoder_frame_t *)packet; (a2dp_audio_example_decoder_frame_t *)packet;
a2dp_audio_heap_free(decoder_frame_p->buffer); a2dp_audio_heap_free(decoder_frame_p->buffer);
a2dp_audio_heap_free(decoder_frame_p); a2dp_audio_heap_free(decoder_frame_p);
} }
int a2dp_audio_example_store_packet(btif_media_header_t * header, uint8_t *buffer, uint32_t buffer_bytes) int a2dp_audio_example_store_packet(btif_media_header_t *header,
{ uint8_t *buffer, uint32_t buffer_bytes) {
list_t *list = a2dp_audio_context_p->audio_datapath.input_raw_packet_list; list_t *list = a2dp_audio_context_p->audio_datapath.input_raw_packet_list;
a2dp_audio_example_decoder_frame_t *decoder_frame_p = (a2dp_audio_example_decoder_frame_t *)a2dp_audio_example_frame_malloc(buffer_bytes); a2dp_audio_example_decoder_frame_t *decoder_frame_p =
(a2dp_audio_example_decoder_frame_t *)a2dp_audio_example_frame_malloc(
buffer_bytes);
decoder_frame_p->sequenceNumber = header->sequenceNumber; decoder_frame_p->sequenceNumber = header->sequenceNumber;
decoder_frame_p->timestamp = header->timestamp; decoder_frame_p->timestamp = header->timestamp;
memcpy(decoder_frame_p->buffer, buffer, buffer_bytes); memcpy(decoder_frame_p->buffer, buffer, buffer_bytes);
decoder_frame_p->buffer_len = buffer_bytes; decoder_frame_p->buffer_len = buffer_bytes;
a2dp_audio_list_append(list, decoder_frame_p); a2dp_audio_list_append(list, decoder_frame_p);
return A2DP_DECODER_NO_ERROR; return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_discards_packet(uint32_t packets) int a2dp_audio_example_discards_packet(uint32_t packets) {
{ return A2DP_DECODER_NO_ERROR;
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_headframe_info_get(A2DP_AUDIO_HEADFRAME_INFO_T* headframe_info) int a2dp_audio_example_headframe_info_get(
{ A2DP_AUDIO_HEADFRAME_INFO_T *headframe_info) {
return A2DP_DECODER_NO_ERROR; return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_info_get(void *info) int a2dp_audio_example_info_get(void *info) { return A2DP_DECODER_NO_ERROR; }
{
return A2DP_DECODER_NO_ERROR; int a2dp_audio_example_init(A2DP_AUDIO_OUTPUT_CONFIG_T *config, void *context) {
TRACE_A2DP_DECODER_D("%s", __func__);
a2dp_audio_context_p = (A2DP_AUDIO_CONTEXT_T *)context;
memset(&a2dp_audio_ldac_example_info, 0,
sizeof(A2DP_AUDIO_DECODER_LASTFRAME_INFO_T));
memcpy(&a2dp_audio_example_output_config, config,
sizeof(A2DP_AUDIO_OUTPUT_CONFIG_T));
a2dp_audio_ldac_example_info.stream_info = &a2dp_audio_example_output_config;
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_init(A2DP_AUDIO_OUTPUT_CONFIG_T *config, void *context) int a2dp_audio_example_deinit(void) { return A2DP_DECODER_NO_ERROR; }
{
TRACE_A2DP_DECODER_D("%s", __func__);
a2dp_audio_context_p = (A2DP_AUDIO_CONTEXT_T *)context;
memset(&a2dp_audio_ldac_example_info, 0, sizeof(A2DP_AUDIO_DECODER_LASTFRAME_INFO_T)); int a2dp_audio_example_synchronize_packet(
memcpy(&a2dp_audio_example_output_config, config, sizeof(A2DP_AUDIO_OUTPUT_CONFIG_T)); A2DP_AUDIO_SYNCFRAME_INFO_T *sync_info, uint32_t mask) {
a2dp_audio_ldac_example_info.stream_info = &a2dp_audio_example_output_config; return A2DP_DECODER_NO_ERROR;
return A2DP_DECODER_NO_ERROR;
} }
int a2dp_audio_example_deinit(void) int a2dp_audio_example_synchronize_dest_packet_mut(uint16_t packet_mut) {
{ return A2DP_DECODER_NO_ERROR;
return A2DP_DECODER_NO_ERROR;
}
int a2dp_audio_example_synchronize_packet(A2DP_AUDIO_SYNCFRAME_INFO_T *sync_info, uint32_t mask)
{
return A2DP_DECODER_NO_ERROR;
}
int a2dp_audio_example_synchronize_dest_packet_mut(uint16_t packet_mut)
{
return A2DP_DECODER_NO_ERROR;
} }
A2DP_AUDIO_DECODER_T a2dp_audio_example_decoder_config = { A2DP_AUDIO_DECODER_T a2dp_audio_example_decoder_config = {
{44100, 2, 16}, {44100, 2, 16},
0, 0,
a2dp_audio_example_init, a2dp_audio_example_init,
a2dp_audio_example_deinit, a2dp_audio_example_deinit,
a2dp_audio_example_decode_frame, a2dp_audio_example_decode_frame,
a2dp_audio_example_preparse_packet, a2dp_audio_example_preparse_packet,
a2dp_audio_example_store_packet, a2dp_audio_example_store_packet,
a2dp_audio_example_discards_packet, a2dp_audio_example_discards_packet,
a2dp_audio_example_synchronize_packet, a2dp_audio_example_synchronize_packet,
a2dp_audio_example_synchronize_dest_packet_mut, a2dp_audio_example_synchronize_dest_packet_mut,
a2dp_audio_example_headframe_info_get, a2dp_audio_example_headframe_info_get,
a2dp_audio_example_info_get, a2dp_audio_example_info_get,
a2dp_audio_example_free, a2dp_audio_example_free,
} ; };

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -17,14 +17,18 @@
* Usage: * Usage:
* 1. Enable SCO_CP_ACCEL ?= 1 to enable dual core in sco * 1. Enable SCO_CP_ACCEL ?= 1 to enable dual core in sco
* 2. Enable SCO_TRACE_CP_ACCEL ?= 1 to see debug log. * 2. Enable SCO_TRACE_CP_ACCEL ?= 1 to see debug log.
* 3. Change channel number if the algo(run in cp) input is more than one channel: sco_cp_init(speech_tx_frame_len, 1); * 3. Change channel number if the algo(run in cp) input is more than one
* 4. The code between SCO_CP_ACCEL_ALGO_START(); and SCO_CP_ACCEL_ALGO_END(); will run in CP core. *channel: sco_cp_init(speech_tx_frame_len, 1);
* 5. These algorithms will work in AP. Need to move this algorithms from overlay to fast ram. * 4. The code between SCO_CP_ACCEL_ALGO_START(); and SCO_CP_ACCEL_ALGO_END();
*will run in CP core.
* 5. These algorithms will work in AP. Need to move this algorithms from
*overlay to fast ram.
* *
* NOTE: * NOTE:
* 1. spx fft and hw fft will share buffer, so just one core can use these fft. * 1. spx fft and hw fft will share buffer, so just one core can use these
* 2. audio_dump_add_channel_data function can not work correctly in CP core, because *fft.
* audio_dump_add_channel_data is possible called after audio_dump_run(); * 2. audio_dump_add_channel_data function can not work correctly in CP core,
*because audio_dump_add_channel_data is possible called after audio_dump_run();
* 3. AP and CP just can use 85% * 3. AP and CP just can use 85%
* *
* *
@ -33,30 +37,30 @@
* 1. FFT, RAM, CODE overlay * 1. FFT, RAM, CODE overlay
**/ **/
#if defined(SCO_CP_ACCEL) #if defined(SCO_CP_ACCEL)
#include "cmsis_os.h"
#include "cp_accel.h" #include "cp_accel.h"
#include "hal_location.h" #include "hal_location.h"
#include "hal_trace.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "cmsis_os.h" #include "hal_trace.h"
#include "speech_cfg.h"
#include "math.h" #include "math.h"
#include "norflash_api.h" #include "norflash_api.h"
#include "speech_cfg.h"
// malloc data from pool in init function // malloc data from pool in init function
#define FRAME_LEN_MAX (256) #define FRAME_LEN_MAX (256)
#define CHANNEL_NUM_MAX (2) #define CHANNEL_NUM_MAX (2)
enum CP_SCO_STATE_T { enum CP_SCO_STATE_T {
CP_SCO_STATE_NONE = 0, CP_SCO_STATE_NONE = 0,
CP_SCO_STATE_IDLE, CP_SCO_STATE_IDLE,
CP_SCO_STATE_WORKING, CP_SCO_STATE_WORKING,
}; };
enum SCO_CP_CMD_T { enum SCO_CP_CMD_T {
SCO_CP_CMD_PRO = 0, SCO_CP_CMD_PRO = 0,
SCO_CP_CMD_OTHER, SCO_CP_CMD_OTHER,
SCO_CP_CMD_QTY, SCO_CP_CMD_QTY,
}; };
static CP_DATA_LOC enum CP_SCO_STATE_T g_cp_state = CP_SCO_STATE_NONE; static CP_DATA_LOC enum CP_SCO_STATE_T g_cp_state = CP_SCO_STATE_NONE;
@ -74,45 +78,43 @@ static CP_BSS_LOC int g_channel_num;
static int g_require_cnt = 0; static int g_require_cnt = 0;
static int g_run_cnt = 0; static int g_run_cnt = 0;
int sco_cp_process(short *pcm_buf, short *ref_buf, int *_pcm_len) int sco_cp_process(short *pcm_buf, short *ref_buf, int *_pcm_len) {
{ int32_t pcm_len = *_pcm_len;
int32_t pcm_len = *_pcm_len; uint32_t wait_cnt = 0;
uint32_t wait_cnt = 0;
ASSERT(g_frame_len * g_channel_num == pcm_len, "[%s] g_frame_len(%d) * g_channel_num(%d) != pcm_len(%d)", __func__, g_frame_len, g_channel_num, pcm_len); ASSERT(g_frame_len * g_channel_num == pcm_len,
"[%s] g_frame_len(%d) * g_channel_num(%d) != pcm_len(%d)", __func__,
g_frame_len, g_channel_num, pcm_len);
// Check CP has new data to get and can get data from buffer // Check CP has new data to get and can get data from buffer
#if defined(SCO_TRACE_CP_ACCEL) #if defined(SCO_TRACE_CP_ACCEL)
TRACE(4,"[%s] g_require_cnt: %d, status: %d, pcm_len: %d", __func__, g_require_cnt, g_cp_state, pcm_len); TRACE(4, "[%s] g_require_cnt: %d, status: %d, pcm_len: %d", __func__,
g_require_cnt, g_cp_state, pcm_len);
#endif #endif
while (g_cp_state == CP_SCO_STATE_WORKING) while (g_cp_state == CP_SCO_STATE_WORKING) {
{ hal_sys_timer_delay_us(10);
hal_sys_timer_delay_us(10);
if (wait_cnt++ > 300000) { // 3s if (wait_cnt++ > 300000) { // 3s
ASSERT(0, "cp is hung %d", g_cp_state); ASSERT(0, "cp is hung %d", g_cp_state);
}
} }
}
if (g_cp_state == CP_SCO_STATE_IDLE) if (g_cp_state == CP_SCO_STATE_IDLE) {
{ speech_copy_int16(g_in_pcm_buf, pcm_buf, pcm_len);
speech_copy_int16(g_in_pcm_buf, pcm_buf, pcm_len); if (ref_buf) {
if (ref_buf) speech_copy_int16(g_in_ref_buf, ref_buf, pcm_len / g_channel_num);
{
speech_copy_int16(g_in_ref_buf, ref_buf, pcm_len / g_channel_num);
}
speech_copy_int16(pcm_buf, g_out_pcm_buf, g_pcm_len);
*_pcm_len = g_pcm_len;
g_pcm_len = pcm_len;
g_require_cnt++;
g_cp_state = CP_SCO_STATE_WORKING;
cp_accel_send_event_mcu2cp(CP_BUILD_ID(CP_TASK_SCO, CP_EVENT_SCO_PROCESSING));
} }
else speech_copy_int16(pcm_buf, g_out_pcm_buf, g_pcm_len);
{ *_pcm_len = g_pcm_len;
// Multi channels to one channel g_pcm_len = pcm_len;
g_require_cnt++;
g_cp_state = CP_SCO_STATE_WORKING;
cp_accel_send_event_mcu2cp(
CP_BUILD_ID(CP_TASK_SCO, CP_EVENT_SCO_PROCESSING));
} else {
// Multi channels to one channel
#if 0 #if 0
for (int i = 0; i < pcm_len / g_channel_num; i++) for (int i = 0; i < pcm_len / g_channel_num; i++)
{ {
@ -122,26 +124,25 @@ int sco_cp_process(short *pcm_buf, short *ref_buf, int *_pcm_len)
*_pcm_len = pcm_len / g_channel_num; *_pcm_len = pcm_len / g_channel_num;
#endif #endif
// Check abs(g_require_cnt - g_run_cnt) > threshold, reset or assert // Check abs(g_require_cnt - g_run_cnt) > threshold, reset or assert
TRACE(2,"[%s] ERROR: status = %d", __func__, g_cp_state); TRACE(2, "[%s] ERROR: status = %d", __func__, g_cp_state);
} }
return 0; return 0;
} }
extern int sco_cp_algo(short *pcm_buf, short *ref_buf, int *_pcm_len); extern int sco_cp_algo(short *pcm_buf, short *ref_buf, int *_pcm_len);
CP_TEXT_SRAM_LOC CP_TEXT_SRAM_LOC
static unsigned int sco_cp_main(uint8_t event) static unsigned int sco_cp_main(uint8_t event) {
{
#if defined(SCO_TRACE_CP_ACCEL) #if defined(SCO_TRACE_CP_ACCEL)
TRACE(2,"[%s] g_run_cnt: %d", __func__, g_run_cnt); TRACE(2, "[%s] g_run_cnt: %d", __func__, g_run_cnt);
#endif #endif
// LOCK BUFFER // LOCK BUFFER
// process pcm // process pcm
#if 0 #if 0
// speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len); // speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len);
@ -150,79 +151,81 @@ static unsigned int sco_cp_main(uint8_t event)
g_out_pcm_buf[i] = (short)(sinf(2 * 3.1415926 * i / 16 ) * 10000); g_out_pcm_buf[i] = (short)(sinf(2 * 3.1415926 * i / 16 ) * 10000);
} }
#else #else
sco_cp_algo(g_in_pcm_buf, g_in_ref_buf, &g_pcm_len); sco_cp_algo(g_in_pcm_buf, g_in_ref_buf, &g_pcm_len);
speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len); speech_copy_int16(g_out_pcm_buf, g_in_pcm_buf, g_pcm_len);
#endif #endif
// set status // set status
g_run_cnt++; g_run_cnt++;
g_cp_state = CP_SCO_STATE_IDLE; g_cp_state = CP_SCO_STATE_IDLE;
#if defined(SCO_TRACE_CP_ACCEL) #if defined(SCO_TRACE_CP_ACCEL)
TRACE(1,"[%s] CP_SCO_STATE_IDLE", __func__); TRACE(1, "[%s] CP_SCO_STATE_IDLE", __func__);
#endif #endif
// UNLOCK BUFFER // UNLOCK BUFFER
return 0; return 0;
} }
static struct cp_task_desc TASK_DESC_SCO = {CP_ACCEL_STATE_CLOSED, sco_cp_main, NULL, NULL, NULL}; static struct cp_task_desc TASK_DESC_SCO = {CP_ACCEL_STATE_CLOSED, sco_cp_main,
int sco_cp_init(int frame_len, int channel_num) NULL, NULL, NULL};
{ int sco_cp_init(int frame_len, int channel_num) {
TRACE(3,"[%s] frame_len: %d, channel_num: %d", __func__, frame_len, channel_num); TRACE(3, "[%s] frame_len: %d, channel_num: %d", __func__, frame_len,
ASSERT(frame_len <= FRAME_LEN_MAX, "[%s] frame_len(%d) > FRAME_LEN_MAX", __func__, frame_len); channel_num);
ASSERT(channel_num <= CHANNEL_NUM_MAX, "[%s] channel_num(%d) > CHANNEL_NUM_MAX", __func__, channel_num); ASSERT(frame_len <= FRAME_LEN_MAX, "[%s] frame_len(%d) > FRAME_LEN_MAX",
__func__, frame_len);
ASSERT(channel_num <= CHANNEL_NUM_MAX,
"[%s] channel_num(%d) > CHANNEL_NUM_MAX", __func__, channel_num);
g_require_cnt = 0; g_require_cnt = 0;
g_run_cnt = 0; g_run_cnt = 0;
norflash_api_flush_disable(NORFLASH_API_USER_CP,(uint32_t)cp_accel_init_done); norflash_api_flush_disable(NORFLASH_API_USER_CP,
cp_accel_open(CP_TASK_SCO, &TASK_DESC_SCO); (uint32_t)cp_accel_init_done);
cp_accel_open(CP_TASK_SCO, &TASK_DESC_SCO);
uint32_t cnt=0; uint32_t cnt = 0;
while(cp_accel_init_done() == false) { while (cp_accel_init_done() == false) {
hal_sys_timer_delay_us(100); hal_sys_timer_delay_us(100);
cnt++; cnt++;
if (cnt % 10 == 0) { if (cnt % 10 == 0) {
if (cnt == 10 * 200) { // 200ms if (cnt == 10 * 200) { // 200ms
ASSERT(0, "[%s] ERROR: Can not init cp!!!", __func__); ASSERT(0, "[%s] ERROR: Can not init cp!!!", __func__);
} else { } else {
TRACE(1, "[%s] Wait CP init done...%d(ms)", __func__, cnt/10); TRACE(1, "[%s] Wait CP init done...%d(ms)", __func__, cnt / 10);
} }
}
} }
norflash_api_flush_enable(NORFLASH_API_USER_CP); }
norflash_api_flush_enable(NORFLASH_API_USER_CP);
#if 0 #if 0
speech_heap_cp_start(); speech_heap_cp_start();
speech_heap_add_block(g_cp_heap_buf, sizeof(g_cp_heap_buf)); speech_heap_add_block(g_cp_heap_buf, sizeof(g_cp_heap_buf));
speech_heap_cp_end(); speech_heap_cp_end();
#endif #endif
g_frame_len = frame_len; g_frame_len = frame_len;
g_channel_num = channel_num; g_channel_num = channel_num;
g_pcm_len = frame_len; // Initialize output pcm_len g_pcm_len = frame_len; // Initialize output pcm_len
speech_set_int16(g_in_pcm_buf, 0, g_frame_len * g_channel_num); speech_set_int16(g_in_pcm_buf, 0, g_frame_len * g_channel_num);
speech_set_int16(g_out_pcm_buf, 0, g_frame_len * g_channel_num); speech_set_int16(g_out_pcm_buf, 0, g_frame_len * g_channel_num);
speech_set_int16(g_in_ref_buf, 0, g_frame_len); speech_set_int16(g_in_ref_buf, 0, g_frame_len);
g_cp_state = CP_SCO_STATE_IDLE; g_cp_state = CP_SCO_STATE_IDLE;
TRACE(2,"[%s] status = %d", __func__, g_cp_state); TRACE(2, "[%s] status = %d", __func__, g_cp_state);
return 0;
return 0;
} }
int sco_cp_deinit(void) int sco_cp_deinit(void) {
{ TRACE(1, "[%s] ...", __func__);
TRACE(1,"[%s] ...", __func__);
cp_accel_close(CP_TASK_SCO); cp_accel_close(CP_TASK_SCO);
g_cp_state = CP_SCO_STATE_NONE; g_cp_state = CP_SCO_STATE_NONE;
return 0; return 0;
} }
#endif #endif

View file

@ -1,9 +1,9 @@
#include "audio_dump.h"
#include "bt_sco_chain.h" #include "bt_sco_chain.h"
#include "hal_trace.h"
#include "speech_cfg.h"
#include "speech_memory.h" #include "speech_memory.h"
#include "speech_utils.h" #include "speech_utils.h"
#include "hal_trace.h"
#include "audio_dump.h"
#include "speech_cfg.h"
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
int32_t *aec_echo_buf = NULL; int32_t *aec_echo_buf = NULL;
@ -27,129 +27,134 @@ static short *aec_echo_buf_ptr;
SpeechDcFilterState *speech_tx_dc_filter_st = NULL; SpeechDcFilterState *speech_tx_dc_filter_st = NULL;
#endif #endif
int speech_init(int tx_sample_rate, int rx_sample_rate, int speech_init(int tx_sample_rate, int rx_sample_rate, int tx_frame_ms,
int tx_frame_ms, int rx_frame_ms, int rx_frame_ms, int sco_frame_ms, uint8_t *buf, int len) {
int sco_frame_ms, // we shoule keep a minmum buffer for speech heap
uint8_t *buf, int len) // MSBC_16K_SAMPLE_RATE = 0, 560 bytes
{ // MSBC_16K_SAMPLE_RATE = 1, 2568 bytes
// we shoule keep a minmum buffer for speech heap speech_heap_init(buf, SPEECH_HEAP_RESERVE_SIZE);
// MSBC_16K_SAMPLE_RATE = 0, 560 bytes
// MSBC_16K_SAMPLE_RATE = 1, 2568 bytes
speech_heap_init(buf, SPEECH_HEAP_RESERVE_SIZE);
uint8_t *free_buf = buf + SPEECH_HEAP_RESERVE_SIZE; uint8_t *free_buf = buf + SPEECH_HEAP_RESERVE_SIZE;
int free_len = len - SPEECH_HEAP_RESERVE_SIZE; int free_len = len - SPEECH_HEAP_RESERVE_SIZE;
// use free_buf for your algorithm // use free_buf for your algorithm
memset(free_buf, 0, free_len); memset(free_buf, 0, free_len);
int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms); int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms);
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
aec_echo_buf = (int32_t *)speech_calloc(frame_len, sizeof(int32_t)); aec_echo_buf = (int32_t *)speech_calloc(frame_len, sizeof(int32_t));
#else #else
aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short)); aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short));
#endif #endif
aec_echo_buf_ptr = aec_echo_buf; aec_echo_buf_ptr = aec_echo_buf;
#if defined(SPEECH_TX_DC_FILTER) #if defined(SPEECH_TX_DC_FILTER)
int channel_num = SPEECH_CODEC_CAPTURE_CHANNEL_NUM; int channel_num = SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
int data_separation = 0; int data_separation = 0;
SpeechDcFilterConfig dc_filter_cfg = { SpeechDcFilterConfig dc_filter_cfg = {
.bypass = 0, .bypass = 0,
.gain = 0.f, .gain = 0.f,
}; };
speech_tx_dc_filter_st = speech_dc_filter_create(tx_sample_rate, frame_len, &dc_filter_cfg); speech_tx_dc_filter_st =
speech_dc_filter_ctl(speech_tx_dc_filter_st, SPEECH_DC_FILTER_SET_CHANNEL_NUM, &channel_num); speech_dc_filter_create(tx_sample_rate, frame_len, &dc_filter_cfg);
speech_dc_filter_ctl(speech_tx_dc_filter_st, SPEECH_DC_FILTER_SET_DATA_SEPARATION, &data_separation); speech_dc_filter_ctl(speech_tx_dc_filter_st, SPEECH_DC_FILTER_SET_CHANNEL_NUM,
&channel_num);
speech_dc_filter_ctl(speech_tx_dc_filter_st,
SPEECH_DC_FILTER_SET_DATA_SEPARATION, &data_separation);
#endif #endif
audio_dump_init(frame_len, sizeof(int16_t), 3); audio_dump_init(frame_len, sizeof(int16_t), 3);
return 0; return 0;
} }
int speech_deinit(void) int speech_deinit(void) {
{
#if defined(SPEECH_TX_DC_FILTER) #if defined(SPEECH_TX_DC_FILTER)
speech_dc_filter_destroy(speech_tx_dc_filter_st); speech_dc_filter_destroy(speech_tx_dc_filter_st);
#endif #endif
speech_free(aec_echo_buf_ptr); speech_free(aec_echo_buf_ptr);
size_t total = 0, used = 0, max_used = 0; size_t total = 0, used = 0, max_used = 0;
speech_memory_info(&total, &used, &max_used); speech_memory_info(&total, &used, &max_used);
TRACE(3,"SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total, used, max_used); TRACE(3, "SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total,
ASSERT(used == 0, "[%s] used != 0", __func__); used, max_used);
ASSERT(used == 0, "[%s] used != 0", __func__);
return 0; return 0;
} }
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len); extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len);
#endif #endif
int speech_tx_process(void *_pcm_buf, void *_ref_buf, int *_pcm_len) int speech_tx_process(void *_pcm_buf, void *_ref_buf, int *_pcm_len) {
{
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
int32_t *pcm_buf = (int32_t *)_pcm_buf; int32_t *pcm_buf = (int32_t *)_pcm_buf;
int32_t *ref_buf = (int32_t *)_ref_buf; int32_t *ref_buf = (int32_t *)_ref_buf;
#else #else
int16_t *pcm_buf = (int16_t *)_pcm_buf; int16_t *pcm_buf = (int16_t *)_pcm_buf;
int16_t *ref_buf = (int16_t *)_ref_buf; int16_t *ref_buf = (int16_t *)_ref_buf;
#endif #endif
int pcm_len = *_pcm_len; int pcm_len = *_pcm_len;
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
uint8_t *bone_buf = NULL; uint8_t *bone_buf = NULL;
uint32_t bone_len = 0; uint32_t bone_len = 0;
bt_sco_get_tdm_buffer(&bone_buf, &bone_len); bt_sco_get_tdm_buffer(&bone_buf, &bone_len);
#endif #endif
audio_dump_clear_up(); audio_dump_clear_up();
audio_dump_add_channel_data(0, ref_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM); audio_dump_add_channel_data(0, ref_buf,
audio_dump_add_channel_data_from_multi_channels(1, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0); pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
audio_dump_add_channel_data_from_multi_channels(2, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1); audio_dump_add_channel_data_from_multi_channels(
1, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0);
audio_dump_add_channel_data_from_multi_channels(
2, pcm_buf, pcm_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1);
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
audio_dump_add_channel_data(3, bone_buf, pcm16_len/SPEECH_CODEC_CAPTURE_CHANNEL_NUM); audio_dump_add_channel_data(3, bone_buf,
pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
#endif #endif
audio_dump_run(); audio_dump_run();
#if defined(SPEECH_TX_DC_FILTER) #if defined(SPEECH_TX_DC_FILTER)
#if defined(SPEECH_TX_24BIT) #if defined(SPEECH_TX_24BIT)
speech_dc_filter_process_int24(speech_tx_dc_filter_st, pcm_buf, pcm_len); speech_dc_filter_process_int24(speech_tx_dc_filter_st, pcm_buf, pcm_len);
#else #else
speech_dc_filter_process(speech_tx_dc_filter_st, pcm_buf, pcm_len); speech_dc_filter_process(speech_tx_dc_filter_st, pcm_buf, pcm_len);
#endif #endif
#endif #endif
// Add your algrithm here and disable #if macro // Add your algrithm here and disable #if macro
#if 1 #if 1
for (int i = 0, j = 0; i < pcm_len; i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) { for (int i = 0, j = 0; i < pcm_len;
// choose main microphone data i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) {
pcm_buf[j] = pcm_buf[i]; // choose main microphone data
// choose reference data, i.e. loopback pcm_buf[j] = pcm_buf[i];
//pcm16_buf[j] = ref16_buf[j]; // choose reference data, i.e. loopback
} // pcm16_buf[j] = ref16_buf[j];
pcm_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM; }
pcm_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
#endif #endif
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
memcpy(pcm_buf, bone_buf, bone_len); memcpy(pcm_buf, bone_buf, bone_len);
#endif #endif
*_pcm_len = pcm_len; *_pcm_len = pcm_len;
return 0; return 0;
} }
int speech_rx_process(void *pcm_buf, int *pcm_len) int speech_rx_process(void *pcm_buf, int *pcm_len) {
{ // Add your algorithm here
// Add your algorithm here return 0;
return 0;
} }

View file

@ -1,12 +1,12 @@
#include "audio_dump.h"
#include "bt_sco_chain.h" #include "bt_sco_chain.h"
#include "hal_trace.h"
#include "speech_memory.h" #include "speech_memory.h"
#include "speech_utils.h" #include "speech_utils.h"
#include "hal_trace.h"
#include "audio_dump.h"
#include "vcp-api.h"
#include "spf-postapi.h" #include "spf-postapi.h"
#include "vcp-api.h"
#define ALANGO_TRACE(s, ...) TRACE(1,"%s: " s, __FUNCTION__, ## __VA_ARGS__) #define ALANGO_TRACE(s, ...) TRACE(1, "%s: " s, __FUNCTION__, ##__VA_ARGS__)
short *aec_echo_buf = NULL; short *aec_echo_buf = NULL;
@ -17,7 +17,7 @@ static void *mem;
extern void *voicebtpcm_get_ext_buff(int size); extern void *voicebtpcm_get_ext_buff(int size);
extern char* vcp_errorv(err_t err); extern char *vcp_errorv(err_t err);
extern PROFILE_TYPE(t) alango_profile; extern PROFILE_TYPE(t) alango_profile;
@ -28,121 +28,130 @@ mem_reg_t reg[NUM_MEM_REGIONS];
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
static int16_t *deinterleaved_buf = NULL; static int16_t *deinterleaved_buf = NULL;
static void deinterleave_audio(int16_t *dst, int16_t *src, uint32_t len, uint32_t ch_num) static void deinterleave_audio(int16_t *dst, int16_t *src, uint32_t len,
{ uint32_t ch_num) {
uint32_t samples_per_channel = len / ch_num; uint32_t samples_per_channel = len / ch_num;
for (uint32_t i = 0; i < samples_per_channel; i++) { for (uint32_t i = 0; i < samples_per_channel; i++) {
for (uint32_t j = 0; j < ch_num; j++) { for (uint32_t j = 0; j < ch_num; j++) {
dst[samples_per_channel * j + i] = src[ch_num * i + j]; dst[samples_per_channel * j + i] = src[ch_num * i + j];
}
} }
}
} }
#endif #endif
int speech_init(int tx_sample_rate, int rx_sample_rate, int speech_init(int tx_sample_rate, int rx_sample_rate, int tx_frame_ms,
int tx_frame_ms, int rx_frame_ms, int rx_frame_ms, int sco_frame_ms, uint8_t *buf, int len) {
int sco_frame_ms, speech_heap_init(buf, len);
uint8_t *buf, int len)
{
speech_heap_init(buf, len);
int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms); int frame_len = SPEECH_FRAME_MS_TO_LEN(tx_sample_rate, tx_frame_ms);
aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short)); aec_echo_buf = (short *)speech_calloc(frame_len, sizeof(short));
aec_echo_buf_ptr = aec_echo_buf; aec_echo_buf_ptr = aec_echo_buf;
// init alango // init alango
// check profile // check profile
curr_profile = &alango_profile; curr_profile = &alango_profile;
err_t err = vcp_check_profile(curr_profile); err_t err = vcp_check_profile(curr_profile);
if (err.err) { if (err.err) {
if (err.err == ERR_INVALID_CRC) if (err.err == ERR_INVALID_CRC)
ALANGO_TRACE(0,"Profile error: Invalid CRC!"); ALANGO_TRACE(0, "Profile error: Invalid CRC!");
else else
ALANGO_TRACE(1,"Profile error: %d", err.err); ALANGO_TRACE(1, "Profile error: %d", err.err);
} }
ASSERT(frame_len % curr_profile->p_gen->frlen == 0, "Profile error: frame_len(%d) should be divided by frlen(%d)", frame_len, curr_profile->p_gen->frlen); ASSERT(frame_len % curr_profile->p_gen->frlen == 0,
"Profile error: frame_len(%d) should be divided by frlen(%d)",
frame_len, curr_profile->p_gen->frlen);
unsigned int smem = vcp_get_hook_size(); unsigned int smem = vcp_get_hook_size();
mem = speech_malloc(smem); mem = speech_malloc(smem);
vcp_get_mem_size(curr_profile, reg, mem); vcp_get_mem_size(curr_profile, reg, mem);
ALANGO_TRACE(0,"Hello, I am VCP8!"); ALANGO_TRACE(0, "Hello, I am VCP8!");
for (int i = 0; i < NUM_MEM_REGIONS; i++) { for (int i = 0; i < NUM_MEM_REGIONS; i++) {
reg[i].mem = (void *)speech_malloc(reg[i].size); reg[i].mem = (void *)speech_malloc(reg[i].size);
ALANGO_TRACE(2,"I need %d bytes of memory in memory region %d to work.\n", reg[i].size, i + 1); ALANGO_TRACE(2, "I need %d bytes of memory in memory region %d to work.\n",
} reg[i].size, i + 1);
}
err = vcp_init_debug(curr_profile, reg); err = vcp_init_debug(curr_profile, reg);
if (err.err == ERR_NOT_ENOUGH_MEMORY) { if (err.err == ERR_NOT_ENOUGH_MEMORY) {
ALANGO_TRACE(2,"%d more bytes needed in region %d!\n", -reg[err.pid].size, err.pid); ALANGO_TRACE(2, "%d more bytes needed in region %d!\n", -reg[err.pid].size,
} else if (err.err == ERR_UNKNOWN) { err.pid);
ALANGO_TRACE(0,"vcp_init_debug() returns UNKNOWN error\n!"); } else if (err.err == ERR_UNKNOWN) {
} else if (err.err != ERR_NO_ERROR) { ALANGO_TRACE(0, "vcp_init_debug() returns UNKNOWN error\n!");
ALANGO_TRACE(2,"vcp_init_debug() returns error %d, pid %d!\n", err.err, err.pid); } else if (err.err != ERR_NO_ERROR) {
} ALANGO_TRACE(2, "vcp_init_debug() returns error %d, pid %d!\n", err.err,
err.pid);
}
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
deinterleaved_buf = speech_malloc(curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM * sizeof(int16_t)); deinterleaved_buf =
speech_malloc(curr_profile->p_gen->frlen *
SPEECH_CODEC_CAPTURE_CHANNEL_NUM * sizeof(int16_t));
#endif #endif
audio_dump_init(frame_len, sizeof(int16_t), 3); audio_dump_init(frame_len, sizeof(int16_t), 3);
return 0; return 0;
} }
int speech_deinit(void) int speech_deinit(void) {
{ speech_free(aec_echo_buf_ptr);
speech_free(aec_echo_buf_ptr); speech_free(mem);
speech_free(mem);
for (int i = 0; i < NUM_MEM_REGIONS; i++) for (int i = 0; i < NUM_MEM_REGIONS; i++)
speech_free(reg[i].mem); speech_free(reg[i].mem);
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
speech_free(deinterleaved_buf); speech_free(deinterleaved_buf);
#endif #endif
size_t total = 0, used = 0, max_used = 0; size_t total = 0, used = 0, max_used = 0;
speech_memory_info(&total, &used, &max_used); speech_memory_info(&total, &used, &max_used);
TRACE(3,"SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total, used, max_used); TRACE(3, "SPEECH MALLOC MEM: total - %d, used - %d, max_used - %d.", total,
ASSERT(used == 0, "[%s] used != 0", __func__); used, max_used);
ASSERT(used == 0, "[%s] used != 0", __func__);
return 0; return 0;
} }
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len); extern void bt_sco_get_tdm_buffer(uint8_t **buf, uint32_t *len);
#endif #endif
int speech_tx_process(void *pcm_buf, void *ref_buf, int *pcm_len) int speech_tx_process(void *pcm_buf, void *ref_buf, int *pcm_len) {
{ int16_t *pcm16_buf = (int16_t *)pcm_buf;
int16_t *pcm16_buf = (int16_t *)pcm_buf; int16_t *ref16_buf = (int16_t *)ref_buf;
int16_t *ref16_buf = (int16_t *)ref_buf; int pcm16_len = *pcm_len;
int pcm16_len = *pcm_len;
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
uint8_t *bone_buf = NULL; uint8_t *bone_buf = NULL;
uint32_t bone_len = 0; uint32_t bone_len = 0;
bt_sco_get_tdm_buffer(&bone_buf, &bone_len); bt_sco_get_tdm_buffer(&bone_buf, &bone_len);
#endif #endif
audio_dump_clear_up(); audio_dump_clear_up();
audio_dump_add_channel_data(0, ref_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM); audio_dump_add_channel_data(0, ref_buf,
audio_dump_add_channel_data_from_multi_channels(1, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0); pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
audio_dump_add_channel_data_from_multi_channels(2, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1); audio_dump_add_channel_data_from_multi_channels(
1, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 0);
audio_dump_add_channel_data_from_multi_channels(
2, pcm16_buf, pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM, 1);
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
audio_dump_add_channel_data(3, bone_buf, pcm16_len/SPEECH_CODEC_CAPTURE_CHANNEL_NUM); audio_dump_add_channel_data(3, bone_buf,
pcm16_len / SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
#endif #endif
audio_dump_run(); audio_dump_run();
// Add your algrithm here and disable #if macro // Add your algrithm here and disable #if macro
#if 0 #if 0
for (int i = 0, j = 0; i < pcm16_len; i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) { for (int i = 0, j = 0; i < pcm16_len; i += SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j++) {
// choose main microphone data // choose main microphone data
@ -152,41 +161,48 @@ int speech_tx_process(void *pcm_buf, void *ref_buf, int *pcm_len)
} }
pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM; pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
#else #else
for (int i = 0, j = 0; i < pcm16_len; i += curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM, j += curr_profile->p_gen->frlen) { for (int i = 0, j = 0; i < pcm16_len;
i += curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
j += curr_profile->p_gen->frlen) {
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM >= 2
deinterleave_audio(deinterleaved_buf, &pcm16_buf[i], curr_profile->p_gen->frlen * SPEECH_CODEC_CAPTURE_CHANNEL_NUM, SPEECH_CODEC_CAPTURE_CHANNEL_NUM); deinterleave_audio(deinterleaved_buf, &pcm16_buf[i],
err_t err = vcp_process_tx(reg, deinterleaved_buf, &ref16_buf[j], &pcm16_buf[j]); curr_profile->p_gen->frlen *
//memcpy(&pcm16_buf[j], deinterleaved_buf, curr_profile->p_gen->frlen * sizeof(int16_t)); SPEECH_CODEC_CAPTURE_CHANNEL_NUM,
SPEECH_CODEC_CAPTURE_CHANNEL_NUM);
err_t err =
vcp_process_tx(reg, deinterleaved_buf, &ref16_buf[j], &pcm16_buf[j]);
// memcpy(&pcm16_buf[j], deinterleaved_buf, curr_profile->p_gen->frlen *
// sizeof(int16_t));
#else #else
err_t err = vcp_process_tx(reg, &pcm16_buf[i], &ref16_buf[j], &pcm16_buf[j]); err_t err =
vcp_process_tx(reg, &pcm16_buf[i], &ref16_buf[j], &pcm16_buf[j]);
#endif #endif
if (err.err != ERR_NO_ERROR) { if (err.err != ERR_NO_ERROR) {
ALANGO_TRACE(1,"vcp_process_tx error: %d", err.err); ALANGO_TRACE(1, "vcp_process_tx error: %d", err.err);
}
} }
pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM; }
pcm16_len /= SPEECH_CODEC_CAPTURE_CHANNEL_NUM;
#endif #endif
#if defined(BONE_SENSOR_TDM) #if defined(BONE_SENSOR_TDM)
memcpy(pcm_buf, bone_buf, bone_len); memcpy(pcm_buf, bone_buf, bone_len);
#endif #endif
*pcm_len = pcm16_len; *pcm_len = pcm16_len;
return 0; return 0;
} }
int speech_rx_process(void *pcm_buf, int *pcm_len) int speech_rx_process(void *pcm_buf, int *pcm_len) {
{ int16_t *pcm16_buf = (int16_t *)pcm_buf;
int16_t *pcm16_buf = (int16_t *)pcm_buf; int pcm16_len = *pcm_len;
int pcm16_len = *pcm_len;
for (int i = 0; i < pcm16_len; i += curr_profile->p_gen->frlen) { for (int i = 0; i < pcm16_len; i += curr_profile->p_gen->frlen) {
err_t err = vcp_process_rx(reg, &pcm16_buf[i], &pcm16_buf[i]); err_t err = vcp_process_rx(reg, &pcm16_buf[i], &pcm16_buf[i]);
if (err.err != ERR_NO_ERROR) { if (err.err != ERR_NO_ERROR) {
ALANGO_TRACE(1,"vcp_process_tx error: %d", err.err); ALANGO_TRACE(1, "vcp_process_tx error: %d", err.err);
}
} }
}
return 0; return 0;
} }

View file

@ -13,8 +13,8 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "bt_sco_chain_cfg.h"
#include "aud_section.h" #include "aud_section.h"
#include "bt_sco_chain_cfg.h"
#include "hal_trace.h" #include "hal_trace.h"
static bool speech_tuning_status = false; static bool speech_tuning_status = false;
@ -23,202 +23,178 @@ extern int speech_store_config(const SpeechConfig *cfg);
#ifdef AUDIO_SECTION_ENABLE #ifdef AUDIO_SECTION_ENABLE
typedef struct { typedef struct {
uint8_t reserved[AUDIO_SECTION_CFG_RESERVED_LEN]; uint8_t reserved[AUDIO_SECTION_CFG_RESERVED_LEN];
SpeechConfig cfg; SpeechConfig cfg;
} AUDIO_SECTION_SPEECH_CFG_T; } AUDIO_SECTION_SPEECH_CFG_T;
static AUDIO_SECTION_SPEECH_CFG_T audio_section_speech_cfg; static AUDIO_SECTION_SPEECH_CFG_T audio_section_speech_cfg;
int store_speech_cfg_into_audio_section(SpeechConfig *cfg) int store_speech_cfg_into_audio_section(SpeechConfig *cfg) {
{ int res = 0;
int res = 0;
memcpy(&audio_section_speech_cfg.cfg, cfg, sizeof(SpeechConfig)); memcpy(&audio_section_speech_cfg.cfg, cfg, sizeof(SpeechConfig));
res = audio_section_store_cfg(AUDIO_SECTION_DEVICE_SPEECH, res = audio_section_store_cfg(AUDIO_SECTION_DEVICE_SPEECH,
(uint8_t *)&audio_section_speech_cfg, (uint8_t *)&audio_section_speech_cfg,
sizeof(AUDIO_SECTION_SPEECH_CFG_T)); sizeof(AUDIO_SECTION_SPEECH_CFG_T));
if (res) {
TRACE(2, "[%s] ERROR: res = %d", __func__, res);
} else {
TRACE(1, "[%s] Store speech cfg into audio section!!!", __func__);
}
if(res) return res;
{
TRACE(2,"[%s] ERROR: res = %d", __func__, res);
}
else
{
TRACE(1,"[%s] Store speech cfg into audio section!!!", __func__);
}
return res;
} }
void *load_speech_cfg_from_audio_section(void) void *load_speech_cfg_from_audio_section(void) {
{ int res = 0;
int res = 0; res = audio_section_load_cfg(AUDIO_SECTION_DEVICE_SPEECH,
res = audio_section_load_cfg(AUDIO_SECTION_DEVICE_SPEECH, (uint8_t *)&audio_section_speech_cfg,
(uint8_t *)&audio_section_speech_cfg, sizeof(AUDIO_SECTION_SPEECH_CFG_T));
sizeof(AUDIO_SECTION_SPEECH_CFG_T));
void *res_ptr = NULL; void *res_ptr = NULL;
if (res) if (res) {
{ TRACE(2, "[%s] ERROR: res = %d", __func__, res);
TRACE(2,"[%s] ERROR: res = %d", __func__, res); res_ptr = NULL;
res_ptr = NULL; } else {
} TRACE(1, "[%s] Load speech cfg from audio section!!!", __func__);
else res_ptr = (void *)&audio_section_speech_cfg.cfg;
{ }
TRACE(1,"[%s] Load speech cfg from audio section!!!", __func__);
res_ptr = (void *)&audio_section_speech_cfg.cfg;
}
return res_ptr; return res_ptr;
} }
#endif #endif
int speech_tuning_set_status(bool en) int speech_tuning_set_status(bool en) {
{ speech_tuning_status = en;
speech_tuning_status = en;
return 0; return 0;
} }
bool speech_tuning_get_status(void) bool speech_tuning_get_status(void) { return speech_tuning_status; }
{
return speech_tuning_status; uint32_t speech_tuning_check(unsigned char *buf, uint32_t len) {
uint32_t res = 0;
// Check valid
uint32_t config_size = sizeof(SpeechConfig);
if (config_size != len) {
TRACE(2, "[speech tuning] len(%d) != config_size(%d)", len, config_size);
res = 1;
} else {
TRACE(1, "[speech tuning] len(%d) is OK", len);
// SpeechConfig POSSIBLY_UNUSED *cfg = (SpeechConfig *)buf;
// Test parameters
//#if defined(SPEECH_TX_2MIC_NS2)
// TRACE(1,"[speech tuning] TX: delay_taps(x100): %d",
// (int)(cfg->tx_2mic_ns2.delay_taps * 100));
//#endif
//#if defined(SPEECH_TX_NOISE_GATE)
// TRACE(1,"[speech tuning] TX: data_threshold: %d",
// cfg->tx_noise_gate.data_threshold);
//#endif
//#if defined(SPEECH_TX_EQ)
// TRACE(1,"[speech tuning] TX: eq num: %d", cfg->tx_eq.num);
//#endif
//#if defined(SPEECH_RX_EQ)
// TRACE(1,"[speech tuning] RX: eq num: %d", cfg->rx_eq.num);
//#endif
}
return res;
} }
uint32_t speech_tuning_check(unsigned char *buf, uint32_t len) uint32_t speech_tuning_rx_callback(unsigned char *buf, uint32_t len) {
{ uint32_t res = 0;
uint32_t res = 0;
// Check valid res = speech_tuning_check(buf, len);
uint32_t config_size = sizeof(SpeechConfig);
if (config_size != len) if (res) {
{ TRACE(1, "[speech tuning] ERROR: Send check res = %d", res);
TRACE(2,"[speech tuning] len(%d) != config_size(%d)", len, config_size); TRACE(0, "[Speech Tuning] res : 1; info : Send len(%d) != config_size(%d);",
res = 1; len, sizeof(SpeechConfig));
} } else {
else // Save cfg
{ speech_store_config((SpeechConfig *)buf);
TRACE(1,"[speech tuning] len(%d) is OK", len);
//SpeechConfig POSSIBLY_UNUSED *cfg = (SpeechConfig *)buf;
// Test parameters // Set status
//#if defined(SPEECH_TX_2MIC_NS2) speech_tuning_set_status(true);
// TRACE(1,"[speech tuning] TX: delay_taps(x100): %d", (int)(cfg->tx_2mic_ns2.delay_taps * 100));
//#endif
//#if defined(SPEECH_TX_NOISE_GATE)
// TRACE(1,"[speech tuning] TX: data_threshold: %d", cfg->tx_noise_gate.data_threshold);
//#endif
//#if defined(SPEECH_TX_EQ)
// TRACE(1,"[speech tuning] TX: eq num: %d", cfg->tx_eq.num);
//#endif
//#if defined(SPEECH_RX_EQ)
// TRACE(1,"[speech tuning] RX: eq num: %d", cfg->rx_eq.num);
//#endif
}
return res; TRACE(0, "[speech tuning] OK: Send cfg");
} TRACE(0, "[Speech Tuning] res : 0;");
}
uint32_t speech_tuning_rx_callback(unsigned char *buf, uint32_t len) return res;
{
uint32_t res = 0;
res = speech_tuning_check(buf, len);
if (res)
{
TRACE(1,"[speech tuning] ERROR: Send check res = %d", res);
TRACE(0,"[Speech Tuning] res : 1; info : Send len(%d) != config_size(%d);", len, sizeof(SpeechConfig));
}
else
{
// Save cfg
speech_store_config((SpeechConfig *)buf);
// Set status
speech_tuning_set_status(true);
TRACE(0,"[speech tuning] OK: Send cfg");
TRACE(0,"[Speech Tuning] res : 0;");
}
return res;
} }
#ifdef AUDIO_SECTION_ENABLE #ifdef AUDIO_SECTION_ENABLE
uint32_t speech_tuning_burn_rx_callback(unsigned char *buf, uint32_t len) uint32_t speech_tuning_burn_rx_callback(unsigned char *buf, uint32_t len) {
{ uint32_t res = 0;
uint32_t res = 0;
res = speech_tuning_check(buf, len); res = speech_tuning_check(buf, len);
if (res) if (res) {
{ TRACE(1, "[speech tuning] ERROR: Burn check res = %d", res);
TRACE(1,"[speech tuning] ERROR: Burn check res = %d", res); TRACE(0, "[Speech Tuning] res : 1; info : Burn len(%d) != config_size(%d);",
TRACE(0,"[Speech Tuning] res : 1; info : Burn len(%d) != config_size(%d);", len, sizeof(SpeechConfig)); len, sizeof(SpeechConfig));
} else {
res = store_speech_cfg_into_audio_section((SpeechConfig *)buf);
if (res) {
TRACE(1, "[speech tuning] ERROR: Store res = %d", res);
res += 100;
TRACE(0, "[Speech Tuning] res : 2; info : Do not enable "
"AUDIO_SECTION_ENABLE;");
} else {
TRACE(0, "[speech tuning] OK: Store cfg");
TRACE(0, "[Speech Tuning] res : 0;");
} }
else }
{
res = store_speech_cfg_into_audio_section((SpeechConfig *)buf);
if(res) return res;
{
TRACE(1,"[speech tuning] ERROR: Store res = %d", res);
res += 100;
TRACE(0,"[Speech Tuning] res : 2; info : Do not enable AUDIO_SECTION_ENABLE;");
}
else
{
TRACE(0,"[speech tuning] OK: Store cfg");
TRACE(0,"[Speech Tuning] res : 0;");
}
}
return res;
} }
#endif #endif
int speech_tuning_init(void) int speech_tuning_init(void) {
{
#if defined(HAL_TRACE_RX_ENABLE) && !defined(SPEECH_TX_THIRDPARTY) #if defined(HAL_TRACE_RX_ENABLE) && !defined(SPEECH_TX_THIRDPARTY)
hal_trace_rx_register("Speech Tuning", (HAL_TRACE_RX_CALLBACK_T)speech_tuning_rx_callback); hal_trace_rx_register("Speech Tuning",
(HAL_TRACE_RX_CALLBACK_T)speech_tuning_rx_callback);
#ifdef AUDIO_SECTION_ENABLE #ifdef AUDIO_SECTION_ENABLE
hal_trace_rx_register("Speech Tuning Burn", (HAL_TRACE_RX_CALLBACK_T)speech_tuning_burn_rx_callback); hal_trace_rx_register(
"Speech Tuning Burn",
(HAL_TRACE_RX_CALLBACK_T)speech_tuning_burn_rx_callback);
#endif #endif
#endif #endif
speech_tuning_set_status(false); speech_tuning_set_status(false);
return 0; return 0;
} }
int speech_tuning_open(void) int speech_tuning_open(void) {
{
#ifdef AUDIO_SECTION_ENABLE #ifdef AUDIO_SECTION_ENABLE
SpeechConfig *speech_cfg_load = NULL; SpeechConfig *speech_cfg_load = NULL;
speech_cfg_load = (SpeechConfig *)load_speech_cfg_from_audio_section(); speech_cfg_load = (SpeechConfig *)load_speech_cfg_from_audio_section();
if (speech_cfg_load) if (speech_cfg_load) {
{ speech_store_config(speech_cfg_load);
speech_store_config(speech_cfg_load); }
}
#endif #endif
speech_tuning_set_status(false); speech_tuning_set_status(false);
return 0; return 0;
} }
int speech_tuning_close(void) int speech_tuning_close(void) {
{ speech_tuning_set_status(false);
speech_tuning_set_status(false);
return 0; return 0;
} }

View file

@ -17,23 +17,22 @@
#include "mbed.h" #include "mbed.h"
#endif #endif
// Standard C Included Files // Standard C Included Files
#include <string.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef MBED #ifdef MBED
//#include "rtos.h" //#include "rtos.h"
#endif #endif
#ifdef MBED #ifdef MBED
#include "SDFileSystem.h" #include "SDFileSystem.h"
#endif #endif
#include "app_audio.h"
#include "cqueue.h" #include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "app_audio.h" #include "hal_uart.h"
// BT // BT
@ -44,16 +43,15 @@ osMutexDef(g_voicecvsd_queue_mutex);
/* cvsd queue */ /* cvsd queue */
#define VOICECVSD_TEMP_BUFFER_SIZE 128 #define VOICECVSD_TEMP_BUFFER_SIZE 128
#define VOICECVSD_QUEUE_SIZE (VOICECVSD_TEMP_BUFFER_SIZE*20) #define VOICECVSD_QUEUE_SIZE (VOICECVSD_TEMP_BUFFER_SIZE * 20)
CQueue voicecvsd_queue; CQueue voicecvsd_queue;
static enum APP_AUDIO_CACHE_T voicecvsd_cache_status = APP_AUDIO_CACHE_QTY; static enum APP_AUDIO_CACHE_T voicecvsd_cache_status = APP_AUDIO_CACHE_QTY;
#define LOCK_VOICECVSD_QUEUE() \ #define LOCK_VOICECVSD_QUEUE() \
osMutexWait(g_voicecvsd_queue_mutex_id, osWaitForever) osMutexWait(g_voicecvsd_queue_mutex_id, osWaitForever)
#define UNLOCK_VOICECVSD_QUEUE() \ #define UNLOCK_VOICECVSD_QUEUE() osMutexRelease(g_voicecvsd_queue_mutex_id)
osMutexRelease(g_voicecvsd_queue_mutex_id)
void xLOCK_VOICECVSD_QUEUE(void) void xLOCK_VOICECVSD_QUEUE(void)
{ {

View file

@ -14,34 +14,32 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include "cqueue.h" #include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_uart.h"
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
uint8_t digmic_buf[100*1024]; uint8_t digmic_buf[100 * 1024];
uint32_t digmic_buf_len = 0; uint32_t digmic_buf_len = 0;
uint32_t dig_mic_audio_more_data(uint8_t *buf, uint32_t len) uint32_t dig_mic_audio_more_data(uint8_t *buf, uint32_t len) {
{ TRACE(2, "%s:%d\n", __func__, __LINE__);
TRACE(2,"%s:%d\n", __func__, __LINE__); memcpy(buf, digmic_buf, len);
memcpy(buf, digmic_buf, len);
return len; return len;
} }
uint32_t dig_mic_audio_data_come(uint8_t *buf, uint32_t len) uint32_t dig_mic_audio_data_come(uint8_t *buf, uint32_t len) {
{ TRACE(2, "%s:%d\n", __func__, __LINE__);
TRACE(2,"%s:%d\n", __func__, __LINE__);
memcpy(digmic_buf + digmic_buf_len, buf, len); memcpy(digmic_buf + digmic_buf_len, buf, len);
#if 1 #if 1
digmic_buf_len = (digmic_buf_len + len)%(100*1024); digmic_buf_len = (digmic_buf_len + len) % (100 * 1024);
#endif #endif
return len; return len;
} }

View file

@ -14,15 +14,15 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include "cqueue.h" #include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_uart.h"
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef RTOS #ifdef RTOS
#include "cmsis_os.h" #include "cmsis_os.h"
#endif #endif
@ -33,106 +33,102 @@ osMutexDef(g_flac_queue_mutex);
/* flac queue */ /* flac queue */
#define FLAC_TEMP_BUFFER_SIZE 2048 #define FLAC_TEMP_BUFFER_SIZE 2048
#define FLAC_QUEUE_SIZE (FLAC_TEMP_BUFFER_SIZE*4) #define FLAC_QUEUE_SIZE (FLAC_TEMP_BUFFER_SIZE * 4)
unsigned char flac_queue_buf[FLAC_QUEUE_SIZE]; unsigned char flac_queue_buf[FLAC_QUEUE_SIZE];
CQueue flac_queue; CQueue flac_queue;
static uint32_t ok_to_decode = 0; static uint32_t ok_to_decode = 0;
#define LOCK_FLAC_QUEUE() \ #define LOCK_FLAC_QUEUE() osMutexWait(g_flac_queue_mutex_id, osWaitForever)
osMutexWait(g_flac_queue_mutex_id, osWaitForever)
#define UNLOCK_FLAC_QUEUE() \ #define UNLOCK_FLAC_QUEUE() osMutexRelease(g_flac_queue_mutex_id)
osMutexRelease(g_flac_queue_mutex_id)
static void copy_one_trace_to_two_track_16bits(uint16_t *src_buf, uint16_t *dst_buf, uint32_t src_len) static void copy_one_trace_to_two_track_16bits(uint16_t *src_buf,
{ uint16_t *dst_buf,
uint32_t i = 0; uint32_t src_len) {
for (i = 0; i < src_len; ++i) { uint32_t i = 0;
dst_buf[i*2 + 0] = dst_buf[i*2 + 1] = src_buf[i]; for (i = 0; i < src_len; ++i) {
} dst_buf[i * 2 + 0] = dst_buf[i * 2 + 1] = src_buf[i];
}
} }
int store_flac_buffer(unsigned char *buf, unsigned int len) int store_flac_buffer(unsigned char *buf, unsigned int len) {
{ LOCK_FLAC_QUEUE();
LOCK_FLAC_QUEUE(); EnCQueue(&flac_queue, buf, len);
EnCQueue(&flac_queue, buf, len); if (LengthOfCQueue(&flac_queue) > FLAC_TEMP_BUFFER_SIZE * 2) {
if (LengthOfCQueue(&flac_queue) > FLAC_TEMP_BUFFER_SIZE*2) { ok_to_decode = 1;
ok_to_decode = 1; }
} UNLOCK_FLAC_QUEUE();
UNLOCK_FLAC_QUEUE();
return 0; return 0;
} }
int decode_flac_frame(unsigned char *pcm_buffer, unsigned int pcm_len) int decode_flac_frame(unsigned char *pcm_buffer, unsigned int pcm_len) {
{ uint32_t r = 0, got_len = 0;
uint32_t r = 0, got_len = 0; unsigned char *e1 = NULL, *e2 = NULL;
unsigned char *e1 = NULL, *e2 = NULL; unsigned int len1 = 0, len2 = 0;
unsigned int len1 = 0, len2 = 0;
get_again: get_again:
LOCK_FLAC_QUEUE(); LOCK_FLAC_QUEUE();
r = PeekCQueue(&flac_queue, (pcm_len - got_len)/2, &e1, &len1, &e2, &len2); r = PeekCQueue(&flac_queue, (pcm_len - got_len) / 2, &e1, &len1, &e2, &len2);
UNLOCK_FLAC_QUEUE(); UNLOCK_FLAC_QUEUE();
if(r == CQ_ERR || len1 == 0) { if (r == CQ_ERR || len1 == 0) {
osDelay(2); osDelay(2);
goto get_again; goto get_again;
} }
//memcpy(pcm_buffer + got_len, e1, len1); // memcpy(pcm_buffer + got_len, e1, len1);
copy_one_trace_to_two_track_16bits((uint16_t *)e1, (uint16_t *)(pcm_buffer + got_len), len1/2); copy_one_trace_to_two_track_16bits(
(uint16_t *)e1, (uint16_t *)(pcm_buffer + got_len), len1 / 2);
LOCK_FLAC_QUEUE();
DeCQueue(&flac_queue, 0, len1);
UNLOCK_FLAC_QUEUE();
got_len += len1 * 2;
if (len2 != 0) {
// memcpy(pcm_buffer + got_len, e2, len2);
copy_one_trace_to_two_track_16bits(
(uint16_t *)e2, (uint16_t *)(pcm_buffer + got_len), len2 / 2);
LOCK_FLAC_QUEUE(); LOCK_FLAC_QUEUE();
DeCQueue(&flac_queue, 0, len1); DeCQueue(&flac_queue, 0, len2);
UNLOCK_FLAC_QUEUE(); UNLOCK_FLAC_QUEUE();
}
got_len += len1*2; got_len += len2 * 2;
if (len2 != 0) { if (got_len < pcm_len)
//memcpy(pcm_buffer + got_len, e2, len2); goto get_again;
copy_one_trace_to_two_track_16bits((uint16_t *)e2, (uint16_t *)(pcm_buffer + got_len), len2/2);
LOCK_FLAC_QUEUE(); return pcm_len;
DeCQueue(&flac_queue, 0, len2);
UNLOCK_FLAC_QUEUE();
}
got_len += len2*2;
if (got_len < pcm_len)
goto get_again;
return pcm_len;
} }
uint32_t flac_audio_data_come(uint8_t *buf, uint32_t len) uint32_t flac_audio_data_come(uint8_t *buf, uint32_t len) {
{ TRACE(1, "data come %d\n", len);
TRACE(1,"data come %d\n", len);
return 0;
}
uint32_t flac_audio_more_data(uint8_t *buf, uint32_t len) {
uint32_t l = 0;
// uint32_t cur_ticks = 0, ticks = 0;
if (ok_to_decode == 0)
return 0; return 0;
// ticks = hal_sys_timer_get();
l = decode_flac_frame(buf, len);
// cur_ticks = hal_sys_timer_get();
// TRACE(1,"flac %d t\n", (cur_ticks-ticks));
return l;
} }
uint32_t flac_audio_more_data(uint8_t *buf, uint32_t len) int flac_audio_init(void) {
{ g_flac_queue_mutex_id = osMutexCreate((osMutex(g_flac_queue_mutex)));
uint32_t l = 0; /* flac queue*/
//uint32_t cur_ticks = 0, ticks = 0; InitCQueue(&flac_queue, FLAC_QUEUE_SIZE, (unsigned char *)&flac_queue_buf);
if (ok_to_decode == 0) return 0;
return 0;
//ticks = hal_sys_timer_get();
l = decode_flac_frame(buf, len);
//cur_ticks = hal_sys_timer_get();
// TRACE(1,"flac %d t\n", (cur_ticks-ticks));
return l;
}
int flac_audio_init(void)
{
g_flac_queue_mutex_id = osMutexCreate((osMutex(g_flac_queue_mutex)));
/* flac queue*/
InitCQueue(&flac_queue, FLAC_QUEUE_SIZE, (unsigned char *)&flac_queue_buf);
return 0;
} }

View file

@ -15,154 +15,151 @@
****************************************************************************/ ****************************************************************************/
#ifdef CHIP_BEST1000 #ifdef CHIP_BEST1000
#include "app_audio.h"
#include "app_overlay.h"
#include "app_utils.h"
#include "audiobuffer.h"
#include "audioflinger.h"
#include "cmsis.h" #include "cmsis.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "cqueue.h"
#include "fmdec.h" #include "fmdec.h"
#include "hal_dma.h"
#include "hal_timer.h"
#include "hal_cmu.h"
#include "hal_analogif.h" #include "hal_analogif.h"
#include "hal_chipid.h" #include "hal_chipid.h"
#include "audioflinger.h" #include "hal_cmu.h"
#include "audiobuffer.h" #include "hal_dma.h"
#include "cqueue.h" #include "hal_timer.h"
#include "app_audio.h" #include "hal_trace.h"
#include "app_utils.h"
#include "app_overlay.h"
#include "string.h"
#include "pmu.h" #include "pmu.h"
#include "string.h"
//#define FM_DEBUG 1 //#define FM_DEBUG 1
#define FM_DIGITAL_REG(a) *(volatile uint32_t *)(a) #define FM_DIGITAL_REG(a) *(volatile uint32_t *)(a)
#define fm_read_rf_reg(reg,val) hal_analogif_reg_read(reg,val) #define fm_read_rf_reg(reg, val) hal_analogif_reg_read(reg, val)
#define fm_write_rf_reg(reg,val) hal_analogif_reg_write(reg,val) #define fm_write_rf_reg(reg, val) hal_analogif_reg_write(reg, val)
#define FM_FRAME_NUM 4 #define FM_FRAME_NUM 4
#define FM_SAMPLE_NUM NUMOFSAMPLE #define FM_SAMPLE_NUM NUMOFSAMPLE
#ifdef ATAN2_HARDWARE #ifdef ATAN2_HARDWARE
#ifdef FM_NEWMODE #ifdef FM_NEWMODE
#define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM*FM_SAMPLE_NUM*4) #define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM * FM_SAMPLE_NUM * 4)
#else #else
#define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM*FM_SAMPLE_NUM/2*4) #define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM * FM_SAMPLE_NUM / 2 * 4)
#endif #endif
#else #else
#define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM*FM_SAMPLE_NUM*4) #define FM_SAMPLE_BUFFER_SIZE (FM_FRAME_NUM * FM_SAMPLE_NUM * 4)
#endif #endif
#define FM_AUDIO_BUFFER_SIZE (4096) #define FM_AUDIO_BUFFER_SIZE (4096)
extern int app_bt_stream_local_volume_get(void); extern int app_bt_stream_local_volume_get(void);
static int32_t *fm_sample_buffer_p; static int32_t *fm_sample_buffer_p;
static void fm_handler(uint8_t chan, uint32_t remains, uint32_t error, struct HAL_DMA_DESC_T *lli) static void fm_handler(uint8_t chan, uint32_t remains, uint32_t error,
{ struct HAL_DMA_DESC_T *lli) {
static int cnt = 0; static int cnt = 0;
int16_t fm_decbuf[(FM_SAMPLE_NUM/9)]; int16_t fm_decbuf[(FM_SAMPLE_NUM / 9)];
FmDemodulate((int16_t *)(fm_sample_buffer_p +((cnt%FM_FRAME_NUM)*FM_SAMPLE_NUM)), fm_decbuf,FM_SAMPLE_NUM); FmDemodulate(
cnt++; (int16_t *)(fm_sample_buffer_p + ((cnt % FM_FRAME_NUM) * FM_SAMPLE_NUM)),
app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM/9)<<1); fm_decbuf, FM_SAMPLE_NUM);
FmDemodulate((int16_t *)(fm_sample_buffer_p +((cnt%FM_FRAME_NUM)*FM_SAMPLE_NUM)), fm_decbuf,FM_SAMPLE_NUM); cnt++;
cnt++; app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM / 9) << 1);
app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM/9)<<1); FmDemodulate(
(int16_t *)(fm_sample_buffer_p + ((cnt % FM_FRAME_NUM) * FM_SAMPLE_NUM)),
fm_decbuf, FM_SAMPLE_NUM);
cnt++;
app_audio_pcmbuff_put((uint8_t *)fm_decbuf, (FM_SAMPLE_NUM / 9) << 1);
#ifdef FM_DEBUG #ifdef FM_DEBUG
{ {
static uint32_t preTicks; static uint32_t preTicks;
uint32_t diff_ticks = 0; uint32_t diff_ticks = 0;
uint32_t cur_ticks; uint32_t cur_ticks;
cur_ticks = hal_sys_timer_get(); cur_ticks = hal_sys_timer_get();
if (!preTicks){ if (!preTicks) {
preTicks = cur_ticks; preTicks = cur_ticks;
}else{ } else {
diff_ticks = TICKS_TO_MS(cur_ticks - preTicks); diff_ticks = TICKS_TO_MS(cur_ticks - preTicks);
preTicks = cur_ticks; preTicks = cur_ticks;
}
TRACE(3,"[fm_handler] diff=%d add:%d remain:%d input", diff_ticks, (FM_SAMPLE_NUM/9)<<1, app_audio_pcmbuff_length());
} }
TRACE(3, "[fm_handler] diff=%d add:%d remain:%d input", diff_ticks,
(FM_SAMPLE_NUM / 9) << 1, app_audio_pcmbuff_length());
}
#endif #endif
} }
uint32_t fm_pcm_more_data(uint8_t *buf, uint32_t len) uint32_t fm_pcm_more_data(uint8_t *buf, uint32_t len) {
{ app_audio_pcmbuff_get(buf, len);
app_audio_pcmbuff_get(buf, len);
#ifdef FM_DEBUG #ifdef FM_DEBUG
{ {
static uint32_t preTicks; static uint32_t preTicks;
uint32_t diff_ticks = 0; uint32_t diff_ticks = 0;
uint32_t cur_ticks= hal_sys_timer_get(); uint32_t cur_ticks = hal_sys_timer_get();
if (!preTicks){ if (!preTicks) {
preTicks = cur_ticks; preTicks = cur_ticks;
}else{ } else {
diff_ticks = TICKS_TO_MS(cur_ticks - preTicks); diff_ticks = TICKS_TO_MS(cur_ticks - preTicks);
preTicks = cur_ticks; preTicks = cur_ticks;
}
TRACE(5,"[fm_pcm_more_data] diff=%d get:%d remain:%d output isr:0x%08x cnt:%d", diff_ticks, len/2, app_audio_pcmbuff_length(), FM_DIGITAL_REG(0x40160020), FM_DIGITAL_REG(0x40160028));
} }
TRACE(
5,
"[fm_pcm_more_data] diff=%d get:%d remain:%d output isr:0x%08x cnt:%d",
diff_ticks, len / 2, app_audio_pcmbuff_length(),
FM_DIGITAL_REG(0x40160020), FM_DIGITAL_REG(0x40160028));
}
#endif #endif
return 0; return 0;
} }
uint32_t fm_capture_more_data(uint8_t *buf, uint32_t len) uint32_t fm_capture_more_data(uint8_t *buf, uint32_t len) {
{ fm_handler(0, 0, 0, NULL);
fm_handler(0,0,0,NULL); return len;
return len;
} }
void fm_radio_digit_init(void) void fm_radio_digit_init(void) {
{ FM_DIGITAL_REG(0xd0350244) = (FM_DIGITAL_REG(0xd0350244) & ~0x01fff) |
FM_DIGITAL_REG(0xd0350244) = (FM_DIGITAL_REG(0xd0350244) & ~0x01fff) | 0x20f; //-890k -> 0 if_shift, for 110.5292m adc 0x20f; //-890k -> 0 if_shift, for 110.5292m adc
// FM_DIGITAL_REG(0x40180e0c) = 0x34;
//FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) | 0x18000;
// FM_DIGITAL_REG(0x40180e0c) = 0x34;
// FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) |
// 0x18000;
#ifdef ATAN2_HARDWARE #ifdef ATAN2_HARDWARE
FM_DIGITAL_REG(0xd0330038) |= (1 << 11);
FM_DIGITAL_REG(0xd0330038) |= (1 << 11); FM_DIGITAL_REG(0xd0330038) |= (1 << 17);
FM_DIGITAL_REG(0xd0330038) |= (1 << 17); FM_DIGITAL_REG(0xd0350248) = 0x80c00000;
FM_DIGITAL_REG(0xd0350248) = 0x80c00000; // FM_DIGITAL_REG(0x40160030) = 1;
// FM_DIGITAL_REG(0x40160030) = 1; // FM_DIGITAL_REG(0x40160000) = 0x21;
// FM_DIGITAL_REG(0x40160000) = 0x21;
#else #else
FM_DIGITAL_REG(0xd0330038) |= (1 << 11);
FM_DIGITAL_REG(0xd0350248) = 0x80c00000;
FM_DIGITAL_REG(0xd0330038) |= (1 << 11); // FM_DIGITAL_REG(0x40160030) = 1;
FM_DIGITAL_REG(0xd0350248) = 0x80c00000; // FM_DIGITAL_REG(0x40160000) = 1;
// FM_DIGITAL_REG(0x40160030) = 1;
// FM_DIGITAL_REG(0x40160000) = 1;
#endif #endif
#ifdef SINGLECHANLE #ifdef SINGLECHANLE
//0x4000a010 bit2 写0 单channel dac // 0x4000a010 bit2 写0 单channel dac
FM_DIGITAL_REG(0x4000a010) = (1 << 5) |(1<<4); FM_DIGITAL_REG(0x4000a010) = (1 << 5) | (1 << 4);
#else #else
FM_DIGITAL_REG(0x4000a010) = (1 << 5) | (1 << 2)|(1<<4); FM_DIGITAL_REG(0x4000a010) = (1 << 5) | (1 << 2) | (1 << 4);
#endif #endif
FM_DIGITAL_REG(0x4000a020) = ~0UL;
FM_DIGITAL_REG(0x4000a02c) = 4;
FM_DIGITAL_REG(0x4000a030) = 4;
FM_DIGITAL_REG(0x4000a034) = (1 << 2) | (1 << 1) | (1 << 0);
FM_DIGITAL_REG(0x4000a020) = ~0UL; // Start DAC
FM_DIGITAL_REG(0x4000a02c) = 4; // FM_DIGITAL_REG(0x4000a010) |= (1 << 1);
FM_DIGITAL_REG(0x4000a030) = 4;
FM_DIGITAL_REG(0x4000a034) = (1 << 2) | (1 << 1) | (1 << 0);
// Start DAC
// FM_DIGITAL_REG(0x4000a010) |= (1 << 1);
#if 0 #if 0
//52M //52M
@ -185,345 +182,324 @@ void fm_radio_digit_init(void)
FM_DIGITAL_REG(0x40000064) = (FM_DIGITAL_REG(0x40000064) & ~0xFF) | 0x7A | (1 << 10) | (1<<30); FM_DIGITAL_REG(0x40000064) = (FM_DIGITAL_REG(0x40000064) & ~0xFF) | 0x7A | (1 << 10) | (1<<30);
#endif #endif
FM_DIGITAL_REG(0x4000a040) = 0xc0810000; FM_DIGITAL_REG(0x4000a040) = 0xc0810000;
FM_DIGITAL_REG(0x4000a044) = 0x08040c04; FM_DIGITAL_REG(0x4000a044) = 0x08040c04;
FM_DIGITAL_REG(0x4000a048) = 0x0e01f268; FM_DIGITAL_REG(0x4000a048) = 0x0e01f268;
FM_DIGITAL_REG(0x4000a04c) = 0x00005100; FM_DIGITAL_REG(0x4000a04c) = 0x00005100;
// FM_DIGITAL_REG(0x40010010) = 0; // FM_DIGITAL_REG(0x40010010) = 0;
// FM_DIGITAL_REG(0x40010014) = 0x03a80005; // FM_DIGITAL_REG(0x40010014) = 0x03a80005;
//FM_DIGITAL_REG(0x40010018) = 0x00200019; // FM_DIGITAL_REG(0x40010018) = 0x00200019;
FM_DIGITAL_REG(0x4000a050) = 0x24200000; //for adc_div_3_6 bypass FM_DIGITAL_REG(0x4000a050) = 0x24200000; // for adc_div_3_6 bypass
FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x780) | 0x380; // for channel 1 adc volume, bit10~7 FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x780) |
FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) | 0x18000; // for dual channel adc/dac 0x380; // for channel 1 adc volume, bit10~7
FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~0x18000) |
0x18000; // for dual channel adc/dac
#ifdef SINGLECHANLE #ifdef SINGLECHANLE
//0x4000a050 bit16 写0 单channel dac for codec // 0x4000a050 bit16 写0 单channel dac for codec
FM_DIGITAL_REG(0x4000a050) =(FM_DIGITAL_REG(0x4000a050) & ~ (1 << 16)); FM_DIGITAL_REG(0x4000a050) = (FM_DIGITAL_REG(0x4000a050) & ~(1 << 16));
#endif #endif
FM_DIGITAL_REG(0x4000a048) = (FM_DIGITAL_REG(0x4000a048) & ~0x00000f00) |
0x40000900; // set for sdm gain
FM_DIGITAL_REG(0x4000a044) = (FM_DIGITAL_REG(0x4000a044) & ~0x60000000) |
0x60000000; // for adc en, and dac en
FM_DIGITAL_REG(0x4000a048) = (FM_DIGITAL_REG(0x4000a048) & ~0x00000f00) | 0x40000900; //set for sdm gain // Start DAC
FM_DIGITAL_REG(0x4000a044) = (FM_DIGITAL_REG(0x4000a044) & ~0x60000000) | 0x60000000; //for adc en, and dac en FM_DIGITAL_REG(0x4000a010) |= (1 << 1);
// Start DAC // Delay 2 ms
FM_DIGITAL_REG(0x4000a010) |= (1 << 1); // for (volatile int kk = 0; kk < 1000/64; kk++);
osDelay(2);
// Delay 2 ms
// for (volatile int kk = 0; kk < 1000/64; kk++);
osDelay(2);
//hal_sys_timer_delay(MS_TO_TICKS(2));
// Start ADC
// FM_DIGITAL_REG(0x4000a010) |= (1 << 0);
// hal_sys_timer_delay(MS_TO_TICKS(2));
// Start ADC
// FM_DIGITAL_REG(0x4000a010) |= (1 << 0);
#ifdef ATAN2_HARDWARE #ifdef ATAN2_HARDWARE
#ifdef FM_NEWMODE #ifdef FM_NEWMODE
FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0x40160030) = 1;
FM_DIGITAL_REG(0x40160000) = 0x1; FM_DIGITAL_REG(0x40160000) = 0x1;
#else #else
FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0x40160030) = 1;
FM_DIGITAL_REG(0x40160000) = 0x21; FM_DIGITAL_REG(0x40160000) = 0x21;
#endif #endif
#else #else
//start FM // start FM
FM_DIGITAL_REG(0x40160030) = 1; FM_DIGITAL_REG(0x40160030) = 1;
FM_DIGITAL_REG(0x40160000) =1; FM_DIGITAL_REG(0x40160000) = 1;
#endif #endif
} }
int fm_radio_analog_init(void) int fm_radio_analog_init(void) {
int ret;
/*
// fm initial
rfspi_wvalue( 8'h2c , 16'b0111_0000_0101_1100 ) ; // dig_vtoi_en
rfspi_wvalue( 8'h01 , 16'b1010_1101_1111_1111 ) ; // power on fm lna
rfspi_wvalue( 8'h02 , 16'b1000_0000_1001_0100 ) ; // reg_fm_lna_pu_mixersw
rfspi_wvalue( 8'h1a , 16'b0101_0000_1011_0000 ) ; //
reg_bt_vco_fm_buff_vctrl_dr=1
rfspi_wvalue( 8'h18 , 16'b0000_0110_1000_0000 ) ; // power on vco
rfspi_wvalue( 8'h19 , 16'b0110_0100_0100_0000 ) ; // reg_bt_vco_fm_buff_vctrl
rfspi_wvalue( 8'h1d , 16'b0111_1000_1010_0100 ) ; // reg_bt_rfpll_pu_dr
rfspi_wvalue( 8'h1c , 16'b0000_0000_1100_1000 ) ; // reg_bt_vco_fm_lo_en
reg_bt_vco_fm_div_ctrl=8
rfspi_wvalue( 8'h0a , 16'b0001_0010_0010_1111 ) ; // reg_btfm_flt_fm_en
rfspi_wvalue( 8'h2d , 16'b0000_0111_1000_0010 ) ; // bb ldo on
reg_bb_ldo_pu_vddr15a_dr rfspi_wvalue( 8'h07 , 16'b0000_0010_1011_1001 ) ; //
reg_btfm_flt_pu_dr
rfspi_wvalue( 8'h2a , 16'b0001_0110_1100_0000 ) ; // reg_bt_rfpll_sdm_freq_dr
rfspi_wvalue( 8'h26 , 16'b0000_0000_0000_0000 ) ; // vco freq[31:16] ( 2400 +
x )*2^25/26MHZ*N (2400+x= frf) rfspi_wvalue( 8'h25 , 16'b0000_0000_0000_0000 )
; // vco freq[15:00] fm_freq = frf/(4*reg_bt_vco_fm_div_ctrl) rfspi_wvalue(
8'h17 , 16'b1000_0000_0000_0000 ) ; // reg_bt_vco_calen
*/
fm_write_rf_reg(0x2c, 0b0111000001011100); // dig_vtoi_en
fm_write_rf_reg(0x01, 0b1010110111111111); // power on fm lna
fm_write_rf_reg(0x02, 0b1000000010010100); // reg_fm_lna_pu_mixersw
fm_write_rf_reg(0x1a, 0b0101000010110000); // reg_bt_vco_fm_buff_vctrl_dr=1
fm_write_rf_reg(0x18, 0b0000011010000000); // power on vco
fm_write_rf_reg(0x19, 0b0110010001000000); // reg_bt_vco_fm_buff_vctrl
fm_write_rf_reg(0x1d, 0b0111100010100100); // reg_bt_rfpll_pu_dr
fm_write_rf_reg(
0x1c, 0b0000000011001000); // reg_bt_vco_fm_lo_en reg_bt_vco_fm_div_ctrl=8
fm_write_rf_reg(0x0a, 0b0001001000101111); // reg_btfm_flt_fm_en
fm_write_rf_reg(0x2d,
0b0000011110000010); // bb ldo on reg_bb_ldo_pu_vddr15a_dr
fm_write_rf_reg(0x07, 0b0000001010111001); // reg_btfm_flt_pu_dr
fm_write_rf_reg(0x2a, 0b0001011011000000); // reg_bt_rfpll_sdm_freq_dr
fm_write_rf_reg(0x26, 0b0000000000000000); // vco freq[31:16] ( 2400 + x
// )*2^25/26MHZ*N (2400+x= frf)
fm_write_rf_reg(0x25, 0b0000000000000000); // vco freq[15:00] fm_freq =
// frf/(4*reg_bt_vco_fm_div_ctrl)
fm_write_rf_reg(0x17, 0b1000000000000000); // reg_bt_vco_calen
// adc也要开的话需要配 cmu
// 0x40000060[29] = 1 最好先读再写否则把别的bit冲掉了。
//需要配置的spi寄存器ana interface:
// 0x05 = 0xFCB1 // Audio Pll
// 0x06 = 0x881C
// 0x31 = 0x0100 // audio_freq_en
// 0x37 = 0x1000 // codec_bbpll1_fm_adc_clk_en
// 0x31 = 0x0130 // codec_tx_en_ldac codec_tx_en_rdac
ret = fm_write_rf_reg(0x05, 0xfcb1);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x06, 0x881c);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x3a, 0xe644);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x31, 0x0100);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x37, 0x1000);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x31, 0x01f0);
if (ret) {
return ret;
}
// delay 32ms
osDelay(32);
ret = fm_write_rf_reg(0x31, 0x0130);
if (ret) {
return ret;
}
//[FM_RX]
fm_write_rf_reg(0x01, 0x91ff); // pu fm
fm_write_rf_reg(0x2d, 0x07fa); // ldo on
fm_write_rf_reg(0x2e, 0x6aaa); // tune fm filter IF
fm_write_rf_reg(0x02, 0xe694);
fm_write_rf_reg(0x03, 0xfe3a);
fm_write_rf_reg(0x04, 0x52a8);
fm_write_rf_reg(0x07, 0x02b9);
fm_write_rf_reg(0x0a, 0x1a2c);
fm_write_rf_reg(0x0b, 0x402b);
fm_write_rf_reg(0x0c, 0x7584);
fm_write_rf_reg(0x0e, 0x0000);
fm_write_rf_reg(0x0f, 0x2e18);
fm_write_rf_reg(0x10, 0x02b4);
fm_write_rf_reg(0x13, 0x0a48);
//[vco init]
fm_write_rf_reg(0x18, 0x077f);
fm_write_rf_reg(0x19, 0x3ff8);
fm_write_rf_reg(0x1a, 0xc090);
fm_write_rf_reg(0x1b, 0x0f88);
fm_write_rf_reg(0x1c, 0x04c6); //[3:0] 5,6,7,8 --> vco/2
return 0;
}
void fm_radio_poweron(void)
{ {
int ret; hal_cmu_reset_clear(HAL_CMU_MOD_BTCPU);
osDelay(2000);
{
// wakp interface
unsigned short read_val;
/* fm_read_rf_reg(0x50, &read_val);
}
// fm initial pmu_fm_config(1);
rfspi_wvalue( 8'h2c , 16'b0111_0000_0101_1100 ) ; // dig_vtoi_en
rfspi_wvalue( 8'h01 , 16'b1010_1101_1111_1111 ) ; // power on fm lna
rfspi_wvalue( 8'h02 , 16'b1000_0000_1001_0100 ) ; // reg_fm_lna_pu_mixersw
rfspi_wvalue( 8'h1a , 16'b0101_0000_1011_0000 ) ; // reg_bt_vco_fm_buff_vctrl_dr=1 fm_write_rf_reg(0x0c, 0x3584);
if (hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_2 ||
hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_3) ////
{
FM_DIGITAL_REG(0xc00003b4) = 0x00060020; // turn off bt sleep
} else if (hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_4) {
FM_DIGITAL_REG(0xc00003b0) = 0x00060020; // turn off bt sleep
} else {
FM_DIGITAL_REG(0xc00003ac) = 0x00060020; // turn off bt sleep
}
FM_DIGITAL_REG(0xd0330038) = 0x00008D0D;
FM_DIGITAL_REG(0xd0340020) = 0x010E01C0; // open ana rxon for open adc clk
// fm_write_rf_reg(0x02, 0xe694);
}
rfspi_wvalue( 8'h18 , 16'b0000_0110_1000_0000 ) ; // power on vco void *fm_radio_get_ext_buff(int size) {
uint8_t *pBuff = NULL;
size = size + size % 4;
app_audio_mempool_get_buff(&pBuff, size);
return (void *)pBuff;
}
rfspi_wvalue( 8'h19 , 16'b0110_0100_0100_0000 ) ; // reg_bt_vco_fm_buff_vctrl int fm_radio_player(bool on) {
rfspi_wvalue( 8'h1d , 16'b0111_1000_1010_0100 ) ; // reg_bt_rfpll_pu_dr static struct AF_STREAM_CONFIG_T stream_cfg;
rfspi_wvalue( 8'h1c , 16'b0000_0000_1100_1000 ) ; // reg_bt_vco_fm_lo_en reg_bt_vco_fm_div_ctrl=8 static bool isRun = false;
uint8_t *buff = NULL;
rfspi_wvalue( 8'h0a , 16'b0001_0010_0010_1111 ) ; // reg_btfm_flt_fm_en
rfspi_wvalue( 8'h2d , 16'b0000_0111_1000_0010 ) ; // bb ldo on reg_bb_ldo_pu_vddr15a_dr
rfspi_wvalue( 8'h07 , 16'b0000_0010_1011_1001 ) ; // reg_btfm_flt_pu_dr
rfspi_wvalue( 8'h2a , 16'b0001_0110_1100_0000 ) ; // reg_bt_rfpll_sdm_freq_dr
rfspi_wvalue( 8'h26 , 16'b0000_0000_0000_0000 ) ; // vco freq[31:16] ( 2400 + x )*2^25/26MHZ*N (2400+x= frf)
rfspi_wvalue( 8'h25 , 16'b0000_0000_0000_0000 ) ; // vco freq[15:00] fm_freq = frf/(4*reg_bt_vco_fm_div_ctrl)
rfspi_wvalue( 8'h17 , 16'b1000_0000_0000_0000 ) ; // reg_bt_vco_calen
*/
fm_write_rf_reg( 0x2c , 0b0111000001011100 ) ; // dig_vtoi_en
fm_write_rf_reg( 0x01 , 0b1010110111111111 ) ; // power on fm lna
fm_write_rf_reg( 0x02 , 0b1000000010010100 ) ; // reg_fm_lna_pu_mixersw
fm_write_rf_reg( 0x1a , 0b0101000010110000 ) ; // reg_bt_vco_fm_buff_vctrl_dr=1
fm_write_rf_reg( 0x18 , 0b0000011010000000 ) ; // power on vco
fm_write_rf_reg( 0x19 , 0b0110010001000000 ) ; // reg_bt_vco_fm_buff_vctrl
fm_write_rf_reg( 0x1d , 0b0111100010100100 ) ; // reg_bt_rfpll_pu_dr
fm_write_rf_reg( 0x1c , 0b0000000011001000 ) ; // reg_bt_vco_fm_lo_en reg_bt_vco_fm_div_ctrl=8
fm_write_rf_reg( 0x0a , 0b0001001000101111 ) ; // reg_btfm_flt_fm_en
fm_write_rf_reg( 0x2d , 0b0000011110000010 ) ; // bb ldo on reg_bb_ldo_pu_vddr15a_dr
fm_write_rf_reg( 0x07 , 0b0000001010111001 ) ; // reg_btfm_flt_pu_dr
fm_write_rf_reg( 0x2a , 0b0001011011000000 ) ; // reg_bt_rfpll_sdm_freq_dr
fm_write_rf_reg( 0x26 , 0b0000000000000000 ) ; // vco freq[31:16] ( 2400 + x )*2^25/26MHZ*N (2400+x= frf)
fm_write_rf_reg( 0x25 , 0b0000000000000000 ) ; // vco freq[15:00] fm_freq = frf/(4*reg_bt_vco_fm_div_ctrl)
fm_write_rf_reg( 0x17 , 0b1000000000000000 ) ; // reg_bt_vco_calen
//adc也要开的话需要配 cmu
//0x40000060[29] = 1 最好先读再写否则把别的bit冲掉了。
//需要配置的spi寄存器ana interface:
//0x05 = 0xFCB1 // Audio Pll
//0x06 = 0x881C
//0x31 = 0x0100 // audio_freq_en
//0x37 = 0x1000 // codec_bbpll1_fm_adc_clk_en
//0x31 = 0x0130 // codec_tx_en_ldac codec_tx_en_rdac
ret = fm_write_rf_reg(0x05 , 0xfcb1);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x06 , 0x881c);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x3a , 0xe644);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x31 , 0x0100);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x37 , 0x1000);
if (ret) {
return ret;
}
ret = fm_write_rf_reg(0x31 , 0x01f0);
if (ret) {
return ret;
}
//delay 32ms
osDelay(32);
ret = fm_write_rf_reg(0x31 , 0x0130);
if (ret) {
return ret;
}
//[FM_RX]
fm_write_rf_reg(0x01,0x91ff); //pu fm
fm_write_rf_reg(0x2d,0x07fa); //ldo on
fm_write_rf_reg(0x2e,0x6aaa); //tune fm filter IF
fm_write_rf_reg(0x02,0xe694);
fm_write_rf_reg(0x03,0xfe3a);
fm_write_rf_reg(0x04,0x52a8);
fm_write_rf_reg(0x07,0x02b9);
fm_write_rf_reg(0x0a,0x1a2c);
fm_write_rf_reg(0x0b,0x402b);
fm_write_rf_reg(0x0c,0x7584);
fm_write_rf_reg(0x0e,0x0000);
fm_write_rf_reg(0x0f,0x2e18);
fm_write_rf_reg(0x10,0x02b4);
fm_write_rf_reg(0x13,0x0a48);
//[vco init]
fm_write_rf_reg(0x18,0x077f);
fm_write_rf_reg(0x19,0x3ff8);
fm_write_rf_reg(0x1a,0xc090);
fm_write_rf_reg(0x1b,0x0f88);
fm_write_rf_reg(0x1c,0x04c6); //[3:0] 5,6,7,8 --> vco/2
TRACE(2, "fm_radio_player work:%d op:%d", isRun, on);
if (isRun == on)
return 0; return 0;
}
void fm_radio_poweron(void) if (on) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M);
{ app_audio_mempool_init();
hal_cmu_reset_clear(HAL_CMU_MOD_BTCPU); fm_radio_poweron();
osDelay(2000); fm_radio_analog_init();
fm_radio_digit_init();
{ osDelay(200);
//wakp interface buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE * 2);
unsigned short read_val; app_audio_pcmbuff_init(buff, FM_AUDIO_BUFFER_SIZE * 2);
fm_sample_buffer_p =
fm_read_rf_reg(0x50, &read_val); (int32_t *)fm_radio_get_ext_buff(FM_SAMPLE_BUFFER_SIZE);
} #if FPGA == 0
app_overlay_select(APP_OVERLAY_FM);
pmu_fm_config(1);
fm_write_rf_reg(0x0c, 0x3584);
if(hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_2 || hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_3) ////
{
FM_DIGITAL_REG(0xc00003b4)=0x00060020;//turn off bt sleep
}
else if(hal_get_chip_metal_id() == HAL_CHIP_METAL_ID_4)
{
FM_DIGITAL_REG(0xc00003b0)=0x00060020;//turn off bt sleep
}
else
{
FM_DIGITAL_REG(0xc00003ac)=0x00060020;//turn off bt sleep
}
FM_DIGITAL_REG(0xd0330038) = 0x00008D0D;
FM_DIGITAL_REG(0xd0340020)=0x010E01C0;// open ana rxon for open adc clk
//fm_write_rf_reg(0x02, 0xe694);
}
void* fm_radio_get_ext_buff(int size)
{
uint8_t *pBuff = NULL;
size = size+size%4;
app_audio_mempool_get_buff(&pBuff, size);
return (void*)pBuff;
}
int fm_radio_player(bool on)
{
static struct AF_STREAM_CONFIG_T stream_cfg;
static bool isRun = false;
uint8_t *buff = NULL;
TRACE(2,"fm_radio_player work:%d op:%d", isRun, on);
if (isRun==on)
return 0;
if (on){
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_52M);
app_audio_mempool_init();
fm_radio_poweron();
fm_radio_analog_init();
fm_radio_digit_init();
osDelay(200);
buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE*2);
app_audio_pcmbuff_init(buff, FM_AUDIO_BUFFER_SIZE*2);
fm_sample_buffer_p = (int32_t *)fm_radio_get_ext_buff(FM_SAMPLE_BUFFER_SIZE);
#if FPGA==0
app_overlay_select(APP_OVERLAY_FM);
#endif #endif
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.vol = app_bt_stream_local_volume_get(); stream_cfg.vol = app_bt_stream_local_volume_get();
stream_cfg.handler = fm_capture_more_data; stream_cfg.handler = fm_capture_more_data;
stream_cfg.data_ptr = (uint8_t *)fm_sample_buffer_p; stream_cfg.data_ptr = (uint8_t *)fm_sample_buffer_p;
stream_cfg.data_size = FM_SAMPLE_BUFFER_SIZE; stream_cfg.data_size = FM_SAMPLE_BUFFER_SIZE;
stream_cfg.device = AUD_STREAM_USE_DPD_RX; stream_cfg.device = AUD_STREAM_USE_DPD_RX;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE); buff = (uint8_t *)fm_radio_get_ext_buff(FM_AUDIO_BUFFER_SIZE);
stream_cfg.bits = AUD_BITS_16; stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1; stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_48000; stream_cfg.sample_rate = AUD_SAMPRATE_48000;
#if FPGA==0 #if FPGA == 0
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
#else #else
stream_cfg.device = AUD_STREAM_USE_EXT_CODEC; stream_cfg.device = AUD_STREAM_USE_EXT_CODEC;
#endif #endif
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = app_bt_stream_local_volume_get(); stream_cfg.vol = app_bt_stream_local_volume_get();
stream_cfg.handler = fm_pcm_more_data; stream_cfg.handler = fm_pcm_more_data;
stream_cfg.data_ptr = buff; stream_cfg.data_ptr = buff;
stream_cfg.data_size = FM_AUDIO_BUFFER_SIZE; stream_cfg.data_size = FM_AUDIO_BUFFER_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}else{ } else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K); app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
} }
isRun=on; isRun = on;
return 0; return 0;
} }
int fm_tune(uint32_t freqkhz) int fm_tune(uint32_t freqkhz) {
{ uint32_t reg;
uint32_t reg; unsigned long long tmp = 0;
unsigned long long tmp = 0;
//[rfpll_cal]
fm_write_rf_reg(0x21, 0x3979); // ref sel 52MHz
fm_write_rf_reg(0x22, 0x7A22); // doubler setting
fm_write_rf_reg(0x23, 0x0380);
fm_write_rf_reg(0x2b, 0x32a0); // sdm
fm_write_rf_reg(0x2a, 0x12d1); // cal ini
//[rfpll_cal] //(freq(Mhz)-0.89(Mhz))*(2^28)*3/26
fm_write_rf_reg(0x21,0x3979); // ref sel 52MHz tmp = freqkhz;
fm_write_rf_reg(0x22,0x7A22); // doubler setting reg = (((tmp - 890)) << 27) * 3 / 13 / 1000;
fm_write_rf_reg(0x23,0x0380);
fm_write_rf_reg(0x2b,0x32a0); // sdm
fm_write_rf_reg(0x2a,0x12d1); // cal ini
//(freq(Mhz)-0.89(Mhz))*(2^28)*3/26 fm_write_rf_reg(0x25, (reg & 0xffff0000) >> 16);
tmp = freqkhz; fm_write_rf_reg(0x26, reg & 0x0000ffff);
reg =(((tmp-890))<<27)*3/13/1000;
fm_write_rf_reg(0x25, (reg&0xffff0000)>>16); fm_write_rf_reg(0x1d, 0x58e4); // pll_cal_en
fm_write_rf_reg(0x26, reg&0x0000ffff); fm_write_rf_reg(0xf7, 0x5597); // rst and enable pll_cal clk
fm_write_rf_reg(0xf7, 0x55d7); // rst and enable pll_cal clk
fm_write_rf_reg(0x1d, 0x7ae4); // pll cal start
fm_write_rf_reg(0xff, 0x0000); // wait 100us
fm_write_rf_reg(0x1d,0x58e4); // pll_cal_en osDelay(20);
fm_write_rf_reg(0xf7,0x5597); // rst and enable pll_cal clk
fm_write_rf_reg(0xf7,0x55d7); // rst and enable pll_cal clk
fm_write_rf_reg(0x1d,0x7ae4); // pll cal start
fm_write_rf_reg(0xff,0x0000); // wait 100us
osDelay(20); fm_write_rf_reg(0x1d, 0x7ac4); // close pll loop
return 0;
fm_write_rf_reg(0x1d,0x7ac4); // close pll loop
return 0;
} }
void fm_test_main(void) void fm_test_main(void) {
{ fm_radio_player(true);
fm_radio_player(true); osDelay(20);
osDelay(20); fm_tune(90500);
fm_tune(90500);
} }
#endif #endif

View file

@ -14,20 +14,19 @@
* *
****************************************************************************/ ****************************************************************************/
// Standard C Included Files // Standard C Included Files
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include "cmsis_os.h" #include "cmsis_os.h"
#include "cqueue.h" #include "cqueue.h"
#include "hal_uart.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "hal_uart.h"
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// BT // BT
#if 0 #if 0
/* mutex */ /* mutex */
osMutexId g_voicemsbc_queue_mutex_id; osMutexId g_voicemsbc_queue_mutex_id;
@ -35,16 +34,15 @@ osMutexDef(g_voicemsbc_queue_mutex);
/* msbc queue */ /* msbc queue */
#define VOICEMSBC_TEMP_BUFFER_SIZE 128 #define VOICEMSBC_TEMP_BUFFER_SIZE 128
#define VOICEMSBC_QUEUE_SIZE (VOICEMSBC_TEMP_BUFFER_SIZE*100) #define VOICEMSBC_QUEUE_SIZE (VOICEMSBC_TEMP_BUFFER_SIZE * 100)
unsigned char voicemsbc_queue_buf[VOICEMSBC_QUEUE_SIZE]; unsigned char voicemsbc_queue_buf[VOICEMSBC_QUEUE_SIZE];
CQueue voicemsbc_queue; CQueue voicemsbc_queue;
static uint32_t ok_to_decode = 0; static uint32_t ok_to_decode = 0;
#define LOCK_VOICEMSBC_QUEUE() \ #define LOCK_VOICEMSBC_QUEUE() \
osMutexWait(g_voicemsbc_queue_mutex_id, osWaitForever) osMutexWait(g_voicemsbc_queue_mutex_id, osWaitForever)
#define UNLOCK_VOICEMSBC_QUEUE() \ #define UNLOCK_VOICEMSBC_QUEUE() osMutexRelease(g_voicemsbc_queue_mutex_id)
osMutexRelease(g_voicemsbc_queue_mutex_id)
static void dump_buffer_to_psram(char *buf, unsigned int len) static void dump_buffer_to_psram(char *buf, unsigned int len)
{ {

View file

@ -1,9 +1,10 @@
#include <stdbool.h>
#include <string.h>
#include "plc_utils.h" #include "plc_utils.h"
#include "hal_trace.h" #include "hal_trace.h"
#include <stdbool.h>
#include <string.h>
#if defined(CHIP_BEST1400) || defined(CHIP_BEST1402) || defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A) #if defined(CHIP_BEST1400) || defined(CHIP_BEST1402) || \
defined(CHIP_BEST2300P) || defined(CHIP_BEST2300A)
#define MSBC_MUTE_PATTERN (0x55) #define MSBC_MUTE_PATTERN (0x55)
#else #else
#define MSBC_MUTE_PATTERN (0x00) #define MSBC_MUTE_PATTERN (0x00)
@ -19,9 +20,8 @@
//#define ENABLE_PAD_CHECK //#define ENABLE_PAD_CHECK
/* /*
* if msbc frame is filled by 10+ samples in the trail, crc maybe not detect this * if msbc frame is filled by 10+ samples in the trail, crc maybe not detect
* satuation. * this satuation. Do not check this by default
* Do not check this by default
*/ */
//#define ENABLE_TRAILING_ZERO_CHECK //#define ENABLE_TRAILING_ZERO_CHECK
@ -58,271 +58,256 @@ static const uint8_t sbc_crc_tbl[256] = {
0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43, 0xB2, 0xAF, 0x88, 0x95, 0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43, 0xB2, 0xAF, 0x88, 0x95,
0xC6, 0xDB, 0xFC, 0xE1, 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09, 0xC6, 0xDB, 0xFC, 0xE1, 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09,
0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C, 0x97, 0x8A, 0xAD, 0xB0, 0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C, 0x97, 0x8A, 0xAD, 0xB0,
0xE3, 0xFE, 0xD9, 0xC4 0xE3, 0xFE, 0xD9, 0xC4};
};
#endif #endif
static int sco_parse_synchronization_header(uint8_t *buf, uint8_t *sn) static int sco_parse_synchronization_header(uint8_t *buf, uint8_t *sn) {
{ uint8_t sn1, sn2;
uint8_t sn1, sn2;
#ifdef ENABLE_CRC_CHECK #ifdef ENABLE_CRC_CHECK
uint8_t fcs = 0x0F; uint8_t fcs = 0x0F;
uint8_t crc = 0; uint8_t crc = 0;
uint8_t i, sb, bit, shift; uint8_t i, sb, bit, shift;
uint8_t ind = 6, bitOffset = 24; uint8_t ind = 6, bitOffset = 24;
#endif #endif
*sn = 0xff; *sn = 0xff;
#if defined(MSBC_SYNC_HACKER) #if defined(MSBC_SYNC_HACKER)
if (((buf[0] != 0x01) && (buf[0] != 0x00)) || if (((buf[0] != 0x01) && (buf[0] != 0x00)) || ((buf[1] & 0x0f) != 0x08) ||
((buf[1] & 0x0f) != 0x08) || (buf[2] != 0xad)) {
(buf[2] != 0xad)) { return -1;
return -1; }
}
#else #else
if ((buf[0] != 0x01) || if ((buf[0] != 0x01) || ((buf[1] & 0x0f) != 0x08) || (buf[2] != 0xad)) {
((buf[1] & 0x0f) != 0x08) || return -1;
(buf[2] != 0xad)) { }
return -1;
}
#endif #endif
sn1 = (buf[1] & 0x30) >> 4; sn1 = (buf[1] & 0x30) >> 4;
sn2 = (buf[1] & 0xc0) >> 6; sn2 = (buf[1] & 0xc0) >> 6;
if ((sn1 != 0) && (sn1 != 0x3)) { if ((sn1 != 0) && (sn1 != 0x3)) {
return -2; return -2;
} }
if ((sn2 != 0) && (sn2 != 0x3)) { if ((sn2 != 0) && (sn2 != 0x3)) {
return -3; return -3;
} }
#ifdef ENABLE_CRC_CHECK #ifdef ENABLE_CRC_CHECK
fcs = sbc_crc_tbl[fcs ^ buf[3]]; fcs = sbc_crc_tbl[fcs ^ buf[3]];
if (buf[3] != 0x00) if (buf[3] != 0x00)
return -4; return -4;
fcs = sbc_crc_tbl[fcs ^ buf[4]]; fcs = sbc_crc_tbl[fcs ^ buf[4]];
if (buf[4] != 0x00) if (buf[4] != 0x00)
return -4; return -4;
crc = buf[5]; crc = buf[5];
for (sb = 0; sb < 8; sb++) { for (sb = 0; sb < 8; sb++) {
if (bitOffset % 8) { if (bitOffset % 8) {
/* Sum the whole byte */ /* Sum the whole byte */
fcs = sbc_crc_tbl[fcs ^ buf[ind]]; fcs = sbc_crc_tbl[fcs ^ buf[ind]];
ind = ind + 1; ind = ind + 1;
} } else {
else { if (sb == 7) {
if (sb == 7) { /* Sum the next 4 bits */
/* Sum the next 4 bits */
/* Just sum the most significant 4 bits */ /* Just sum the most significant 4 bits */
shift = 7; shift = 7;
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
bit = (uint8_t)((0x01 & (buf[ind] >> shift--)) ^ (fcs >> 7)); bit = (uint8_t)((0x01 & (buf[ind] >> shift--)) ^ (fcs >> 7));
if (bit) { if (bit) {
fcs = (uint8_t)(((fcs << 1) | bit) ^ 0x1C); fcs = (uint8_t)(((fcs << 1) | bit) ^ 0x1C);
} } else {
else { fcs = (uint8_t)((fcs << 1));
fcs = (uint8_t)((fcs << 1)); }
}
}
}
} }
}
bitOffset += 4;
} }
//TRACE(2,"msbc crc:%d fcs:%d", crc,fcs);
if (crc != fcs) bitOffset += 4;
return -4; }
// TRACE(2,"msbc crc:%d fcs:%d", crc,fcs);
if (crc != fcs)
return -4;
#endif #endif
*sn = (sn1 & 0x01) | (sn2 & 0x02); *sn = (sn1 & 0x01) | (sn2 & 0x02);
#ifdef ENABLE_PAD_CHECK #ifdef ENABLE_PAD_CHECK
// when pad error detected, we should return sn // when pad error detected, we should return sn
if (buf[MSBC_PKTSIZE - 1] != 0x0) { if (buf[MSBC_PKTSIZE - 1] != 0x0) {
return -5; return -5;
} }
#endif #endif
return 0; return 0;
} }
#ifdef ENABLE_BLE_CONFLICT_CHECK #ifdef ENABLE_BLE_CONFLICT_CHECK
static bool memcmp_U8(uint8_t *x, uint8_t *y, uint16_t size) static bool memcmp_U8(uint8_t *x, uint8_t *y, uint16_t size) {
{ for (int i = 0; i < size; i++) {
for (int i = 0; i < size; i++) { if (x[i] != y[i])
if (x[i] != y[i]) return true;
return true; }
}
return false; return false;
} }
// when signal is mute, msbc data remains the same except seq num. We should check history flag, // when signal is mute, msbc data remains the same except seq num. We should
// otherwise a single conflict may be detected twice // check history flag, otherwise a single conflict may be detected twice
static bool update_ble_sco_conflict(PacketLossState* st, uint8_t *last_pkt, uint8_t *pkt) static bool update_ble_sco_conflict(PacketLossState *st, uint8_t *last_pkt,
{ uint8_t *pkt) {
// do not check padding byte as it maybe useless when msbc_offset is 1 // do not check padding byte as it maybe useless when msbc_offset is 1
bool ret = (st->prev_ble_sco_conflict_flag[1] == false && memcmp_U8(last_pkt, pkt, MSBC_PKTSIZE - 1) == false); bool ret = (st->prev_ble_sco_conflict_flag[1] == false &&
memcmp_U8(last_pkt, pkt, MSBC_PKTSIZE - 1) == false);
memcpy(&last_pkt[0], &last_pkt[MSBC_PKTSIZE], MSBC_PKTSIZE); memcpy(&last_pkt[0], &last_pkt[MSBC_PKTSIZE], MSBC_PKTSIZE);
memcpy(&last_pkt[MSBC_PKTSIZE], pkt, MSBC_PKTSIZE); memcpy(&last_pkt[MSBC_PKTSIZE], pkt, MSBC_PKTSIZE);
return ret; return ret;
} }
static bool check_ble_sco_conflict(PacketLossState* st, bool ret) static bool check_ble_sco_conflict(PacketLossState *st, bool ret) {
{ st->prev_ble_sco_conflict_flag[1] = st->prev_ble_sco_conflict_flag[0];
st->prev_ble_sco_conflict_flag[1] = st->prev_ble_sco_conflict_flag[0]; st->prev_ble_sco_conflict_flag[0] = ret;
st->prev_ble_sco_conflict_flag[0] = ret;
return ret; return ret;
} }
#endif #endif
static bool msbc_check_controller_mute_pattern(uint8_t *pkt, uint8_t pattern) static bool msbc_check_controller_mute_pattern(uint8_t *pkt, uint8_t pattern) {
{ // do not check padding byte as it maybe useless when msbc_offset is 1
// do not check padding byte as it maybe useless when msbc_offset is 1 for (int i = 0; i < MSBC_PKTSIZE - 1; i++)
for (int i = 0; i < MSBC_PKTSIZE - 1; i++) if (pkt[i] != pattern)
if (pkt[i] != pattern) return false;
return false;
return true; return true;
} }
#ifdef ENABLE_TRAILING_ZERO_CHECK #ifdef ENABLE_TRAILING_ZERO_CHECK
static int msbc_check_pkt_trailing_zeros(uint8_t *pkt) static int msbc_check_pkt_trailing_zeros(uint8_t *pkt) {
{ int idx = MSBC_PKTSIZE;
int idx = MSBC_PKTSIZE;
for (int i = MSBC_PKTSIZE - 1; i >= 0; i--) { for (int i = MSBC_PKTSIZE - 1; i >= 0; i--) {
if (pkt[i] != 0) { if (pkt[i] != 0) {
idx = i; idx = i;
break; break;
}
} }
}
return (MSBC_PKTSIZE - 1 - idx); return (MSBC_PKTSIZE - 1 - idx);
} }
#endif #endif
static uint8_t get_next_sequence_num(uint8_t seq_num) static uint8_t get_next_sequence_num(uint8_t seq_num) {
{ return (seq_num + 1 == 4) ? 0 : (seq_num + 1);
return (seq_num + 1 == 4) ? 0 : (seq_num + 1);
} }
void packet_loss_detection_init(PacketLossState *st) void packet_loss_detection_init(PacketLossState *st) {
{ st->last_seq_num = 0xff;
memset(st->last_pkt, 0, sizeof(st->last_pkt));
memset(st->prev_ble_sco_conflict_flag, 0,
sizeof(st->prev_ble_sco_conflict_flag));
memset(st->hist, 0, sizeof(st->hist));
}
plc_type_t packet_loss_detection_process(PacketLossState *st,
uint8_t *sbc_buf) {
plc_type_t plc_type = PLC_TYPE_PASS;
#ifdef ENABLE_BLE_CONFLICT_CHECK
bool ble_sco_conflict = update_ble_sco_conflict(st, st->last_pkt, sbc_buf);
#endif
uint8_t seq_num;
if (msbc_check_controller_mute_pattern(sbc_buf, MSBC_MUTE_PATTERN) == true) {
plc_type = PLC_TYPE_CONTROLLER_MUTE;
st->last_seq_num = 0xff; st->last_seq_num = 0xff;
}
memset(st->last_pkt, 0, sizeof(st->last_pkt));
memset(st->prev_ble_sco_conflict_flag, 0, sizeof(st->prev_ble_sco_conflict_flag));
memset(st->hist, 0, sizeof(st->hist));
}
plc_type_t packet_loss_detection_process(PacketLossState *st, uint8_t *sbc_buf)
{
plc_type_t plc_type = PLC_TYPE_PASS;
#ifdef ENABLE_BLE_CONFLICT_CHECK #ifdef ENABLE_BLE_CONFLICT_CHECK
bool ble_sco_conflict = update_ble_sco_conflict(st, st->last_pkt, sbc_buf); else if (check_ble_sco_conflict(st, ble_sco_conflict) == true) {
plc_type = PLC_TYPE_BLE_CONFLICT;
st->last_seq_num = 0xff;
}
#endif #endif
else {
uint8_t seq_num; int err = sco_parse_synchronization_header(sbc_buf, &seq_num);
if (msbc_check_controller_mute_pattern(sbc_buf, MSBC_MUTE_PATTERN) == true) { if (err < 0 && err >= -3) {
plc_type = PLC_TYPE_CONTROLLER_MUTE; plc_type = PLC_TYPE_HEADER_ERROR;
st->last_seq_num = 0xff; st->last_seq_num = 0xff;
} }
#ifdef ENABLE_BLE_CONFLICT_CHECK #ifdef ENABLE_CRC_CHECK
else if (check_ble_sco_conflict(st, ble_sco_conflict) == true) { else if (err == -4) {
plc_type = PLC_TYPE_BLE_CONFLICT; plc_type = PLC_TYPE_CRC_ERROR;
st->last_seq_num = 0xff; st->last_seq_num = 0xff;
}
#endif
#ifdef ENABLE_PAD_CHECK
else if (err == -5) {
plc_type = PLC_TYPE_PAD_ERROR;
st->last_seq_num = seq_num;
}
#endif
#ifdef ENABLE_TRAILING_ZERO_CHECK
else if (msbc_check_pkt_trailing_zeros(sbc_buf) > 10) {
plc_type = PLC_TYPE_DATA_MISSING;
st->last_seq_num = 0xff;
} }
#endif #endif
else { else {
int err = sco_parse_synchronization_header(sbc_buf, &seq_num);
if (err < 0 && err >= -3) {
plc_type = PLC_TYPE_HEADER_ERROR;
st->last_seq_num = 0xff;
}
#ifdef ENABLE_CRC_CHECK
else if (err == -4) {
plc_type = PLC_TYPE_CRC_ERROR;
st->last_seq_num = 0xff;
}
#endif
#ifdef ENABLE_PAD_CHECK
else if (err == -5) {
plc_type = PLC_TYPE_PAD_ERROR;
st->last_seq_num = seq_num;
}
#endif
#ifdef ENABLE_TRAILING_ZERO_CHECK
else if (msbc_check_pkt_trailing_zeros(sbc_buf) > 10) {
plc_type = PLC_TYPE_DATA_MISSING;
st->last_seq_num = 0xff;
}
#endif
else {
#ifdef ENABLE_SEQ_CHECK #ifdef ENABLE_SEQ_CHECK
if (st->last_seq_num == 0xff) { if (st->last_seq_num == 0xff) {
if (seq_num == 0xff) { if (seq_num == 0xff) {
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE; plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
} } else {
else { plc_type = PLC_TYPE_PASS;
plc_type = PLC_TYPE_PASS;
}
st->last_seq_num = seq_num;
}
else {
if (seq_num == 0xff) {
st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
}
else if (seq_num == get_next_sequence_num(st->last_seq_num)) {
st->last_seq_num = seq_num;
plc_type = PLC_TYPE_PASS;
}
else {
st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
}
}
#else
plc_type = PLC_TYPE_PASS;
#endif
} }
st->last_seq_num = seq_num;
} else {
if (seq_num == 0xff) {
st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
} else if (seq_num == get_next_sequence_num(st->last_seq_num)) {
st->last_seq_num = seq_num;
plc_type = PLC_TYPE_PASS;
} else {
st->last_seq_num = 0xff;
plc_type = PLC_TYPE_SEQUENCE_DISCONTINUE;
}
}
#else
plc_type = PLC_TYPE_PASS;
#endif
} }
}
packet_loss_detection_update_histogram(st, plc_type); packet_loss_detection_update_histogram(st, plc_type);
return plc_type; return plc_type;
} }
void packet_loss_detection_update_histogram(PacketLossState *st, plc_type_t plc_type) void packet_loss_detection_update_histogram(PacketLossState *st,
{ plc_type_t plc_type) {
if (plc_type < 0 || plc_type >= PLC_TYPE_NUM) { if (plc_type < 0 || plc_type >= PLC_TYPE_NUM) {
TRACE(2,"[%s] plc type %d is invalid", __FUNCTION__, plc_type); TRACE(2, "[%s] plc type %d is invalid", __FUNCTION__, plc_type);
return; return;
} }
// The packet is detected as PLC_TYPE_PASS, but causes a decoder error. // The packet is detected as PLC_TYPE_PASS, but causes a decoder error.
if (plc_type == PLC_TYPE_DECODER_ERROR) { if (plc_type == PLC_TYPE_DECODER_ERROR) {
st->hist[0] -= 1; st->hist[0] -= 1;
} }
st->hist[plc_type] += 1; st->hist[plc_type] += 1;
} }
void packet_loss_detection_report(PacketLossState *st) void packet_loss_detection_report(PacketLossState *st) {
{ uint32_t packet_loss_num = 0;
uint32_t packet_loss_num = 0;
for (uint8_t i = 1; i < PLC_TYPE_NUM; i++) { for (uint8_t i = 1; i < PLC_TYPE_NUM; i++) {
TRACE(3,"[%s] plc type %d occurs %d times", __FUNCTION__, i, st->hist[i]); TRACE(3, "[%s] plc type %d occurs %d times", __FUNCTION__, i, st->hist[i]);
packet_loss_num += st->hist[i]; packet_loss_num += st->hist[i];
} }
uint32_t packet_total_num = st->hist[0] + packet_loss_num; uint32_t packet_total_num = st->hist[0] + packet_loss_num;
TRACE(4,"[%s] packet loss percent %d/10000(%d/%d)", __FUNCTION__, TRACE(4, "[%s] packet loss percent %d/10000(%d/%d)", __FUNCTION__,
(int32_t)(10000.f * packet_loss_num/ packet_total_num), packet_loss_num, packet_total_num); (int32_t)(10000.f * packet_loss_num / packet_total_num),
packet_loss_num, packet_total_num);
} }

File diff suppressed because it is too large Load diff

View file

@ -15,28 +15,28 @@
****************************************************************************/ ****************************************************************************/
/* rbpcmbuf source */ /* rbpcmbuf source */
/* pcmbuf management & af control & mixer */ /* pcmbuf management & af control & mixer */
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h> #include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h> #include <unistd.h>
#ifdef MBED #ifdef MBED
#include "mbed.h" #include "mbed.h"
#include "rtos.h" #include "rtos.h"
#endif #endif
#include "audioflinger.h"
#include "cqueue.h"
#include "app_audio.h" #include "app_audio.h"
#include "app_utils.h" #include "app_utils.h"
#include "audioflinger.h"
#include "cqueue.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "rbplay.h"
#include "rbpcmbuf.h" #include "rbpcmbuf.h"
#include "rbplay.h"
#include "utils.h" #include "utils.h"
#define RB_PCMBUF_DMA_BUFFER_SIZE (1024*12) #define RB_PCMBUF_DMA_BUFFER_SIZE (1024 * 12)
#define RB_PCMBUF_MEDIA_BUFFER_SIZE (1024*12) #define RB_PCMBUF_MEDIA_BUFFER_SIZE (1024 * 12)
#define RB_DECODE_OUT_BUFFER_SIZE 1024 #define RB_DECODE_OUT_BUFFER_SIZE 1024
static uint8_t *rb_decode_out_buff; static uint8_t *rb_decode_out_buff;
@ -46,95 +46,93 @@ static CQueue rb_pcmbuf_media_buf_queue;
static osMutexId _rb_media_buf_queue_mutex_id = NULL; static osMutexId _rb_media_buf_queue_mutex_id = NULL;
static osMutexDef(_rb_media_buf_queue_mutex); static osMutexDef(_rb_media_buf_queue_mutex);
#define LOCK_MEDIA_BUF_QUEUE() \ #define LOCK_MEDIA_BUF_QUEUE() \
if(osErrorISR == osMutexWait(_rb_media_buf_queue_mutex_id, osWaitForever)) {\ if (osErrorISR == \
error("%s LOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!!\n",__func__);\ osMutexWait(_rb_media_buf_queue_mutex_id, osWaitForever)) { \
}\ error("%s LOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!!\n", __func__); \
}
#define UNLOCK_MEDIA_BUF_QUEUE() \ #define UNLOCK_MEDIA_BUF_QUEUE() \
if(osErrorISR == osMutexRelease(_rb_media_buf_queue_mutex_id)){ \ if (osErrorISR == osMutexRelease(_rb_media_buf_queue_mutex_id)) { \
error("%s UNLOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!\n"); \ error("%s UNLOCK_MEDIA_BUF_QUEUE from IRQ!!!!!!\n"); \
} \ }
static uint32_t rbplay_more_data(uint8_t *buf, uint32_t len) static uint32_t rbplay_more_data(uint8_t *buf, uint32_t len) {
{ CQItemType *e1 = NULL;
CQItemType *e1 = NULL; CQItemType *e2 = NULL;
CQItemType *e2 = NULL; unsigned int len1 = 0;
unsigned int len1 = 0; unsigned int len2 = 0;
unsigned int len2 = 0;
LOCK_MEDIA_BUF_QUEUE();
int ret = PeekCQueue(&rb_pcmbuf_media_buf_queue, len, &e1, &len1, &e2, &len2);
UNLOCK_MEDIA_BUF_QUEUE();
if (ret == CQ_OK) {
if (len1 > 0)
memcpy(buf, e1, len1);
if (len2 > 0)
memcpy(buf + len1, e2, len - len1);
LOCK_MEDIA_BUF_QUEUE(); LOCK_MEDIA_BUF_QUEUE();
int ret = PeekCQueue(&rb_pcmbuf_media_buf_queue, len, &e1, &len1, &e2, &len2); DeCQueue(&rb_pcmbuf_media_buf_queue, 0, len);
UNLOCK_MEDIA_BUF_QUEUE(); UNLOCK_MEDIA_BUF_QUEUE();
} else {
warn("RBplay cache underflow");
}
if (ret == CQ_OK) { return len;
if (len1 > 0)
memcpy(buf, e1, len1);
if (len2 > 0)
memcpy(buf + len1, e2, len - len1);
LOCK_MEDIA_BUF_QUEUE();
DeCQueue(&rb_pcmbuf_media_buf_queue, 0, len);
UNLOCK_MEDIA_BUF_QUEUE();
} else {
warn("RBplay cache underflow");
}
return len;
} }
extern uint8_t rb_ctl_get_vol(void); extern uint8_t rb_ctl_get_vol(void);
void rb_pcmbuf_init(void) void rb_pcmbuf_init(void) {
{ info("pcmbuff init");
info("pcmbuff init"); if (!_rb_media_buf_queue_mutex_id)
if(!_rb_media_buf_queue_mutex_id) _rb_media_buf_queue_mutex_id =
_rb_media_buf_queue_mutex_id = osMutexCreate((osMutex(_rb_media_buf_queue_mutex))); osMutexCreate((osMutex(_rb_media_buf_queue_mutex)));
app_audio_mempool_init(); app_audio_mempool_init();
app_audio_mempool_get_buff(&rb_pcmbuf_media_buf, RB_PCMBUF_MEDIA_BUFFER_SIZE); app_audio_mempool_get_buff(&rb_pcmbuf_media_buf, RB_PCMBUF_MEDIA_BUFFER_SIZE);
InitCQueue(&rb_pcmbuf_media_buf_queue, RB_PCMBUF_MEDIA_BUFFER_SIZE, (unsigned char *)rb_pcmbuf_media_buf); InitCQueue(&rb_pcmbuf_media_buf_queue, RB_PCMBUF_MEDIA_BUFFER_SIZE,
(unsigned char *)rb_pcmbuf_media_buf);
app_audio_mempool_get_buff(&rbplay_dma_buffer, RB_PCMBUF_DMA_BUFFER_SIZE); app_audio_mempool_get_buff(&rbplay_dma_buffer, RB_PCMBUF_DMA_BUFFER_SIZE);
app_audio_mempool_get_buff(&rb_decode_out_buff, RB_DECODE_OUT_BUFFER_SIZE); app_audio_mempool_get_buff(&rb_decode_out_buff, RB_DECODE_OUT_BUFFER_SIZE);
struct AF_STREAM_CONFIG_T stream_cfg; struct AF_STREAM_CONFIG_T stream_cfg;
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16; stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_44100; stream_cfg.sample_rate = AUD_SAMPRATE_44100;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = rb_ctl_get_vol(); stream_cfg.vol = rb_ctl_get_vol();
stream_cfg.handler = rbplay_more_data; stream_cfg.handler = rbplay_more_data;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(rbplay_dma_buffer); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(rbplay_dma_buffer);
stream_cfg.data_size = RB_PCMBUF_DMA_BUFFER_SIZE; stream_cfg.data_size = RB_PCMBUF_DMA_BUFFER_SIZE;
af_stream_open(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
} }
void *rb_pcmbuf_request_buffer(int *size) void *rb_pcmbuf_request_buffer(int *size) {
{ *size = RB_DECODE_OUT_BUFFER_SIZE / 4;
*size = RB_DECODE_OUT_BUFFER_SIZE / 4; return rb_decode_out_buff;
return rb_decode_out_buff;
} }
void rb_pcmbuf_write(unsigned int size) void rb_pcmbuf_write(unsigned int size) {
{ int ret;
int ret ; do {
do { LOCK_MEDIA_BUF_QUEUE();
LOCK_MEDIA_BUF_QUEUE(); ret = EnCQueue(&rb_pcmbuf_media_buf_queue, (CQItemType *)rb_decode_out_buff,
ret = EnCQueue(&rb_pcmbuf_media_buf_queue, (CQItemType *)rb_decode_out_buff, size*(2*2)); size * (2 * 2));
UNLOCK_MEDIA_BUF_QUEUE(); UNLOCK_MEDIA_BUF_QUEUE();
osThreadYield(); osThreadYield();
} while (ret == CQ_ERR); } while (ret == CQ_ERR);
} }
void rb_pcmbuf_stop(void) void rb_pcmbuf_stop(void) {
{ af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_stop(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0,AUD_STREAM_PLAYBACK);
} }

View file

@ -16,34 +16,34 @@
/* rbplay source */ /* rbplay source */
/* playback control & rockbox codec porting & codec thread */ /* playback control & rockbox codec porting & codec thread */
#include <string.h> #include <ctype.h>
#include <fcntl.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <fcntl.h> #include <stdlib.h>
#include <ctype.h> #include <string.h>
#include <unistd.h> #include <unistd.h>
#ifdef MBED #ifdef MBED
#include "mbed.h" #include "mbed.h"
#include "rtos.h" #include "rtos.h"
#endif #endif
#include "metadata.h" #include "app_overlay.h"
#include "apps.h"
#include "audioflinger.h"
#include "codecs.h" #include "codecs.h"
#include "eq_export.h" #include "eq_export.h"
#include "hal_overlay.h" #include "hal_overlay.h"
#include "app_overlay.h"
#include "audioflinger.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "apps.h" #include "metadata.h"
#include "rbpcmbuf.h" #include "app_key.h"
#include "rbplaysd.h"
#include "app_thread.h" #include "app_thread.h"
#include "app_utils.h" #include "app_utils.h"
#include "app_key.h" #include "rbpcmbuf.h"
#include "rbplay.h" #include "rbplay.h"
#include "rbplaysd.h"
#include "utils.h" #include "utils.h"
#ifdef __TWS__ #ifdef __TWS__
@ -51,28 +51,30 @@
#endif #endif
// TODO: remove // TODO: remove
#define BT_STREAM_RBCODEC 0x10 //from rockbox decoder #define BT_STREAM_RBCODEC 0x10 // from rockbox decoder
extern "C" { extern "C" {
void flac_codec_main(int r); void flac_codec_main(int r);
void flac_codec_run(void); void flac_codec_run(void);
void wav_codec_main(int r); void wav_codec_main(int r);
void wav_codec_run(void); void wav_codec_run(void);
void mpa_codec_main(int r); void mpa_codec_main(int r);
void mpa_codec_run(void); void mpa_codec_run(void);
void ape_codec_main(int r); void ape_codec_main(int r);
void ape_codec_run(void); void ape_codec_run(void);
void sbc_codec_main(int r); void sbc_codec_main(int r);
void sbc_codec_run(void); void sbc_codec_run(void);
} }
extern void rb_pcm_player_open(enum AUD_BITS_T bits,enum AUD_SAMPRATE_T sample_rate,enum AUD_CHANNEL_NUM_T channel_num,uint8_t vol) ; extern void rb_pcm_player_open(enum AUD_BITS_T bits,
enum AUD_SAMPRATE_T sample_rate,
enum AUD_CHANNEL_NUM_T channel_num, uint8_t vol);
#if defined(__TWS__) #if defined(__TWS__)
typedef struct _rb_tws_codec_info{ typedef struct _rb_tws_codec_info {
uint8_t update_codec_info; uint8_t update_codec_info;
int32_t sample_freq; int32_t sample_freq;
uint8_t channel_num; uint8_t channel_num;
} rb_tws_codec_info; } rb_tws_codec_info;
rb_tws_codec_info codec_info = {1, 44100, 2}; rb_tws_codec_info codec_info = {1, 44100, 2};
@ -82,17 +84,18 @@ static osThreadId rb_decode_tid = NULL;
static osThreadId rb_caller_tid = NULL; static osThreadId rb_caller_tid = NULL;
typedef struct { typedef struct {
uint32_t evt; uint32_t evt;
uint32_t arg; uint32_t arg;
} RBTHREAD_MSG_BLOCK; } RBTHREAD_MSG_BLOCK;
#define RBTHREAD_MAILBOX_MAX (10) #define RBTHREAD_MAILBOX_MAX (10)
osMailQDef (rb_decode_mailbox, RBTHREAD_MAILBOX_MAX, RBTHREAD_MSG_BLOCK); osMailQDef(rb_decode_mailbox, RBTHREAD_MAILBOX_MAX, RBTHREAD_MSG_BLOCK);
int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK* msg_src); int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK *msg_src);
static osMailQId rb_decode_mailbox = NULL; static osMailQId rb_decode_mailbox = NULL;
static void rb_decode_thread(void const *argument); static void rb_decode_thread(void const *argument);
osThreadDef(rb_decode_thread, osPriorityAboveNormal, 1, 1024 * 2, "rb_decorder"); osThreadDef(rb_decode_thread, osPriorityAboveNormal, 1, 1024 * 2,
"rb_decorder");
// rbcodec info // rbcodec info
static int song_fd; static int song_fd;
@ -115,226 +118,203 @@ uint16_t g_rbplayer_curr_song_idx = 0;
extern void app_rbplay_exit(void); extern void app_rbplay_exit(void);
extern void bt_change_to_iic(APP_KEY_STATUS *status, void *param); extern void bt_change_to_iic(APP_KEY_STATUS *status, void *param);
extern void rb_thread_send_switch(bool next); extern void rb_thread_send_switch(bool next);
extern void rb_thread_send_status_change(void ); extern void rb_thread_send_status_change(void);
enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void); enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void);
static void rb_player_sync_close_done(void) static void rb_player_sync_close_done(void) { thread_tid_waiter = NULL; }
{
thread_tid_waiter = NULL;
}
extern void rb_check_stream_reconfig(int32_t freq, uint8_t ch); extern void rb_check_stream_reconfig(int32_t freq, uint8_t ch);
static void f_codec_pcmbuf_insert_callback( static void f_codec_pcmbuf_insert_callback(const void *ch1, const void *ch2,
const void *ch1, const void *ch2, int count) int count) {
{ struct dsp_buffer src;
struct dsp_buffer src; struct dsp_buffer dst;
struct dsp_buffer dst;
src.remcount = count; src.remcount = count;
src.pin[0] = (const unsigned char *)ch1; src.pin[0] = (const unsigned char *)ch1;
src.pin[1] = (const unsigned char *)ch2; src.pin[1] = (const unsigned char *)ch2;
src.proc_mask = 0; src.proc_mask = 0;
if (rb_codec_running() == 0) if (rb_codec_running() == 0)
return ; return;
#ifndef __TWS__ #ifndef __TWS__
while (src.remcount > 0) { while (src.remcount > 0) {
dst.remcount = 0; dst.remcount = 0;
dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount); dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount);
if (dst.p16out == NULL) { if (dst.p16out == NULL) {
warn("No pcm buffer"); warn("No pcm buffer");
osThreadYield(); osThreadYield();
} else { } else {
dsp_process(ci->dsp, &src, &dst); dsp_process(ci->dsp, &src, &dst);
if (dst.remcount > 0) { if (dst.remcount > 0) {
rb_pcmbuf_write(dst.remcount); rb_pcmbuf_write(dst.remcount);
} }
}
} }
}
#else #else
if(codec_info.update_codec_info){ if (codec_info.update_codec_info) {
rb_set_sbc_encoder_freq_ch(codec_info.sample_freq, codec_info.channel_num); //should call this to set trigger timer rb_set_sbc_encoder_freq_ch(
rb_check_stream_reconfig(codec_info.sample_freq, codec_info.channel_num); codec_info.sample_freq,
codec_info.update_codec_info = 0; codec_info.channel_num); // should call this to set trigger timer
rb_check_stream_reconfig(codec_info.sample_freq, codec_info.channel_num);
codec_info.update_codec_info = 0;
}
if (tws_local_player_need_tran_2_slave()) {
rb_tws_start_master_player(BT_STREAM_RBCODEC);
}
while (1) {
uint8_t *pcm_buff = NULL;
dst.remcount = 0;
dst.bufcount = MIN(src.remcount, 128); /* Arbitrary min request */
dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount);
pcm_buff = (uint8_t *)dst.p16out;
ASSERT(pcm_buff, "Should request buffer");
dsp_process(ci->dsp, &src, &dst);
if (dst.remcount > 0) {
while (rb_push_pcm_in_tws_buffer(pcm_buff, dst.remcount * 2 * 2) == 0) {
osDelay(2);
}
} }
if(tws_local_player_need_tran_2_slave()){ if (src.remcount <= 0) {
rb_tws_start_master_player(BT_STREAM_RBCODEC); return; /* No input remains and DSP purged */
}
while(1){
uint8_t * pcm_buff = NULL;
dst.remcount = 0;
dst.bufcount = MIN(src.remcount, 128); /* Arbitrary min request */
dst.p16out = (short *)rb_pcmbuf_request_buffer(&dst.bufcount);
pcm_buff = (uint8_t *)dst.p16out;
ASSERT(pcm_buff, "Should request buffer");
dsp_process(ci->dsp, &src, &dst);
if (dst.remcount > 0) {
while(rb_push_pcm_in_tws_buffer(pcm_buff, dst.remcount*2*2) == 0){
osDelay(2);
}
}
if (src.remcount <= 0) {
return; /* No input remains and DSP purged */
}
} }
}
#endif #endif
} }
static void f_audio_codec_update_elapsed(unsigned long elapsed) static void f_audio_codec_update_elapsed(unsigned long elapsed) {
{ // info("Update elapsed: %d", elapsed);
//info("Update elapsed: %d", elapsed); return;
return;
} }
static size_t f_codec_filebuf_callback(void *ptr, size_t size) static size_t f_codec_filebuf_callback(void *ptr, size_t size) {
{ ssize_t ret;
ssize_t ret; ret = read(song_fd, ptr, size);
ret = read(song_fd, ptr, size); if (ret < 0) {
if(ret < 0) { error("File read error: %d", ret);
error("File read error: %d",ret); }
}
return ret;
return ret;
} }
static void * f_codec_request_buffer_callback(size_t *realsize, size_t reqsize) static void *f_codec_request_buffer_callback(size_t *realsize, size_t reqsize) {
{ return NULL;
}
static void *f_codec_advance_buffer_callback(size_t amount) {
off_t ret = lseek(song_fd, (off_t)(ci->curpos + amount), SEEK_SET);
if (ret < 0) {
error("File seek fail");
return NULL; return NULL;
}
ci->curpos += amount;
return (void *)ci;
} }
static void * f_codec_advance_buffer_callback(size_t amount) static bool f_codec_seek_buffer_callback(size_t newpos) {
{ off_t ret = lseek(song_fd, (off_t)newpos, SEEK_SET);
off_t ret = lseek(song_fd, (off_t)(ci->curpos + amount), SEEK_SET); if (ret < 0) {
if(ret < 0) { error("File seek fail");
error("File seek fail"); return false;
return NULL; }
}
ci->curpos += amount;
return (void *)ci;
ci->curpos = newpos;
return true;
} }
static bool f_codec_seek_buffer_callback(size_t newpos) static void f_codec_seek_complete_callback(void) {
{ info("Seek complete");
off_t ret = lseek(song_fd, (off_t)newpos, SEEK_SET); dsp_configure(ci->dsp, DSP_FLUSH, 0);
if(ret < 0) {
error("File seek fail");
return false;
}
ci->curpos = newpos;
return true;
} }
static void f_codec_seek_complete_callback(void) static void f_audio_codec_update_offset(size_t offset) {}
{
info("Seek complete");
dsp_configure(ci->dsp, DSP_FLUSH, 0);
}
static void f_audio_codec_update_offset(size_t offset) static void f_codec_configure_callback(int setting, intptr_t value) {
{ dsp_configure(ci->dsp, setting, value);
}
static void f_codec_configure_callback(int setting, intptr_t value)
{
dsp_configure(ci->dsp, setting, value);
#ifdef __TWS__ #ifdef __TWS__
if(setting == DSP_SET_FREQUENCY){ if (setting == DSP_SET_FREQUENCY) {
if(codec_info.sample_freq != value) if (codec_info.sample_freq != value)
codec_info.update_codec_info = 1; codec_info.update_codec_info = 1;
codec_info.sample_freq = value; codec_info.sample_freq = value;
} } else if (setting == DSP_SET_STEREO_MODE) {
else if(setting == DSP_SET_STEREO_MODE){ if (codec_info.channel_num != (value == STEREO_MONO ? 1 : 2))
if(codec_info.channel_num != (value == STEREO_MONO ? 1 : 2)) codec_info.update_codec_info = 1;
codec_info.update_codec_info = 1; codec_info.channel_num = value == STEREO_MONO ? 1 : 2;
codec_info.channel_num = value == STEREO_MONO ? 1 : 2; }
}
#endif #endif
} }
static enum codec_command_action f_codec_get_command_callback(intptr_t *param) static enum codec_command_action f_codec_get_command_callback(intptr_t *param) {
{ if (rb_decode_halt_flag == 1)
if (rb_decode_halt_flag == 1) return CODEC_ACTION_HALT;
return CODEC_ACTION_HALT ;
return CODEC_ACTION_NULL; return CODEC_ACTION_NULL;
} }
static bool f_codec_loop_track_callback(void) static bool f_codec_loop_track_callback(void) { return false; }
{
return false; static void init_ci_file(void) {
ci->codec_get_buffer = 0;
ci->pcmbuf_insert = f_codec_pcmbuf_insert_callback;
ci->set_elapsed = f_audio_codec_update_elapsed;
ci->read_filebuf = f_codec_filebuf_callback;
ci->request_buffer = f_codec_request_buffer_callback;
ci->advance_buffer = f_codec_advance_buffer_callback;
ci->seek_buffer = f_codec_seek_buffer_callback;
ci->seek_complete = f_codec_seek_complete_callback;
ci->set_offset = f_audio_codec_update_offset;
ci->configure = f_codec_configure_callback;
ci->get_command = f_codec_get_command_callback;
ci->loop_track = f_codec_loop_track_callback;
} }
static void init_ci_file(void) static void rb_play_init(void) {
{ init_dsp();
ci->codec_get_buffer = 0;
ci->pcmbuf_insert = f_codec_pcmbuf_insert_callback;
ci->set_elapsed = f_audio_codec_update_elapsed;
ci->read_filebuf = f_codec_filebuf_callback;
ci->request_buffer = f_codec_request_buffer_callback;
ci->advance_buffer = f_codec_advance_buffer_callback;
ci->seek_buffer = f_codec_seek_buffer_callback;
ci->seek_complete = f_codec_seek_complete_callback;
ci->set_offset = f_audio_codec_update_offset;
ci->configure = f_codec_configure_callback;
ci->get_command = f_codec_get_command_callback;
ci->loop_track = f_codec_loop_track_callback;
}
static void rb_play_init(void) init_ci_file();
{
init_dsp();
init_ci_file();
#ifndef __TWS__ #ifndef __TWS__
rb_pcmbuf_init(); rb_pcmbuf_init();
#endif #endif
} }
void rb_play_codec_init(void) void rb_play_codec_init(void) {
{ RBTHREAD_MSG_BLOCK msg;
RBTHREAD_MSG_BLOCK msg; msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_INIT;
msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_INIT; msg.arg = (uint32_t)0;
msg.arg = (uint32_t)0; rb_decode_mailbox_put(&msg);
rb_decode_mailbox_put(&msg);
} }
void rb_play_codec_run(void) void rb_play_codec_run(void) {
{ RBTHREAD_MSG_BLOCK msg;
RBTHREAD_MSG_BLOCK msg; msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_RUN;
msg.evt = (uint32_t)RB_CTRL_CMD_CODEC_RUN; msg.arg = (uint32_t)0;
msg.arg = (uint32_t)0; rb_decode_mailbox_put(&msg);
rb_decode_mailbox_put(&msg);
} }
static int rb_codec_init_desc(void ) static int rb_codec_init_desc(void) {
{ info("Init decode format: %d", song_format);
info("Init decode format: %d", song_format);
switch (song_format) { switch (song_format) {
case AFMT_MPA_L1: case AFMT_MPA_L1:
case AFMT_MPA_L2: case AFMT_MPA_L2:
case AFMT_MPA_L3: case AFMT_MPA_L3:
app_overlay_select(APP_OVERLAY_MPA); app_overlay_select(APP_OVERLAY_MPA);
mpa_codec_main(CODEC_LOAD); mpa_codec_main(CODEC_LOAD);
break; break;
// TODO: add APP_OVERLAY_APE // TODO: add APP_OVERLAY_APE
#if 0 #if 0
case AFMT_APE: case AFMT_APE:
app_overlay_select(APP_OVERLAY_APE); app_overlay_select(APP_OVERLAY_APE);
@ -353,26 +333,25 @@ static int rb_codec_init_desc(void )
wav_codec_main(CODEC_LOAD); wav_codec_main(CODEC_LOAD);
break; break;
#endif #endif
default: default:
error("unkown codec type init\n"); error("unkown codec type init\n");
break; break;
} }
return 0; return 0;
} }
static int rb_codec_loop_on(void) static int rb_codec_loop_on(void) {
{
#ifdef __TWS__ #ifdef __TWS__
//set start transfer to slave // set start transfer to slave
tws_local_player_set_tran_2_slave_flag(1); tws_local_player_set_tran_2_slave_flag(1);
#endif #endif
switch (song_format) { switch (song_format) {
case AFMT_MPA_L1: case AFMT_MPA_L1:
case AFMT_MPA_L2: case AFMT_MPA_L2:
case AFMT_MPA_L3: case AFMT_MPA_L3:
mpa_codec_run(); mpa_codec_run();
break; break;
#if 0 #if 0
case AFMT_SBC: case AFMT_SBC:
sbc_codec_run(); sbc_codec_run();
@ -387,229 +366,210 @@ static int rb_codec_loop_on(void)
ape_codec_run(); ape_codec_run();
break; break;
#endif #endif
default: default:
error("unkown codec type run\n"); error("unkown codec type run\n");
break; break;
} }
return 0; return 0;
} }
static int rb_thread_process_evt(RB_CTRL_CMD_T evt) static int rb_thread_process_evt(RB_CTRL_CMD_T evt) {
{ info("Decode event:%d", evt);
info("Decode event:%d", evt);
switch(evt) { switch (evt) {
case RB_CTRL_CMD_CODEC_INIT: case RB_CTRL_CMD_CODEC_INIT:
rb_decode_halt_flag = 0; rb_decode_halt_flag = 0;
rb_play_init(); rb_play_init();
/* get id3 */ /* get id3 */
/* init ci info */ /* init ci info */
ci->filesize = filesize(song_fd); ci->filesize = filesize(song_fd);
ci->id3 = current_id3; ci->id3 = current_id3;
ci->curpos = 0; ci->curpos = 0;
dsp_configure(ci->dsp, DSP_RESET, 0); dsp_configure(ci->dsp, DSP_RESET, 0);
dsp_configure(ci->dsp, DSP_FLUSH, 0); dsp_configure(ci->dsp, DSP_FLUSH, 0);
rb_codec_init_desc(); rb_codec_init_desc();
break; break;
case RB_CTRL_CMD_CODEC_RUN: case RB_CTRL_CMD_CODEC_RUN:
rbplay_loop_on = 1; rbplay_loop_on = 1;
info("Play start"); info("Play start");
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, rb_player_get_work_freq()); app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, rb_player_get_work_freq());
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
rb_codec_loop_on(); rb_codec_loop_on();
#if defined(__BTIF_AUTOPOWEROFF__) #if defined(__BTIF_AUTOPOWEROFF__)
app_start_10_second_timer(APP_POWEROFF_TIMER_ID); app_start_10_second_timer(APP_POWEROFF_TIMER_ID);
#endif #endif
song_fd = 0; song_fd = 0;
rb_decode_halt_flag = 1; rb_decode_halt_flag = 1;
if(thread_tid_waiter) { if (thread_tid_waiter) {
rb_player_sync_close_done(); rb_player_sync_close_done();
} else { } else {
rb_thread_send_status_change(); rb_thread_send_status_change();
rb_thread_send_switch(true); rb_thread_send_switch(true);
} }
#ifdef __TWS__ #ifdef __TWS__
//should update codec info after play one music // should update codec info after play one music
codec_info.update_codec_info = 1; codec_info.update_codec_info = 1;
#endif #endif
rbplay_loop_on = 0; rbplay_loop_on = 0;
info("Play end"); info("Play end");
break; break;
default: default:
error("Unkown rb cmd %d\n",evt); error("Unkown rb cmd %d\n", evt);
break; break;
} }
return 0; return 0;
} }
int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK* msg_src) int rb_decode_mailbox_put(RBTHREAD_MSG_BLOCK *msg_src) {
{ osStatus status;
osStatus status;
RBTHREAD_MSG_BLOCK *msg_p = NULL; RBTHREAD_MSG_BLOCK *msg_p = NULL;
msg_p = (RBTHREAD_MSG_BLOCK*)osMailAlloc(rb_decode_mailbox, 0); msg_p = (RBTHREAD_MSG_BLOCK *)osMailAlloc(rb_decode_mailbox, 0);
if(!msg_p) { if (!msg_p) {
TRACE(3,"%s fail, evt:%d,arg=%d \n",__func__,msg_src->evt,msg_src->arg); TRACE(3, "%s fail, evt:%d,arg=%d \n", __func__, msg_src->evt, msg_src->arg);
return -1;
}
msg_p->evt = msg_src->evt;
msg_p->arg = msg_src->arg;
status = osMailPut(rb_decode_mailbox, msg_p);
return (int)status;
}
int rb_decode_mailbox_free(RBTHREAD_MSG_BLOCK* msg_p)
{
osStatus status;
status = osMailFree(rb_decode_mailbox, msg_p);
return (int)status;
}
int rb_decode_mailbox_get(RBTHREAD_MSG_BLOCK** msg_p)
{
osEvent evt;
evt = osMailGet(rb_decode_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (RBTHREAD_MSG_BLOCK *)evt.value.p;
return 0;
}
return -1; return -1;
}
msg_p->evt = msg_src->evt;
msg_p->arg = msg_src->arg;
status = osMailPut(rb_decode_mailbox, msg_p);
return (int)status;
} }
static void rb_decode_thread(void const *argument) int rb_decode_mailbox_free(RBTHREAD_MSG_BLOCK *msg_p) {
{ osStatus status;
RB_CTRL_CMD_T action;
RBTHREAD_MSG_BLOCK* msg_p;
while(1) { status = osMailFree(rb_decode_mailbox, msg_p);
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_32K);
// evt = osSignalWait(0, osWaitForever);
if(0 == rb_decode_mailbox_get(&msg_p)) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_104M);
action = (RB_CTRL_CMD_T) msg_p->evt; return (int)status;
rb_caller_tid = (osThreadId) msg_p->arg ;
TRACE(3,"[%s] action:%d ,tid,0x%x", __func__, action,rb_caller_tid);
rb_thread_process_evt(action);
rb_decode_mailbox_free(msg_p);
if( rb_caller_tid)
osSignalSet(rb_decode_tid, 0x1203);
rb_caller_tid = NULL;
}
}
} }
int app_rbplay_open(void) int rb_decode_mailbox_get(RBTHREAD_MSG_BLOCK **msg_p) {
{ osEvent evt;
if (rb_decode_tid != NULL) { evt = osMailGet(rb_decode_mailbox, osWaitForever);
warn("Decode thread reopen"); if (evt.status == osEventMail) {
return -1; *msg_p = (RBTHREAD_MSG_BLOCK *)evt.value.p;
}
rb_decode_mailbox = osMailCreate(osMailQ(rb_decode_mailbox), NULL);
if (rb_decode_mailbox == NULL) {
error("Failed to Create rb_decode_mailbox");
return -1;
}
rb_decode_tid = osThreadCreate(osThread(rb_decode_thread), NULL);
if (rb_decode_tid == NULL) {
error("Failed to Create rb_thread \n");
return -1;
}
return 0; return 0;
}
return -1;
} }
int rb_codec_running(void) static void rb_decode_thread(void const *argument) {
{ RB_CTRL_CMD_T action;
return ((rb_decode_halt_flag == 0)?1:0); RBTHREAD_MSG_BLOCK *msg_p;
}
void rb_codec_set_halt(int halt) while (1) {
{ app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_32K);
rb_decode_halt_flag = halt; // evt = osSignalWait(0, osWaitForever);
} if (0 == rb_decode_mailbox_get(&msg_p)) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_PLAYER, APP_SYSFREQ_104M);
void rb_thread_set_decode_vars(int fd, int type ,void* id3) action = (RB_CTRL_CMD_T)msg_p->evt;
{ rb_caller_tid = (osThreadId)msg_p->arg;
song_fd =fd;
song_format = type;
current_id3 = (struct mp3entry *)id3;
}
void rb_player_sync_set_wait_thread(osThreadId tid) TRACE(3, "[%s] action:%d ,tid,0x%x", __func__, action, rb_caller_tid);
{ rb_thread_process_evt(action);
if(rbplay_loop_on)
thread_tid_waiter = tid;
else
thread_tid_waiter = NULL;
}
void rb_player_sync_wait_close(void ) rb_decode_mailbox_free(msg_p);
{ if (rb_caller_tid)
while(NULL != thread_tid_waiter) { osSignalSet(rb_decode_tid, 0x1203);
osThreadYield(); rb_caller_tid = NULL;
} }
}
} }
enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void) int app_rbplay_open(void) {
{ if (rb_decode_tid != NULL) {
enum APP_SYSFREQ_FREQ_T freq; warn("Decode thread reopen");
return -1;
}
hal_sysfreq_print(); rb_decode_mailbox = osMailCreate(osMailQ(rb_decode_mailbox), NULL);
if (rb_decode_mailbox == NULL) {
error("Failed to Create rb_decode_mailbox");
return -1;
}
info("bitrate:%d freq:%d\n", ci->id3->bitrate, ci->id3->frequency); rb_decode_tid = osThreadCreate(osThread(rb_decode_thread), NULL);
if (rb_decode_tid == NULL) {
error("Failed to Create rb_thread \n");
return -1;
}
return 0;
}
int rb_codec_running(void) { return ((rb_decode_halt_flag == 0) ? 1 : 0); }
void rb_codec_set_halt(int halt) { rb_decode_halt_flag = halt; }
void rb_thread_set_decode_vars(int fd, int type, void *id3) {
song_fd = fd;
song_format = type;
current_id3 = (struct mp3entry *)id3;
}
void rb_player_sync_set_wait_thread(osThreadId tid) {
if (rbplay_loop_on)
thread_tid_waiter = tid;
else
thread_tid_waiter = NULL;
}
void rb_player_sync_wait_close(void) {
while (NULL != thread_tid_waiter) {
osThreadYield();
}
}
enum APP_SYSFREQ_FREQ_T rb_player_get_work_freq(void) {
enum APP_SYSFREQ_FREQ_T freq;
hal_sysfreq_print();
info("bitrate:%d freq:%d\n", ci->id3->bitrate, ci->id3->frequency);
#ifndef __TWS__ #ifndef __TWS__
enum AUD_SAMPRATE_T sample_rate = AUD_SAMPRATE_44100; enum AUD_SAMPRATE_T sample_rate = AUD_SAMPRATE_44100;
sample_rate =(enum AUD_SAMPRATE_T ) ci->id3->frequency; sample_rate = (enum AUD_SAMPRATE_T)ci->id3->frequency;
if(sample_rate > AUD_SAMPRATE_48000) if (sample_rate > AUD_SAMPRATE_48000)
freq = APP_SYSFREQ_208M;
else if (sample_rate > AUD_SAMPRATE_44100)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
if(ci->id3->bitrate > 192)
freq = APP_SYSFREQ_208M;
else if (ci->id3->bitrate > 128)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
switch( song_format ) {
case AFMT_APE:
freq = APP_SYSFREQ_208M;
break;
case AFMT_FLAC:
freq = APP_SYSFREQ_208M;
break;
case AFMT_PCM_WAV:
freq = APP_SYSFREQ_208M;
break;
default:
break;
}
#else
freq = APP_SYSFREQ_208M; freq = APP_SYSFREQ_208M;
else if (sample_rate > AUD_SAMPRATE_44100)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
if (ci->id3->bitrate > 192)
freq = APP_SYSFREQ_208M;
else if (ci->id3->bitrate > 128)
freq = APP_SYSFREQ_104M;
else
freq = APP_SYSFREQ_52M;
switch (song_format) {
case AFMT_APE:
freq = APP_SYSFREQ_208M;
break;
case AFMT_FLAC:
freq = APP_SYSFREQ_208M;
break;
case AFMT_PCM_WAV:
freq = APP_SYSFREQ_208M;
break;
default:
break;
}
#else
freq = APP_SYSFREQ_208M;
#endif #endif
info("Decode thread run at: %d", freq); info("Decode thread run at: %d", freq);
return freq; return freq;
} }

View file

@ -16,18 +16,18 @@
/* rbplay source */ /* rbplay source */
/* playback control & rockbox codec porting & codec thread */ /* playback control & rockbox codec porting & codec thread */
#include <string.h> #include <ctype.h>
#include <fcntl.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <fcntl.h> #include <stdlib.h>
#include <ctype.h> #include <string.h>
#include <unistd.h> #include <unistd.h>
#include "SDFileSystem.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "metadata.h" #include "metadata.h"
#include "SDFileSystem.h"
#include "rbplaysd.h" #include "rbplaysd.h"
#include "utils.h" #include "utils.h"
@ -41,185 +41,182 @@ static playlist_item sd_curritem;
playlist_struct sd_playlist; playlist_struct sd_playlist;
static void playlist_insert(playlist_item* item) static void playlist_insert(playlist_item *item) {
{ int fd;
int fd; fd = open(PLAYLIST_PATH, O_RDWR | O_CREAT);
fd = open(PLAYLIST_PATH, O_RDWR | O_CREAT); if (fd <= 0) {
if (fd <= 0) { error("Playlist open fail");
error("Playlist open fail"); return;
return; }
}
lseek(fd, item->song_idx * sizeof(playlist_item), SEEK_SET); lseek(fd, item->song_idx * sizeof(playlist_item), SEEK_SET);
write(fd, item, sizeof(playlist_item)); write(fd, item, sizeof(playlist_item));
close(fd); close(fd);
} }
static bool sdcard_mount(void) static bool sdcard_mount(void) {
{ if (sdfs) {
if (sdfs) { info("SD card already mount");
info("SD card already mount");
return true;
}
sdfs = new SDFileSystem(SD_LABEL);
if (sdfs == NULL) {
error("No memory for sd file system");
return false;
}
DIR *d;
d = opendir("/" SD_LABEL);
if (!d) {
warn("SD card mount error");
return false;
}
closedir(d);
return true; return true;
}
sdfs = new SDFileSystem(SD_LABEL);
if (sdfs == NULL) {
error("No memory for sd file system");
return false;
}
DIR *d;
d = opendir("/" SD_LABEL);
if (!d) {
warn("SD card mount error");
return false;
}
closedir(d);
return true;
} }
static void app_rbplay_gen_playlist(playlist_struct *list) static void app_rbplay_gen_playlist(playlist_struct *list) {
{ struct dirent *p;
struct dirent *p; DIR *d;
DIR *d; uint32_t total;
uint32_t total; int fd = 0;
int fd = 0; struct mp3entry current_id3;
struct mp3entry current_id3; playlist_item *sd_curritem_p = &sd_curritem;
playlist_item* sd_curritem_p = &sd_curritem;
memset(list,0x0,sizeof(playlist_struct)); memset(list, 0x0, sizeof(playlist_struct));
d = opendir("/" SD_LABEL); d = opendir("/" SD_LABEL);
if (!d) { if (!d) {
error("SD card open fail"); error("SD card open fail");
return; return;
}
info("---------gen audio list---------");
total = 0;
while (p = readdir(d)) {
if (probe_file_format(p->d_name) == AFMT_UNKNOWN)
continue;
memset(&sd_curritem, 0x0, sizeof(playlist_item));
sd_curritem.song_idx = total;
sprintf(sd_curritem.file_path, "/" SD_LABEL "/%s", p->d_name);
sprintf(sd_curritem.file_name, "%s", p->d_name);
info("Adding music: %s", sd_curritem.file_path);
fd = open(sd_curritem.file_path, O_RDONLY);
if (fd <= 0) {
error("File %s open error", p->d_name);
break;
} }
info("---------gen audio list---------"); get_metadata(&current_id3, fd, sd_curritem.file_path);
close(fd);
total = 0; if (current_id3.bitrate == 0 || current_id3.filesize == 0 ||
while (p = readdir(d)) { current_id3.length == 0)
if (probe_file_format(p->d_name) == AFMT_UNKNOWN) break;
continue;
memset(&sd_curritem,0x0,sizeof(playlist_item)); info("bits:%d, type:%d, freq:%d", current_id3.bitrate,
sd_curritem.song_idx = total; current_id3.codectype, current_id3.frequency);
sprintf(sd_curritem.file_path, "/" SD_LABEL "/%s", p->d_name); sd_curritem_p->bitrate = current_id3.bitrate;
sprintf(sd_curritem.file_name, "%s", p->d_name); sd_curritem_p->codectype = current_id3.codectype;
sd_curritem_p->filesize = current_id3.filesize;
info("Adding music: %s", sd_curritem.file_path); sd_curritem_p->length = current_id3.length;
sd_curritem_p->frequency = current_id3.frequency;
fd = open(sd_curritem.file_path, O_RDONLY);
if (fd <= 0) {
error("File %s open error", p->d_name);
break;
}
get_metadata(&current_id3, fd, sd_curritem.file_path);
close(fd);
if(current_id3.bitrate == 0 || current_id3.filesize == 0 || current_id3.length == 0)
break;
info("bits:%d, type:%d, freq:%d", current_id3.bitrate,
current_id3.codectype, current_id3.frequency);
sd_curritem_p->bitrate = current_id3.bitrate;
sd_curritem_p->codectype = current_id3.codectype;
sd_curritem_p->filesize = current_id3.filesize;
sd_curritem_p->length = current_id3.length;
sd_curritem_p->frequency = current_id3.frequency;
#ifdef PARSER_DETAIL #ifdef PARSER_DETAIL
char *str; char *str;
str = current_id3.title; str = current_id3.title;
if(str != NULL) { if (str != NULL) {
memset(sd_curritem_p->title,0x0,MP3_TITLE_LEN); memset(sd_curritem_p->title, 0x0, MP3_TITLE_LEN);
memcpy(sd_curritem_p->title ,str,strlen(str)>MP3_TITLE_LEN?MP3_TITLE_LEN:strlen(str)); memcpy(sd_curritem_p->title, str,
} strlen(str) > MP3_TITLE_LEN ? MP3_TITLE_LEN : strlen(str));
}
str = current_id3.artist; str = current_id3.artist;
if(str != NULL) { if (str != NULL) {
memset(sd_curritem_p->artist,0x0,MP3_ARTIST_LEN); memset(sd_curritem_p->artist, 0x0, MP3_ARTIST_LEN);
memcpy(sd_curritem_p->artist ,str,strlen(str)>MP3_ARTIST_LEN?MP3_ARTIST_LEN:strlen(str)); memcpy(sd_curritem_p->artist, str,
} strlen(str) > MP3_ARTIST_LEN ? MP3_ARTIST_LEN : strlen(str));
}
str = current_id3.album; str = current_id3.album;
if(str != NULL) { if (str != NULL) {
memset(sd_curritem_p->album,0x0,MP3_ALBUM_LEN); memset(sd_curritem_p->album, 0x0, MP3_ALBUM_LEN);
memcpy(sd_curritem_p->album ,str,strlen(str)>MP3_ALBUM_LEN?MP3_ALBUM_LEN:strlen(str)); memcpy(sd_curritem_p->album, str,
} strlen(str) > MP3_ALBUM_LEN ? MP3_ALBUM_LEN : strlen(str));
}
str = current_id3.genre_string; str = current_id3.genre_string;
if(str != NULL) { if (str != NULL) {
memset(sd_curritem_p->genre,0x0,MP3_GENRE_LEN); memset(sd_curritem_p->genre, 0x0, MP3_GENRE_LEN);
memcpy(sd_curritem_p->genre ,str,strlen(str)>MP3_GENRE_LEN?MP3_GENRE_LEN:strlen(str)); memcpy(sd_curritem_p->genre, str,
} strlen(str) > MP3_GENRE_LEN ? MP3_GENRE_LEN : strlen(str));
}
str = current_id3.composer; str = current_id3.composer;
if(str != NULL) { if (str != NULL) {
memset(sd_curritem_p->composer,0x0,MP3_COMPOSER_LEN); memset(sd_curritem_p->composer, 0x0, MP3_COMPOSER_LEN);
memcpy(sd_curritem_p->composer ,str,strlen(str)>MP3_COMPOSER_LEN?MP3_COMPOSER_LEN:strlen(str)); memcpy(sd_curritem_p->composer, str,
} strlen(str) > MP3_COMPOSER_LEN ? MP3_COMPOSER_LEN : strlen(str));
}
#endif #endif
playlist_insert(sd_curritem_p); playlist_insert(sd_curritem_p);
total++; total++;
} }
list->total_songs = total ; list->total_songs = total;
list->current_item = sd_curritem_p; list->current_item = sd_curritem_p;
closedir(d);
info("---------%d audio file searched---------" , total);
closedir(d);
info("---------%d audio file searched---------", total);
} }
void app_rbplay_load_playlist(playlist_struct *list) void app_rbplay_load_playlist(playlist_struct *list) {
{ if (sdcard_mount() == false)
if(sdcard_mount() == false) return;
return;
remove(PLAYLIST_PATH); remove(PLAYLIST_PATH);
app_rbplay_gen_playlist(list); app_rbplay_gen_playlist(list);
} }
playlist_item *app_rbplay_get_playitem(const int idx) playlist_item *app_rbplay_get_playitem(const int idx) {
{ int fd;
int fd; if (idx >= sd_playlist.total_songs) {
if(idx >= sd_playlist.total_songs) { warn("Index exceed: %d / %d", idx, sd_playlist.total_songs);
warn("Index exceed: %d / %d", idx, sd_playlist.total_songs); return NULL;
return NULL; }
}
fd = open(PLAYLIST_PATH, O_RDONLY); fd = open(PLAYLIST_PATH, O_RDONLY);
if (fd <= 0) { if (fd <= 0) {
warn("SD card playlist can not open"); warn("SD card playlist can not open");
return NULL; return NULL;
} }
lseek(fd, sizeof(playlist_item) * idx, SEEK_SET); lseek(fd, sizeof(playlist_item) * idx, SEEK_SET);
read(fd, sd_playlist.current_item, sizeof(playlist_item)); read(fd, sd_playlist.current_item, sizeof(playlist_item));
info("Get playitem: %d: %s", idx, sd_playlist.current_item->file_path); info("Get playitem: %d: %s", idx, sd_playlist.current_item->file_path);
close(fd); close(fd);
return sd_playlist.current_item; return sd_playlist.current_item;
} }
int app_ctl_remove_file(const int idx) int app_ctl_remove_file(const int idx) {
{ playlist_item *item = app_rbplay_get_playitem(idx);
playlist_item *item = app_rbplay_get_playitem(idx); if (!item)
if (!item) return -1;
return -1; remove(item->file_path);
remove(item->file_path);
return 0; return 0;
} }

View file

@ -13,39 +13,37 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "cmsis_os.h"
#include "app_utils.h" #include "app_utils.h"
#include "audio_dump.h"
#include "audioflinger.h" #include "audioflinger.h"
#include "cmsis_os.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "string.h" #include "string.h"
#include "audio_dump.h"
// #include "local_wav.h" // #include "local_wav.h"
#define CHANNEL_NUM (2) #define CHANNEL_NUM (2)
#define CHAR_BYTES (1) #define CHAR_BYTES (1)
#define SHORT_BYTES (2) #define SHORT_BYTES (2)
#define INT_BYTES (4) #define INT_BYTES (4)
#define SAMPLE_BITS (16) #define SAMPLE_BITS (16)
#define SAMPLE_BYTES (SAMPLE_BITS / 8) #define SAMPLE_BYTES (SAMPLE_BITS / 8)
#define TX_SAMPLE_RATE (16000)
#define RX_SAMPLE_RATE (16000)
#define TX_SAMPLE_RATE (16000) #define TX_FRAME_LEN (256)
#define RX_SAMPLE_RATE (16000) #define RX_FRAME_LEN (256)
#define TX_BUF_SIZE (TX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2)
#define TX_FRAME_LEN (256) #define RX_BUF_SIZE (RX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2)
#define RX_FRAME_LEN (256)
#define TX_BUF_SIZE (TX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2)
#define RX_BUF_SIZE (RX_FRAME_LEN * CHANNEL_NUM * SAMPLE_BYTES * 2)
#if SAMPLE_BYTES == SHORT_BYTES #if SAMPLE_BYTES == SHORT_BYTES
typedef short VOICE_PCM_T; typedef short VOICE_PCM_T;
#elif SAMPLE_BYTES == INT_BYTES #elif SAMPLE_BYTES == INT_BYTES
typedef int VOICE_PCM_T; typedef int VOICE_PCM_T;
#else #else
#error "Invalid SAMPLE_BYTES!!!" #error "Invalid SAMPLE_BYTES!!!"
#endif #endif
@ -56,130 +54,127 @@ static uint8_t POSSIBLY_UNUSED codec_playback_buf[RX_BUF_SIZE];
static uint32_t POSSIBLY_UNUSED codec_capture_cnt = 0; static uint32_t POSSIBLY_UNUSED codec_capture_cnt = 0;
static uint32_t POSSIBLY_UNUSED codec_playback_cnt = 0; static uint32_t POSSIBLY_UNUSED codec_playback_cnt = 0;
#define CODEC_STREAM_ID AUD_STREAM_ID_0 #define CODEC_STREAM_ID AUD_STREAM_ID_0
static uint32_t codec_capture_callback(uint8_t *buf, uint32_t len) static uint32_t codec_capture_callback(uint8_t *buf, uint32_t len) {
{ int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM;
int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM; VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM];
VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM]; int interval_len = len * 2 / CHANNEL_NUM;
int interval_len = len * 2 / CHANNEL_NUM;
for (int i=0; i<CHANNEL_NUM; i++) { for (int i = 0; i < CHANNEL_NUM; i++) {
pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len); pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len);
} }
// TRACE(2,"[%s] cnt = %d", __func__, codec_capture_cnt++); // TRACE(2,"[%s] cnt = %d", __func__, codec_capture_cnt++);
audio_dump_add_channel_data(0, pcm_buf[0], pcm_len); audio_dump_add_channel_data(0, pcm_buf[0], pcm_len);
audio_dump_add_channel_data(1, pcm_buf[0], pcm_len); audio_dump_add_channel_data(1, pcm_buf[0], pcm_len);
audio_dump_run(); audio_dump_run();
return len; return len;
} }
static uint32_t codec_playback_callback(uint8_t *buf, uint32_t len) static uint32_t codec_playback_callback(uint8_t *buf, uint32_t len) {
{ int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM;
int POSSIBLY_UNUSED pcm_len = len / sizeof(VOICE_PCM_T) / CHANNEL_NUM; VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM];
VOICE_PCM_T POSSIBLY_UNUSED *pcm_buf[CHANNEL_NUM]; int interval_len = len * 2 / CHANNEL_NUM;
int interval_len = len * 2 / CHANNEL_NUM;
for (int i=0; i<CHANNEL_NUM; i++) { for (int i = 0; i < CHANNEL_NUM; i++) {
pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len); pcm_buf[i] = (VOICE_PCM_T *)(buf + i * interval_len);
} }
// TRACE(2,"[%s] cnt = %d", __func__, codec_playback_cnt++); // TRACE(2,"[%s] cnt = %d", __func__, codec_playback_cnt++);
return len; return len;
} }
static int voice_start(bool on) static int voice_start(bool on) {
{ int ret = 0;
int ret = 0; static bool isRun = false;
static bool isRun = false; enum APP_SYSFREQ_FREQ_T freq = APP_SYSFREQ_208M;
enum APP_SYSFREQ_FREQ_T freq = APP_SYSFREQ_208M; struct AF_STREAM_CONFIG_T stream_cfg;
struct AF_STREAM_CONFIG_T stream_cfg;
if (isRun == on) { if (isRun == on) {
return 0;
}
if (on) {
TRACE(1, "[%s]] ON", __func__);
af_set_priority(AF_USER_TEST, osPriorityHigh);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
TRACE(2, "[%s] sys freq calc : %d\n", __func__, hal_sys_timer_calc_cpu_freq(5, 0));
// Initialize Cqueue
codec_capture_cnt = 0;
codec_playback_cnt = 0;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = TX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)TX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.handler = codec_capture_callback;
stream_cfg.data_ptr = codec_capture_buf;
TRACE(3, "[%s] codec capture sample_rate: %d, data_size: %d", __func__, stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg);
ASSERT(ret == 0, "codec capture failed: %d", ret);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = RX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)RX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.handler = codec_playback_callback;
stream_cfg.data_ptr = codec_playback_buf;
TRACE(3, "[%s] codec playback sample_rate: %d, data_size: %d", __func__, stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg);
ASSERT(ret == 0, "codec playback failed: %d", ret);
audio_dump_init(TX_FRAME_LEN, sizeof(VOICE_PCM_T), 1);
// Start
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
}
else
{
// Close stream
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
audio_dump_deinit();
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
af_set_priority(AF_USER_TEST, osPriorityAboveNormal);
TRACE(1, "[%s] OFF", __func__);
}
isRun=on;
return 0; return 0;
}
if (on) {
TRACE(1, "[%s]] ON", __func__);
af_set_priority(AF_USER_TEST, osPriorityHigh);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
TRACE(2, "[%s] sys freq calc : %d\n", __func__,
hal_sys_timer_calc_cpu_freq(5, 0));
// Initialize Cqueue
codec_capture_cnt = 0;
codec_playback_cnt = 0;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = TX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)TX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.handler = codec_capture_callback;
stream_cfg.data_ptr = codec_capture_buf;
TRACE(3, "[%s] codec capture sample_rate: %d, data_size: %d", __func__,
stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_CAPTURE, &stream_cfg);
ASSERT(ret == 0, "codec capture failed: %d", ret);
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.channel_num = (enum AUD_CHANNEL_NUM_T)CHANNEL_NUM;
stream_cfg.data_size = RX_BUF_SIZE;
stream_cfg.sample_rate = (enum AUD_SAMPRATE_T)RX_SAMPLE_RATE;
stream_cfg.bits = (enum AUD_BITS_T)SAMPLE_BITS;
stream_cfg.vol = 12;
stream_cfg.chan_sep_buf = true;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.handler = codec_playback_callback;
stream_cfg.data_ptr = codec_playback_buf;
TRACE(3, "[%s] codec playback sample_rate: %d, data_size: %d", __func__,
stream_cfg.sample_rate, stream_cfg.data_size);
af_stream_open(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK, &stream_cfg);
ASSERT(ret == 0, "codec playback failed: %d", ret);
audio_dump_init(TX_FRAME_LEN, sizeof(VOICE_PCM_T), 1);
// Start
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
af_stream_start(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
} else {
// Close stream
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_stop(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
audio_dump_deinit();
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_PLAYBACK);
af_stream_close(CODEC_STREAM_ID, AUD_STREAM_CAPTURE);
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
af_set_priority(AF_USER_TEST, osPriorityAboveNormal);
TRACE(1, "[%s] OFF", __func__);
}
isRun = on;
return 0;
} }
static bool voice_test_status = true; static bool voice_test_status = true;
void voice_test(void) void voice_test(void) {
{ TRACE(2, "[%s] status = %d", __func__, voice_test_status);
TRACE(2, "[%s] status = %d", __func__, voice_test_status);
voice_start(voice_test_status); voice_start(voice_test_status);
voice_test_status = !voice_test_status; voice_test_status = !voice_test_status;
} }

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -17,46 +17,44 @@
#include "mbed.h" #include "mbed.h"
#endif #endif
// Standard C Included Files // Standard C Included Files
#include <string.h>
#include <math.h> #include <math.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "hal_uart.h"
#include "hal_trace.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h"
#include "hal_uart.h"
/*! /*!
* * @brief Standard Winodws PCM wave file header length * * @brief Standard Winodws PCM wave file header length
* */ * */
#define WAVE_FILE_HEADER_SIZE 0x2CU #define WAVE_FILE_HEADER_SIZE 0x2CU
typedef struct wave_header typedef struct wave_header {
{ uint8_t riff[4];
uint8_t riff[4]; uint32_t size;
uint32_t size; uint8_t waveFlag[4];
uint8_t waveFlag[4]; uint8_t fmt[4];
uint8_t fmt[4]; uint32_t fmtLen;
uint32_t fmtLen; uint16_t tag;
uint16_t tag; uint16_t channels;
uint16_t channels; uint32_t sampFreq;
uint32_t sampFreq; uint32_t byteRate;
uint32_t byteRate; uint16_t blockAlign;
uint16_t blockAlign; uint16_t bitSamp;
uint16_t bitSamp; uint8_t dataFlag[4];
uint8_t dataFlag[4]; uint32_t length;
uint32_t length;
} wave_header_t; } wave_header_t;
/*! /*!
* * @brief Wave file structure * * @brief Wave file structure
* */ * */
typedef struct wave_file typedef struct wave_file {
{ wave_header_t header;
wave_header_t header; uint32_t *data;
uint32_t *data; } wave_file_t;
}wave_file_t;
/* player */ /* player */
static unsigned int g_total_play_count = 0; static unsigned int g_total_play_count = 0;
@ -66,188 +64,179 @@ static unsigned int g_curr_play_index = 0;
wave_file_t g_wave_file_info; wave_file_t g_wave_file_info;
static char g_wav_header[WAVE_FILE_HEADER_SIZE]; static char g_wav_header[WAVE_FILE_HEADER_SIZE];
FILE *g_wave_file_handle = NULL; FILE *g_wave_file_handle = NULL;
static int32_t (*wav_file_playback_callback)(int32_t ) = NULL; static int32_t (*wav_file_playback_callback)(int32_t) = NULL;
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Code // Code
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
void wav_file_set_playeback_cb(int32_t (* cb)(int32_t)) void wav_file_set_playeback_cb(int32_t (*cb)(int32_t)) {
{ wav_file_playback_callback = cb;
wav_file_playback_callback = cb;
} }
bool wav_file_isplaydone(void) bool wav_file_isplaydone(void) {
{ return (g_curr_play_index >= g_total_play_count) ? true : false;
return (g_curr_play_index >= g_total_play_count)? true : false;
} }
uint32_t wav_file_audio_more_data(uint8_t *buf, uint32_t len) uint32_t wav_file_audio_more_data(uint8_t *buf, uint32_t len) {
{ // static uint32_t g_preIrqTime = 0;
// static uint32_t g_preIrqTime = 0; uint32_t reallen = 0;
uint32_t reallen = 0; // int32_t stime,etime;
// int32_t stime,etime; int32_t status;
int32_t status;
/* play done ? */ /* play done ? */
if(wav_file_isplaydone()) { if (wav_file_isplaydone()) {
memset(buf, 0, len); memset(buf, 0, len);
status = 0; status = 0;
if (wav_file_playback_callback)
wav_file_playback_callback(status);
return (len);
}
// stime = hal_sys_timer_get();
/* read file */
if (g_wave_file_handle)
reallen = fread(buf, 1, len, g_wave_file_handle);
// etime = hal_sys_timer_get();
if (reallen != len){
memset(buf, 0, len);
status = -1;
if (wav_file_playback_callback)
wav_file_playback_callback(status);
return (len);
}
// TRACE(5,"wav_file_audio_more_data irqDur:%d fsSpend:%d, readbuff:0x%08x %d/%d\n ", TICKS_TO_MS(stime - g_preIrqTime),TICKS_TO_MS(etime - stime),buf,reallen,len);
// g_preIrqTime = stime;
/* walk index */
g_curr_play_index += reallen;
return reallen;
}
uint32_t get_wav_data(wave_file_t *waveFile)
{
uint8_t *dataTemp = (uint8_t *)waveFile->data;
// check for RIFF
memcpy(waveFile->header.riff, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.riff, "RIFF", 4) )
{
return 0;
}
// Get size
memcpy(&waveFile->header.size, dataTemp, 4);
dataTemp += 4;
TRACE(1,"WAV header size [%d]\n", waveFile->header.size);
// .wav file flag
memcpy(waveFile->header.waveFlag, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.waveFlag, "WAVE", 4) )
{
return 0;
}
// fmt
memcpy(waveFile->header.fmt, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.fmt, "fmt ", 4) )
{
return 0;
}
// fmt length
memcpy(&waveFile->header.fmtLen, dataTemp, 4);
dataTemp += 4;
// Tag: PCM or not
memcpy(&waveFile->header.tag, dataTemp, 4);
dataTemp += 2;
// Channels
memcpy(&waveFile->header.channels, dataTemp, 4);
dataTemp += 2;
TRACE(1,"WAV channels [%d]\n", waveFile->header.channels);
// Sample Rate in Hz
memcpy(&waveFile->header.sampFreq, dataTemp, 4);
dataTemp += 4;
memcpy(&waveFile->header.byteRate, dataTemp, 4);
dataTemp += 4;
TRACE(1,"WAV sample_rate [%d]\n", waveFile->header.sampFreq);
TRACE(1,"WAV byteRate [%d]\n", waveFile->header.byteRate);
// quantize bytes for per samp point
memcpy(&waveFile->header.blockAlign, dataTemp, 4);
dataTemp += 2;
memcpy(&waveFile->header.bitSamp, dataTemp, 4);
dataTemp += 2;
TRACE(1,"WAV bitSamp [%d]\n", waveFile->header.bitSamp);
// Data
memcpy(waveFile->header.dataFlag, dataTemp, 4);
dataTemp += 4;
if( memcmp( (uint8_t*)waveFile->header.dataFlag, "data ", 4) )
{
return 0;
}
memcpy(&waveFile->header.length, dataTemp, 4);
dataTemp += 4;
return 0;
}
void audio_wav_init(wave_file_t *newWav)
{
get_wav_data(newWav);
// Configure the play audio g_format
//g_format.bits = newWav->header.bitSamp;
//g_format.sample_rate = newWav->header.sampFreq;
//g_format.mclk = 256 * g_format.sample_rate ;
//g_format.mono_streo = (sai_mono_streo_t)((newWav->header.channels) - 1);
}
uint32_t play_wav_file(char *file_path)
{
uint32_t bytesToRead = 0;
wave_file_t *newWav = &g_wave_file_info;
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_wave_file_handle = fopen(file_path, "rb");
if(g_wave_file_handle == NULL) {
TRACE(1,"WAV file %s open fail\n", file_path);
return 1;
}
fread(&g_wav_header, WAVE_FILE_HEADER_SIZE, 1, g_wave_file_handle);
newWav->data = (uint32_t *)&g_wav_header;
audio_wav_init(newWav);
// Remove header size from byte count
// Adjust note duration by divider value, wav tables in pcm_data.h are 200ms by default
bytesToRead = (newWav->header.length - WAVE_FILE_HEADER_SIZE);
g_curr_play_index = 0;
g_total_play_count = bytesToRead;
return newWav->header.sampFreq;
}
uint32_t stop_wav_file(void)
{
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_curr_play_index = 0;
g_total_play_count = 0;
if (g_wave_file_handle){
fclose(g_wave_file_handle);
g_wave_file_handle = NULL;
}
if (wav_file_playback_callback) if (wav_file_playback_callback)
wav_file_playback_callback = NULL; wav_file_playback_callback(status);
return (len);
}
// stime = hal_sys_timer_get();
/* read file */
if (g_wave_file_handle)
reallen = fread(buf, 1, len, g_wave_file_handle);
// etime = hal_sys_timer_get();
if (reallen != len) {
memset(buf, 0, len);
status = -1;
if (wav_file_playback_callback)
wav_file_playback_callback(status);
return (len);
}
return 0; // TRACE(5,"wav_file_audio_more_data irqDur:%d fsSpend:%d, readbuff:0x%08x
// %d/%d\n ", TICKS_TO_MS(stime - g_preIrqTime),TICKS_TO_MS(etime -
// stime),buf,reallen,len);
// g_preIrqTime = stime;
/* walk index */
g_curr_play_index += reallen;
return reallen;
}
uint32_t get_wav_data(wave_file_t *waveFile) {
uint8_t *dataTemp = (uint8_t *)waveFile->data;
// check for RIFF
memcpy(waveFile->header.riff, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.riff, "RIFF", 4)) {
return 0;
}
// Get size
memcpy(&waveFile->header.size, dataTemp, 4);
dataTemp += 4;
TRACE(1, "WAV header size [%d]\n", waveFile->header.size);
// .wav file flag
memcpy(waveFile->header.waveFlag, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.waveFlag, "WAVE", 4)) {
return 0;
}
// fmt
memcpy(waveFile->header.fmt, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.fmt, "fmt ", 4)) {
return 0;
}
// fmt length
memcpy(&waveFile->header.fmtLen, dataTemp, 4);
dataTemp += 4;
// Tag: PCM or not
memcpy(&waveFile->header.tag, dataTemp, 4);
dataTemp += 2;
// Channels
memcpy(&waveFile->header.channels, dataTemp, 4);
dataTemp += 2;
TRACE(1, "WAV channels [%d]\n", waveFile->header.channels);
// Sample Rate in Hz
memcpy(&waveFile->header.sampFreq, dataTemp, 4);
dataTemp += 4;
memcpy(&waveFile->header.byteRate, dataTemp, 4);
dataTemp += 4;
TRACE(1, "WAV sample_rate [%d]\n", waveFile->header.sampFreq);
TRACE(1, "WAV byteRate [%d]\n", waveFile->header.byteRate);
// quantize bytes for per samp point
memcpy(&waveFile->header.blockAlign, dataTemp, 4);
dataTemp += 2;
memcpy(&waveFile->header.bitSamp, dataTemp, 4);
dataTemp += 2;
TRACE(1, "WAV bitSamp [%d]\n", waveFile->header.bitSamp);
// Data
memcpy(waveFile->header.dataFlag, dataTemp, 4);
dataTemp += 4;
if (memcmp((uint8_t *)waveFile->header.dataFlag, "data ", 4)) {
return 0;
}
memcpy(&waveFile->header.length, dataTemp, 4);
dataTemp += 4;
return 0;
}
void audio_wav_init(wave_file_t *newWav) {
get_wav_data(newWav);
// Configure the play audio g_format
// g_format.bits = newWav->header.bitSamp;
// g_format.sample_rate = newWav->header.sampFreq;
// g_format.mclk = 256 * g_format.sample_rate ;
// g_format.mono_streo = (sai_mono_streo_t)((newWav->header.channels) - 1);
}
uint32_t play_wav_file(char *file_path) {
uint32_t bytesToRead = 0;
wave_file_t *newWav = &g_wave_file_info;
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_wave_file_handle = fopen(file_path, "rb");
if (g_wave_file_handle == NULL) {
TRACE(1, "WAV file %s open fail\n", file_path);
return 1;
}
fread(&g_wav_header, WAVE_FILE_HEADER_SIZE, 1, g_wave_file_handle);
newWav->data = (uint32_t *)&g_wav_header;
audio_wav_init(newWav);
// Remove header size from byte count
// Adjust note duration by divider value, wav tables in pcm_data.h are 200ms
// by default
bytesToRead = (newWav->header.length - WAVE_FILE_HEADER_SIZE);
g_curr_play_index = 0;
g_total_play_count = bytesToRead;
return newWav->header.sampFreq;
}
uint32_t stop_wav_file(void) {
memset(&g_wave_file_info, 0, sizeof(g_wave_file_info));
g_curr_play_index = 0;
g_total_play_count = 0;
if (g_wave_file_handle) {
fclose(g_wave_file_handle);
g_wave_file_handle = NULL;
}
if (wav_file_playback_callback)
wav_file_playback_callback = NULL;
return 0;
} }

File diff suppressed because it is too large Load diff

View file

@ -13,22 +13,22 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "stdio.h" #include "app_audio.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "app_audio.h" #include "stdio.h"
#include "a2dp_api.h" #include "a2dp_api.h"
#include "app_bt.h" #include "app_bt.h"
#include "btapp.h" #include "btapp.h"
#include "usb_audio_app.h"
#include "btusb_audio.h" #include "btusb_audio.h"
#include "usb_audio_app.h"
extern void btusbaudio_entry(void); extern void btusbaudio_entry(void);
extern void btusbaudio_exit(void); extern void btusbaudio_exit(void);
extern a2dp_stream_t* app_bt_get_steam(enum BT_DEVICE_ID_T id); extern a2dp_stream_t *app_bt_get_steam(enum BT_DEVICE_ID_T id);
extern int app_bt_get_bt_addr(enum BT_DEVICE_ID_T id,bt_bdaddr_t *bdaddr); extern int app_bt_get_bt_addr(enum BT_DEVICE_ID_T id, bt_bdaddr_t *bdaddr);
extern bool app_bt_a2dp_service_is_connected(void); extern bool app_bt_a2dp_service_is_connected(void);
int app_bt_A2DP_OpenStream(a2dp_stream_t *Stream, bt_bdaddr_t *Addr); int app_bt_A2DP_OpenStream(a2dp_stream_t *Stream, bt_bdaddr_t *Addr);
int app_bt_A2DP_CloseStream(a2dp_stream_t *Stream); int app_bt_A2DP_CloseStream(a2dp_stream_t *Stream);
@ -38,270 +38,223 @@ static bool btusb_usb_is_on = false;
static enum BTUSB_MODE btusb_mode = BTUSB_MODE_INVALID; static enum BTUSB_MODE btusb_mode = BTUSB_MODE_INVALID;
static bool btusb_bt_audio_is_suspend = false; static bool btusb_bt_audio_is_suspend = false;
#define BT_USB_DEBUG() //TRACE(2,"_debug: %s,%d",__func__,__LINE__) #define BT_USB_DEBUG() // TRACE(2,"_debug: %s,%d",__func__,__LINE__)
extern struct BT_DEVICE_T app_bt_device; extern struct BT_DEVICE_T app_bt_device;
static void _btusb_stream_open(unsigned int timeout_ms) static void _btusb_stream_open(unsigned int timeout_ms) {
{ a2dp_stream_t *stream = NULL;
a2dp_stream_t *stream = NULL; bt_bdaddr_t bdaddr;
bt_bdaddr_t bdaddr; uint32_t stime = 0;
uint32_t stime = 0; uint32_t etime = 0;
uint32_t etime = 0;
stime = hal_sys_timer_get(); stime = hal_sys_timer_get();
//BT_USB_DEBUG(); // BT_USB_DEBUG();
stream = (a2dp_stream_t*)app_bt_get_steam(BT_DEVICE_ID_1); stream = (a2dp_stream_t *)app_bt_get_steam(BT_DEVICE_ID_1);
app_bt_get_bt_addr(BT_DEVICE_ID_1,&bdaddr); app_bt_get_bt_addr(BT_DEVICE_ID_1, &bdaddr);
if(stream) if (stream) {
{ // struct BT_DEVICE_T *bt_dev = &app_bt_device;
//struct BT_DEVICE_T *bt_dev = &app_bt_device; // A2DP_Register((a2dp_stream_t
//A2DP_Register((a2dp_stream_t *)bt_dev->a2dp_stream[BT_DEVICE_ID_1]->a2dp_stream, &a2dp_avdtpcodec, NULL, (A2dpCallback) a2dp_callback); // *)bt_dev->a2dp_stream[BT_DEVICE_ID_1]->a2dp_stream, &a2dp_avdtpcodec,
//AVRCP_Register((AvrcpChannel *)bt_dev->avrcp_channel[BT_DEVICE_ID_1]->avrcp_channel_handle, (AvrcpCallback)avrcp_callback_CT, BTIF_AVRCP_CT_CATEGORY_1 | BTIF_AVRCP_CT_CATEGORY_2 | BTIF_AVRCP_TG_CATEGORY_2); // NULL, (A2dpCallback) a2dp_callback); AVRCP_Register((AvrcpChannel
BT_USB_DEBUG(); // *)bt_dev->avrcp_channel[BT_DEVICE_ID_1]->avrcp_channel_handle,
osDelay(10); // (AvrcpCallback)avrcp_callback_CT, BTIF_AVRCP_CT_CATEGORY_1 |
app_bt_A2DP_OpenStream(stream,&bdaddr); // BTIF_AVRCP_CT_CATEGORY_2 | BTIF_AVRCP_TG_CATEGORY_2);
BT_USB_DEBUG();
osDelay(10);
app_bt_A2DP_OpenStream(stream, &bdaddr);
} else {
BT_USB_DEBUG();
return;
}
while (1) {
if (app_bt_a2dp_service_is_connected()) {
etime = hal_sys_timer_get();
TRACE(1, "_debug: a2dp service connected, wait time = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
} else {
etime = hal_sys_timer_get();
if (TICKS_TO_MS(etime - stime) >= timeout_ms) {
TRACE(1, "_debug: a2dp service connect timeout = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
osDelay(10);
} }
else }
{ // BT_USB_DEBUG();
BT_USB_DEBUG(); }
static void _btusb_stream_close(unsigned int timeout_ms) {
a2dp_stream_t *stream = NULL;
uint32_t stime = 0;
uint32_t etime = 0;
stime = hal_sys_timer_get();
BT_USB_DEBUG();
stream = (a2dp_stream_t *)app_bt_get_steam(BT_DEVICE_ID_1);
if (stream) {
BT_USB_DEBUG();
app_bt_A2DP_CloseStream(stream);
} else {
BT_USB_DEBUG();
return;
}
stime = hal_sys_timer_get();
while (1) {
if (!app_bt_a2dp_service_is_connected()) {
// struct BT_DEVICE_T *bt_dev = &app_bt_device;
// AVRCP_Deregister(bt_dev->avrcp_channel[BT_DEVICE_ID_1]->avrcp_channel_handle);
// A2DP_Deregister(stream);
etime = hal_sys_timer_get();
TRACE(1, "a2dp service diconnected, wait time = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
} else {
etime = hal_sys_timer_get();
if (TICKS_TO_MS(etime - stime) >= timeout_ms) {
TRACE(1, "a2dp service diconnect timeout = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
osDelay(10);
}
}
BT_USB_DEBUG();
}
static void btusb_usbaudio_entry(void) {
BT_USB_DEBUG();
btusbaudio_entry();
btusb_usb_is_on = true;
}
void btusb_usbaudio_open(void) {
BT_USB_DEBUG();
if (!btusb_usb_is_on) {
btusb_usbaudio_entry();
BT_USB_DEBUG();
} else {
usb_audio_app(1);
}
BT_USB_DEBUG();
}
void btusb_usbaudio_close(void) {
BT_USB_DEBUG();
if (btusb_usb_is_on) {
usb_audio_app(0);
BT_USB_DEBUG();
} else {
BT_USB_DEBUG();
}
}
void btusb_btaudio_close(bool is_wait) {
BT_USB_DEBUG();
// if(!btusb_bt_audio_is_suspend)
{
BT_USB_DEBUG();
if (is_wait) {
app_audio_sendrequest(APP_PLAY_BACK_AUDIO,
(uint8_t)APP_BT_SETTING_CLOSEALL, 0);
_btusb_stream_close(BTUSB_OUTTIME_MS);
} else {
_btusb_stream_close(0);
}
btusb_bt_audio_is_suspend = true;
}
}
void btusb_btaudio_open(bool is_wait) {
BT_USB_DEBUG();
// if(btusb_bt_audio_is_suspend)
{
TRACE(2, "%s: %d.", __func__, __LINE__);
if (is_wait) {
_btusb_stream_open(BTUSB_OUTTIME_MS);
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_CLOSE,
0);
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_SETUP,
0);
} else {
_btusb_stream_open(0);
}
TRACE(2, "%s: %d.", __func__, __LINE__);
btusb_bt_audio_is_suspend = false;
}
}
void btusb_switch(enum BTUSB_MODE mode) {
// BT_USB_DEBUG();
if (mode != BTUSB_MODE_BT && mode != BTUSB_MODE_USB) {
ASSERT(0, "%s:%d, mode = %d.", __func__, __LINE__, mode);
}
if (btusb_mode == mode) {
BT_USB_DEBUG();
return;
}
if (btusb_mode == BTUSB_MODE_INVALID) {
if (mode == BTUSB_MODE_BT) {
TRACE(1, "%s: switch to BT mode.", __func__);
btusb_mode = BTUSB_MODE_BT;
} else {
TRACE(1, "%s: switch to USB mode.", __func__);
// btusb_btaudio_close(true);
osDelay(500);
btusb_usbaudio_open();
btusb_mode = BTUSB_MODE_USB;
}
} else {
if (mode == BTUSB_MODE_BT) {
TRACE(1, "%s: switch to BT mode.", __func__);
if (btusb_usb_is_on) {
TRACE(1, "%s: btusb_usbaudio_close.", __func__);
btusb_usbaudio_close();
TRACE(1, "%s: btusb_usbaudio_close done.", __func__);
osDelay(500);
}
btusb_mode = BTUSB_MODE_BT;
btusb_btaudio_open(true);
TRACE(1, "%s: switch to BT mode done.", __func__);
} else {
if (btapp_hfp_is_call_active() == 1) {
TRACE(1, "%s: hfp is call active.", __func__);
return; return;
}
TRACE(1, "%s: switch to USB mode.", __func__);
btusb_btaudio_close(true);
TRACE(1, "%s: btusb_btaudio_close done.", __func__);
osDelay(500);
btusb_usbaudio_open();
btusb_mode = BTUSB_MODE_USB;
TRACE(1, "%s: switch to USB mode done.", __func__);
} }
while(1) }
{
if(app_bt_a2dp_service_is_connected()){
etime = hal_sys_timer_get();
TRACE(1,"_debug: a2dp service connected, wait time = 0x%x.",TICKS_TO_MS(etime - stime));
break;
}
else
{
etime = hal_sys_timer_get();
if(TICKS_TO_MS(etime - stime) >= timeout_ms)
{
TRACE(1,"_debug: a2dp service connect timeout = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
osDelay(10);
}
}
//BT_USB_DEBUG();
} }
static void _btusb_stream_close(unsigned int timeout_ms) bool btusb_is_bt_mode(void) {
{ BT_USB_DEBUG();
a2dp_stream_t *stream = NULL; return btusb_mode == BTUSB_MODE_BT ? true : false;
uint32_t stime = 0;
uint32_t etime = 0;
stime = hal_sys_timer_get();
BT_USB_DEBUG();
stream = (a2dp_stream_t*)app_bt_get_steam(BT_DEVICE_ID_1);
if(stream)
{
BT_USB_DEBUG();
app_bt_A2DP_CloseStream(stream);
}
else
{
BT_USB_DEBUG();
return;
}
stime = hal_sys_timer_get();
while(1)
{
if(!app_bt_a2dp_service_is_connected()){
//struct BT_DEVICE_T *bt_dev = &app_bt_device;
//AVRCP_Deregister(bt_dev->avrcp_channel[BT_DEVICE_ID_1]->avrcp_channel_handle);
//A2DP_Deregister(stream);
etime = hal_sys_timer_get();
TRACE(1,"a2dp service diconnected, wait time = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
else
{
etime = hal_sys_timer_get();
if(TICKS_TO_MS(etime - stime) >= timeout_ms)
{
TRACE(1,"a2dp service diconnect timeout = 0x%x.",
TICKS_TO_MS(etime - stime));
break;
}
osDelay(10);
}
}
BT_USB_DEBUG();
} }
static void btusb_usbaudio_entry(void) bool btusb_is_usb_mode(void) {
{ return btusb_mode == BTUSB_MODE_USB ? true : false;
BT_USB_DEBUG();
btusbaudio_entry();
btusb_usb_is_on = true ;
} }
void btusb_usbaudio_open(void)
{
BT_USB_DEBUG();
if(!btusb_usb_is_on)
{
btusb_usbaudio_entry();
BT_USB_DEBUG();
}
else
{
usb_audio_app(1);
}
BT_USB_DEBUG();
}
void btusb_usbaudio_close(void)
{
BT_USB_DEBUG();
if(btusb_usb_is_on)
{
usb_audio_app(0);
BT_USB_DEBUG();
}
else
{
BT_USB_DEBUG();
}
}
void btusb_btaudio_close(bool is_wait)
{
BT_USB_DEBUG();
//if(!btusb_bt_audio_is_suspend)
{
BT_USB_DEBUG();
if(is_wait)
{
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_CLOSEALL, 0);
_btusb_stream_close(BTUSB_OUTTIME_MS);
}
else
{
_btusb_stream_close(0);
}
btusb_bt_audio_is_suspend = true;
}
}
void btusb_btaudio_open(bool is_wait)
{
BT_USB_DEBUG();
//if(btusb_bt_audio_is_suspend)
{
TRACE(2,"%s: %d.",__func__,__LINE__);
if(is_wait)
{
_btusb_stream_open(BTUSB_OUTTIME_MS);
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_CLOSE, 0);
app_audio_sendrequest(APP_PLAY_BACK_AUDIO, (uint8_t)APP_BT_SETTING_SETUP, 0);
}
else
{
_btusb_stream_open(0);
}
TRACE(2,"%s: %d.",__func__,__LINE__);
btusb_bt_audio_is_suspend = false;
}
}
void btusb_switch(enum BTUSB_MODE mode)
{
//BT_USB_DEBUG();
if(mode != BTUSB_MODE_BT && mode != BTUSB_MODE_USB)
{
ASSERT(0, "%s:%d, mode = %d.",__func__,__LINE__,mode);
}
if(btusb_mode == mode) {
BT_USB_DEBUG();
return;
}
if(btusb_mode == BTUSB_MODE_INVALID)
{
if(mode == BTUSB_MODE_BT) {
TRACE(1,"%s: switch to BT mode.",__func__);
btusb_mode = BTUSB_MODE_BT;
}
else {
TRACE(1,"%s: switch to USB mode.",__func__);
//btusb_btaudio_close(true);
osDelay(500);
btusb_usbaudio_open();
btusb_mode = BTUSB_MODE_USB;
}
}
else
{
if(mode == BTUSB_MODE_BT) {
TRACE(1,"%s: switch to BT mode.",__func__);
if(btusb_usb_is_on)
{
TRACE(1,"%s: btusb_usbaudio_close.",__func__);
btusb_usbaudio_close();
TRACE(1,"%s: btusb_usbaudio_close done.",__func__);
osDelay(500);
}
btusb_mode = BTUSB_MODE_BT;
btusb_btaudio_open(true);
TRACE(1,"%s: switch to BT mode done.",__func__);
}
else {
if(btapp_hfp_is_call_active() == 1)
{
TRACE(1,"%s: hfp is call active.",__func__);
return;
}
TRACE(1,"%s: switch to USB mode.",__func__);
btusb_btaudio_close(true);
TRACE(1,"%s: btusb_btaudio_close done.",__func__);
osDelay(500);
btusb_usbaudio_open();
btusb_mode = BTUSB_MODE_USB;
TRACE(1,"%s: switch to USB mode done.",__func__);
}
}
}
bool btusb_is_bt_mode(void)
{
BT_USB_DEBUG();
return btusb_mode == BTUSB_MODE_BT ? true : false;
}
bool btusb_is_usb_mode(void)
{
return btusb_mode == BTUSB_MODE_USB ? true : false;
}
#if defined(BT_USB_AUDIO_DUAL_MODE_TEST) #if defined(BT_USB_AUDIO_DUAL_MODE_TEST)
void test_btusb_switch(void) void test_btusb_switch(void) {
{ if (btusb_mode == BTUSB_MODE_BT) {
if(btusb_mode == BTUSB_MODE_BT) btusb_switch(BTUSB_MODE_USB);
{ } else {
btusb_switch(BTUSB_MODE_USB); btusb_switch(BTUSB_MODE_BT);
} }
else
{
btusb_switch(BTUSB_MODE_BT);
}
} }
void test_btusb_switch_to_bt(void) void test_btusb_switch_to_bt(void) { btusb_switch(BTUSB_MODE_BT); }
{
btusb_switch(BTUSB_MODE_BT);
}
void test_btusb_switch_to_usb(void) void test_btusb_switch_to_usb(void) { btusb_switch(BTUSB_MODE_USB); }
{
btusb_switch(BTUSB_MODE_USB);
}
#endif #endif

View file

@ -13,127 +13,119 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "usbaudio_thread.h"
#include "app_utils.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "app_utils.h"
#include "usb_audio_app.h" #include "usb_audio_app.h"
#include "usbaudio_thread.h"
static void usb_thread(void const *argument); static void usb_thread(void const *argument);
osThreadDef(usb_thread, osPriorityHigh, 1, 2048, "usb"); osThreadDef(usb_thread, osPriorityHigh, 1, 2048, "usb");
osMailQDef (usb_mailbox, USB_MAILBOX_MAX, USB_MESSAGE); osMailQDef(usb_mailbox, USB_MAILBOX_MAX, USB_MESSAGE);
static osMailQId usb_mailbox = NULL; static osMailQId usb_mailbox = NULL;
static uint8_t usb_mailbox_cnt = 0; static uint8_t usb_mailbox_cnt = 0;
#define USBAUDIO_DEBUG TRACE #define USBAUDIO_DEBUG TRACE
static int usb_mailbox_init(void) static int usb_mailbox_init(void) {
{ USBAUDIO_DEBUG("%s,%d", __func__, __LINE__);
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__); usb_mailbox = osMailCreate(osMailQ(usb_mailbox), NULL);
usb_mailbox = osMailCreate(osMailQ(usb_mailbox), NULL); if (usb_mailbox == NULL) {
if (usb_mailbox == NULL) { USBAUDIO_DEBUG("Failed to Create usb_mailbox\n");
USBAUDIO_DEBUG("Failed to Create usb_mailbox\n"); return -1;
return -1; }
} usb_mailbox_cnt = 0;
usb_mailbox_cnt = 0; return 0;
return 0;
} }
int usb_mailbox_put(USB_MESSAGE* msg_src) int usb_mailbox_put(USB_MESSAGE *msg_src) {
{ osStatus status;
osStatus status; USB_MESSAGE *msg_p = NULL;
USB_MESSAGE *msg_p = NULL;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__); USBAUDIO_DEBUG("%s,%d", __func__, __LINE__);
if(usb_mailbox_cnt >= 1) if (usb_mailbox_cnt >= 1) {
{ USBAUDIO_DEBUG("%s,%d usb_mailbox_cnt = %d.", __func__, __LINE__,
USBAUDIO_DEBUG("%s,%d usb_mailbox_cnt = %d.", usb_mailbox_cnt);
__func__,__LINE__,usb_mailbox_cnt); return 0;
return 0; }
msg_p = (USB_MESSAGE *)osMailAlloc(usb_mailbox, 0);
ASSERT(msg_p, "osMailAlloc error");
msg_p->id = msg_src->id;
msg_p->ptr = msg_src->ptr;
msg_p->param0 = msg_src->param0;
msg_p->param1 = msg_src->param1;
status = osMailPut(usb_mailbox, msg_p);
if (osOK == status)
usb_mailbox_cnt++;
USBAUDIO_DEBUG("%s,%d,usb_mailbox_cnt = %d.", __func__, __LINE__,
usb_mailbox_cnt);
return (int)status;
}
int usb_mailbox_free(USB_MESSAGE *msg_p) {
osStatus status;
USBAUDIO_DEBUG("%s,%d", __func__, __LINE__);
status = osMailFree(usb_mailbox, msg_p);
if (osOK == status)
usb_mailbox_cnt--;
USBAUDIO_DEBUG("%s,%d,usb_mailbox_cnt = %d.", __func__, __LINE__,
usb_mailbox_cnt);
return (int)status;
}
int usb_mailbox_get(USB_MESSAGE **msg_p) {
osEvent evt;
evt = osMailGet(usb_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (USB_MESSAGE *)evt.value.p;
return 0;
}
return -1;
}
static void usb_thread(void const *argument) {
// USB_FUNC_T usb_funcp;
USBAUDIO_DEBUG("%s,%d", __func__, __LINE__);
while (1) {
USB_MESSAGE *msg_p = NULL;
if (!usb_mailbox_get(&msg_p)) {
// TRACE(2,"_debug: %s,%d",__func__,__LINE__);
USBAUDIO_DEBUG(
"usb_thread: id = 0x%x, ptr = 0x%x,param0 = 0x%x,param1 = 0x%x.",
msg_p->id, msg_p->ptr, msg_p->param0, msg_p->param1);
usb_mailbox_free(msg_p);
usb_audio_app_loop();
} }
msg_p = (USB_MESSAGE*)osMailAlloc(usb_mailbox, 0); }
ASSERT(msg_p, "osMailAlloc error");
msg_p->id = msg_src->id;
msg_p->ptr = msg_src->ptr;
msg_p->param0 = msg_src->param0;
msg_p->param1 = msg_src->param1;
status = osMailPut(usb_mailbox, msg_p);
if (osOK == status)
usb_mailbox_cnt++;
USBAUDIO_DEBUG("%s,%d,usb_mailbox_cnt = %d.",__func__,__LINE__,usb_mailbox_cnt);
return (int)status;
} }
int usb_mailbox_free(USB_MESSAGE* msg_p) static void usb_enqueue_cmd(uint32_t data) {
{ USB_MESSAGE usb_msg;
osStatus status;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__); usb_msg.id = 0;
status = osMailFree(usb_mailbox, msg_p); usb_msg.param0 = 0;
if (osOK == status) usb_msg.param1 = 0;
usb_mailbox_cnt--; usb_msg.ptr = 0;
USBAUDIO_DEBUG("%s,%d,usb_mailbox_cnt = %d.",__func__,__LINE__,usb_mailbox_cnt); usb_mailbox_put(&usb_msg);
return (int)status;
} }
int usb_mailbox_get(USB_MESSAGE **msg_p) int usb_os_init(void) {
{ osThreadId usb_tid;
osEvent evt;
evt = osMailGet(usb_mailbox, osWaitForever); USBAUDIO_DEBUG("%s,%d", __func__, __LINE__);
if (evt.status == osEventMail) { if (usb_mailbox_init()) {
*msg_p = (USB_MESSAGE*)evt.value.p; USBAUDIO_DEBUG("_debug: %s,%d", __func__, __LINE__);
return 0; return -1;
} }
return -1; usb_tid = osThreadCreate(osThread(usb_thread), NULL);
if (usb_tid == NULL) {
USBAUDIO_DEBUG("Failed to Create usb_thread\n");
return 0;
}
usb_audio_set_enqueue_cmd_callback(usb_enqueue_cmd);
return 0;
} }
static void usb_thread(void const *argument)
{
// USB_FUNC_T usb_funcp;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__);
while(1){
USB_MESSAGE *msg_p = NULL;
if (!usb_mailbox_get(&msg_p)) {
//TRACE(2,"_debug: %s,%d",__func__,__LINE__);
USBAUDIO_DEBUG("usb_thread: id = 0x%x, ptr = 0x%x,param0 = 0x%x,param1 = 0x%x.",
msg_p->id,msg_p->ptr,msg_p->param0,msg_p->param1);
usb_mailbox_free(msg_p);
usb_audio_app_loop();
}
}
}
static void usb_enqueue_cmd(uint32_t data)
{
USB_MESSAGE usb_msg;
usb_msg.id = 0;
usb_msg.param0 = 0;
usb_msg.param1 = 0;
usb_msg.ptr = 0;
usb_mailbox_put(&usb_msg);
}
int usb_os_init(void)
{
osThreadId usb_tid;
USBAUDIO_DEBUG("%s,%d",__func__,__LINE__);
if (usb_mailbox_init()) {
USBAUDIO_DEBUG("_debug: %s,%d",__func__,__LINE__);
return -1;
}
usb_tid = osThreadCreate(osThread(usb_thread), NULL);
if (usb_tid == NULL) {
USBAUDIO_DEBUG("Failed to Create usb_thread\n");
return 0;
}
usb_audio_set_enqueue_cmd_callback(usb_enqueue_cmd);
return 0;
}

View file

@ -14,58 +14,52 @@
* *
****************************************************************************/ ****************************************************************************/
#ifdef __PC_CMD_UART__ #ifdef __PC_CMD_UART__
#include "cmsis_os.h"
#include "list.h"
#include "string.h"
#include "app_thread.h"
#include "app_cmd.h" #include "app_cmd.h"
#include "app_thread.h"
#include "audio_process.h"
#include "cmsis_os.h"
#include "hal_cmd.h" #include "hal_cmd.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "audio_process.h" #include "list.h"
#include "string.h"
#define APP_CMD_TRACE(s,...) TRACE(s, ##__VA_ARGS__) #define APP_CMD_TRACE(s, ...) TRACE(s, ##__VA_ARGS__)
void cmd_event_process(hal_cmd_rx_status_t status) void cmd_event_process(hal_cmd_rx_status_t status) {
{ APP_CMD_TRACE(1, "%s", __func__);
APP_CMD_TRACE(1,"%s",__func__); APP_MESSAGE_BLOCK msg;
APP_MESSAGE_BLOCK msg; msg.mod_id = APP_MODUAL_CMD;
msg.mod_id = APP_MODUAL_CMD; msg.msg_body.message_id = status;
msg.msg_body.message_id = status; msg.msg_body.message_ptr = (uint32_t)NULL;
msg.msg_body.message_ptr = (uint32_t)NULL; app_mailbox_put(&msg);
app_mailbox_put(&msg); return;
return;
} }
static int app_cmd_handle_process(APP_MESSAGE_BODY *msg_body) static int app_cmd_handle_process(APP_MESSAGE_BODY *msg_body) {
{ hal_cmd_run((hal_cmd_rx_status_t)msg_body->message_id);
hal_cmd_run((hal_cmd_rx_status_t)msg_body->message_id); return 0;
return 0;
} }
uint8_t app_cmd_flag = 0; uint8_t app_cmd_flag = 0;
void app_cmd_open(void) void app_cmd_open(void) {
{ APP_CMD_TRACE(1, "%s", __func__);
APP_CMD_TRACE(1,"%s",__func__);
app_cmd_flag = 1; app_cmd_flag = 1;
app_set_threadhandle(APP_MODUAL_CMD, app_cmd_handle_process); app_set_threadhandle(APP_MODUAL_CMD, app_cmd_handle_process);
hal_cmd_set_callback(cmd_event_process); hal_cmd_set_callback(cmd_event_process);
hal_cmd_open(); hal_cmd_open();
return; return;
} }
void app_cmd_close(void) void app_cmd_close(void) {
{ APP_CMD_TRACE(1, "%s", __func__);
APP_CMD_TRACE(1,"%s",__func__); if (app_cmd_flag) {
if(app_cmd_flag) app_cmd_flag = 0;
{ hal_cmd_close();
app_cmd_flag = 0; app_set_threadhandle(APP_MODUAL_CMD, NULL);
hal_cmd_close(); }
app_set_threadhandle(APP_MODUAL_CMD, NULL); return;
}
return;
} }
#endif #endif

View file

@ -13,69 +13,66 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "cmsis_os.h"
#include "stdint.h"
#include "app_spec_ostimer.h" #include "app_spec_ostimer.h"
#include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "stdint.h"
/// Create timer /// Create timer
osStatus app_spec_timer_create (SPEC_TIMER_CTX_T *spec_timer_ctx, const osTimerDef_t *timer_def, os_timer_type type, void *argument) osStatus app_spec_timer_create(SPEC_TIMER_CTX_T *spec_timer_ctx,
{ const osTimerDef_t *timer_def,
spec_timer_ctx->type = type; os_timer_type type, void *argument) {
spec_timer_ctx->argument = argument; spec_timer_ctx->type = type;
spec_timer_ctx->timerid = osTimerCreate(timer_def, type, spec_timer_ctx); spec_timer_ctx->argument = argument;
return spec_timer_ctx->timerid ? osOK: osErrorOS; spec_timer_ctx->timerid = osTimerCreate(timer_def, type, spec_timer_ctx);
return spec_timer_ctx->timerid ? osOK : osErrorOS;
} }
/// Start or restart timer /// Start or restart timer
osStatus app_spec_timer_start (SPEC_TIMER_CTX_T *spec_timer_ctx, uint32_t millisec) osStatus app_spec_timer_start(SPEC_TIMER_CTX_T *spec_timer_ctx,
{ uint32_t millisec) {
osStatus status; osStatus status;
//TRACE(1,"%s", __func__); // TRACE(1,"%s", __func__);
if (millisec > UINT16_MAX){ if (millisec > UINT16_MAX) {
spec_timer_ctx->interval = millisec; spec_timer_ctx->interval = millisec;
spec_timer_ctx->ctx = millisec; spec_timer_ctx->ctx = millisec;
status = osTimerStart(spec_timer_ctx->timerid, UINT16_MAX); status = osTimerStart(spec_timer_ctx->timerid, UINT16_MAX);
}else{ } else {
spec_timer_ctx->interval = millisec; spec_timer_ctx->interval = millisec;
spec_timer_ctx->ctx = millisec; spec_timer_ctx->ctx = millisec;
status = osTimerStart(spec_timer_ctx->timerid, (uint32_t)millisec); status = osTimerStart(spec_timer_ctx->timerid, (uint32_t)millisec);
} }
return status; return status;
} }
/// Stop timer /// Stop timer
osStatus app_spec_timer_stop (SPEC_TIMER_CTX_T *spec_timer_ctx) osStatus app_spec_timer_stop(SPEC_TIMER_CTX_T *spec_timer_ctx) {
{
return osTimerStop(spec_timer_ctx->timerid); return osTimerStop(spec_timer_ctx->timerid);
} }
/// Delete timer /// Delete timer
osStatus app_spec_timer_delete (SPEC_TIMER_CTX_T *spec_timer_ctx) osStatus app_spec_timer_delete(SPEC_TIMER_CTX_T *spec_timer_ctx) {
{
return osTimerDelete(spec_timer_ctx->timerid); return osTimerDelete(spec_timer_ctx->timerid);
} }
void app_spec_timer_handler(void const *para) void app_spec_timer_handler(void const *para) {
{ SPEC_TIMER_CTX_T *spec_timer_ctx = (SPEC_TIMER_CTX_T *)para;
SPEC_TIMER_CTX_T *spec_timer_ctx = (SPEC_TIMER_CTX_T *)para;
if (spec_timer_ctx->ctx > UINT16_MAX){ if (spec_timer_ctx->ctx > UINT16_MAX) {
spec_timer_ctx->ctx -= UINT16_MAX; spec_timer_ctx->ctx -= UINT16_MAX;
if (spec_timer_ctx->ctx > UINT16_MAX){ if (spec_timer_ctx->ctx > UINT16_MAX) {
osTimerStart(spec_timer_ctx->timerid, UINT16_MAX); osTimerStart(spec_timer_ctx->timerid, UINT16_MAX);
}else{ } else {
osTimerStart(spec_timer_ctx->timerid, spec_timer_ctx->ctx); osTimerStart(spec_timer_ctx->timerid, spec_timer_ctx->ctx);
}
}else{
(*spec_timer_ctx->ptimer)(spec_timer_ctx->argument);
if (spec_timer_ctx->type == osTimerPeriodic){
app_spec_timer_start(spec_timer_ctx, spec_timer_ctx->interval);
}
} }
} else {
(*spec_timer_ctx->ptimer)(spec_timer_ctx->argument);
if (spec_timer_ctx->type == osTimerPeriodic) {
app_spec_timer_start(spec_timer_ctx, spec_timer_ctx->interval);
}
}
} }
#if 0 #if 0

View file

@ -13,152 +13,141 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "cmsis_os.h"
#include "hal_trace.h"
#include "hal_timer.h"
#include "app_utils.h"
#include "app_thread.h" #include "app_thread.h"
#include "app_utils.h"
#include "cmsis_os.h"
#include "hal_timer.h"
#include "hal_trace.h"
static APP_MOD_HANDLER_T mod_handler[APP_MODUAL_NUM]; static APP_MOD_HANDLER_T mod_handler[APP_MODUAL_NUM];
static void app_thread(void const *argument); static void app_thread(void const *argument);
osThreadDef(app_thread, osPriorityHigh, 1, 1024*3, "app_thread"); osThreadDef(app_thread, osPriorityHigh, 1, 1024 * 3, "app_thread");
osMailQDef (app_mailbox, APP_MAILBOX_MAX, APP_MESSAGE_BLOCK); osMailQDef(app_mailbox, APP_MAILBOX_MAX, APP_MESSAGE_BLOCK);
static osMailQId app_mailbox = NULL; static osMailQId app_mailbox = NULL;
static uint8_t app_mailbox_cnt = 0; static uint8_t app_mailbox_cnt = 0;
osThreadId app_thread_tid; osThreadId app_thread_tid;
static int app_mailbox_init(void) static int app_mailbox_init(void) {
{ app_mailbox = osMailCreate(osMailQ(app_mailbox), NULL);
app_mailbox = osMailCreate(osMailQ(app_mailbox), NULL); if (app_mailbox == NULL) {
if (app_mailbox == NULL) { TRACE(0, "Failed to Create app_mailbox\n");
TRACE(0,"Failed to Create app_mailbox\n"); return -1;
return -1; }
} app_mailbox_cnt = 0;
app_mailbox_cnt = 0; return 0;
return 0;
} }
int app_mailbox_put(APP_MESSAGE_BLOCK* msg_src) int app_mailbox_put(APP_MESSAGE_BLOCK *msg_src) {
{ osStatus status;
osStatus status;
APP_MESSAGE_BLOCK *msg_p = NULL;
msg_p = (APP_MESSAGE_BLOCK *)osMailAlloc(app_mailbox, 0);
if (!msg_p) {
osEvent evt;
TRACE_IMM(0, "osMailAlloc error dump");
for (uint8_t i = 0; i < APP_MAILBOX_MAX; i++) {
evt = osMailGet(app_mailbox, 0);
if (evt.status == osEventMail) {
TRACE_IMM(
9,
"cnt:%d mod:%d src:%08x tim:%d id:%x ptr:%08x para:%08x/%08x/%08x",
i, ((APP_MESSAGE_BLOCK *)(evt.value.p))->mod_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->src_thread,
((APP_MESSAGE_BLOCK *)(evt.value.p))->system_time,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_ptr,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param0,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param1,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param2);
} else {
TRACE_IMM(2, "cnt:%d %d", i, evt.status);
break;
}
}
TRACE_IMM(0, "osMailAlloc error dump end");
}
ASSERT(msg_p, "osMailAlloc error");
msg_p->src_thread = (uint32_t)osThreadGetId();
msg_p->dest_thread = (uint32_t)NULL;
msg_p->system_time = hal_sys_timer_get();
msg_p->mod_id = msg_src->mod_id;
msg_p->msg_body.message_id = msg_src->msg_body.message_id;
msg_p->msg_body.message_ptr = msg_src->msg_body.message_ptr;
msg_p->msg_body.message_Param0 = msg_src->msg_body.message_Param0;
msg_p->msg_body.message_Param1 = msg_src->msg_body.message_Param1;
msg_p->msg_body.message_Param2 = msg_src->msg_body.message_Param2;
status = osMailPut(app_mailbox, msg_p);
if (osOK == status)
app_mailbox_cnt++;
return (int)status;
}
int app_mailbox_free(APP_MESSAGE_BLOCK *msg_p) {
osStatus status;
status = osMailFree(app_mailbox, msg_p);
if (osOK == status)
app_mailbox_cnt--;
return (int)status;
}
int app_mailbox_get(APP_MESSAGE_BLOCK **msg_p) {
osEvent evt;
evt = osMailGet(app_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (APP_MESSAGE_BLOCK *)evt.value.p;
return 0;
}
return -1;
}
static void app_thread(void const *argument) {
while (1) {
APP_MESSAGE_BLOCK *msg_p = NULL; APP_MESSAGE_BLOCK *msg_p = NULL;
msg_p = (APP_MESSAGE_BLOCK*)osMailAlloc(app_mailbox, 0); if (!app_mailbox_get(&msg_p)) {
if (msg_p->mod_id < APP_MODUAL_NUM) {
if (!msg_p){ if (mod_handler[msg_p->mod_id]) {
osEvent evt; int ret = mod_handler[msg_p->mod_id](&(msg_p->msg_body));
TRACE_IMM(0,"osMailAlloc error dump"); if (ret)
for (uint8_t i=0; i<APP_MAILBOX_MAX; i++){ TRACE(2, "mod_handler[%d] ret=%d", msg_p->mod_id, ret);
evt = osMailGet(app_mailbox, 0);
if (evt.status == osEventMail) {
TRACE_IMM(9,"cnt:%d mod:%d src:%08x tim:%d id:%x ptr:%08x para:%08x/%08x/%08x",
i,
((APP_MESSAGE_BLOCK *)(evt.value.p))->mod_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->src_thread,
((APP_MESSAGE_BLOCK *)(evt.value.p))->system_time,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_id,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_ptr,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param0,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param1,
((APP_MESSAGE_BLOCK *)(evt.value.p))->msg_body.message_Param2);
}else{
TRACE_IMM(2,"cnt:%d %d", i, evt.status);
break;
}
} }
TRACE_IMM(0,"osMailAlloc error dump end"); }
app_mailbox_free(msg_p);
} }
}
ASSERT(msg_p, "osMailAlloc error");
msg_p->src_thread = (uint32_t)osThreadGetId();
msg_p->dest_thread = (uint32_t)NULL;
msg_p->system_time = hal_sys_timer_get();
msg_p->mod_id = msg_src->mod_id;
msg_p->msg_body.message_id = msg_src->msg_body.message_id;
msg_p->msg_body.message_ptr = msg_src->msg_body.message_ptr;
msg_p->msg_body.message_Param0 = msg_src->msg_body.message_Param0;
msg_p->msg_body.message_Param1 = msg_src->msg_body.message_Param1;
msg_p->msg_body.message_Param2 = msg_src->msg_body.message_Param2;
status = osMailPut(app_mailbox, msg_p);
if (osOK == status)
app_mailbox_cnt++;
return (int)status;
} }
int app_mailbox_free(APP_MESSAGE_BLOCK* msg_p) int app_os_init(void) {
{ if (app_mailbox_init())
osStatus status;
status = osMailFree(app_mailbox, msg_p);
if (osOK == status)
app_mailbox_cnt--;
return (int)status;
}
int app_mailbox_get(APP_MESSAGE_BLOCK** msg_p)
{
osEvent evt;
evt = osMailGet(app_mailbox, osWaitForever);
if (evt.status == osEventMail) {
*msg_p = (APP_MESSAGE_BLOCK *)evt.value.p;
return 0;
}
return -1; return -1;
}
static void app_thread(void const *argument) app_thread_tid = osThreadCreate(osThread(app_thread), NULL);
{ if (app_thread_tid == NULL) {
while(1){ TRACE(0, "Failed to Create app_thread\n");
APP_MESSAGE_BLOCK *msg_p = NULL;
if (!app_mailbox_get(&msg_p)) {
if (msg_p->mod_id < APP_MODUAL_NUM) {
if (mod_handler[msg_p->mod_id]) {
int ret = mod_handler[msg_p->mod_id](&(msg_p->msg_body));
if (ret)
TRACE(2,"mod_handler[%d] ret=%d", msg_p->mod_id, ret);
}
}
app_mailbox_free(msg_p);
}
}
}
int app_os_init(void)
{
if (app_mailbox_init())
return -1;
app_thread_tid = osThreadCreate(osThread(app_thread), NULL);
if (app_thread_tid == NULL) {
TRACE(0,"Failed to Create app_thread\n");
return 0;
}
return 0; return 0;
}
return 0;
} }
int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id, APP_MOD_HANDLER_T handler) int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id,
{ APP_MOD_HANDLER_T handler) {
if (mod_id>=APP_MODUAL_NUM) if (mod_id >= APP_MODUAL_NUM)
return -1; return -1;
mod_handler[mod_id] = handler; mod_handler[mod_id] = handler;
return 0; return 0;
} }
void * app_os_tid_get(void) void *app_os_tid_get(void) { return (void *)app_thread_tid; }
{
return (void *)app_thread_tid;
}
bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id) bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id) {
{ return mod_handler[mod_id];
return mod_handler[mod_id];
} }

View file

@ -15,6 +15,8 @@
****************************************************************************/ ****************************************************************************/
#ifndef __APP_THREAD_H__ #ifndef __APP_THREAD_H__
#define __APP_THREAD_H__ #define __APP_THREAD_H__
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -23,70 +25,71 @@ extern "C" {
#define APP_MAILBOX_MAX (20) #define APP_MAILBOX_MAX (20)
enum APP_MODUAL_ID_T { enum APP_MODUAL_ID_T {
APP_MODUAL_KEY = 0, APP_MODUAL_KEY = 0,
APP_MODUAL_AUDIO, APP_MODUAL_AUDIO,
APP_MODUAL_BATTERY, APP_MODUAL_BATTERY,
APP_MODUAL_BT, APP_MODUAL_BT,
APP_MODUAL_FM, APP_MODUAL_FM,
APP_MODUAL_SD, APP_MODUAL_SD,
APP_MODUAL_LINEIN, APP_MODUAL_LINEIN,
APP_MODUAL_USBHOST, APP_MODUAL_USBHOST,
APP_MODUAL_USBDEVICE, APP_MODUAL_USBDEVICE,
APP_MODUAL_WATCHDOG, APP_MODUAL_WATCHDOG,
APP_MODUAL_AUDIO_MANAGE, APP_MODUAL_AUDIO_MANAGE,
APP_MODUAL_ANC, APP_MODUAL_ANC,
APP_MODUAL_SMART_MIC, APP_MODUAL_SMART_MIC,
#ifdef __PC_CMD_UART__ #ifdef __PC_CMD_UART__
APP_MODUAL_CMD, APP_MODUAL_CMD,
#endif #endif
#ifdef TILE_DATAPATH #ifdef TILE_DATAPATH
APP_MODUAL_TILE, APP_MODUAL_TILE,
#endif #endif
APP_MODUAL_MIC, APP_MODUAL_MIC,
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
APP_MODUAL_VOICE_DETECTOR, APP_MODUAL_VOICE_DETECTOR,
#endif #endif
APP_MODUAL_CUSTOM_FUNCTION, APP_MODUAL_CUSTOM_FUNCTION,
APP_MODUAL_OHTER, APP_MODUAL_OHTER,
APP_MODUAL_WNR, APP_MODUAL_WNR,
APP_MODUAL_NUM APP_MODUAL_NUM
}; };
typedef struct { typedef struct {
uint32_t message_id; uint32_t message_id;
uint32_t message_ptr; uint32_t message_ptr;
uint32_t message_Param0; uint32_t message_Param0;
uint32_t message_Param1; uint32_t message_Param1;
uint32_t message_Param2; uint32_t message_Param2;
} APP_MESSAGE_BODY; } APP_MESSAGE_BODY;
typedef struct { typedef struct {
uint32_t src_thread; uint32_t src_thread;
uint32_t dest_thread; uint32_t dest_thread;
uint32_t system_time; uint32_t system_time;
uint32_t mod_id; uint32_t mod_id;
APP_MESSAGE_BODY msg_body; APP_MESSAGE_BODY msg_body;
} APP_MESSAGE_BLOCK; } APP_MESSAGE_BLOCK;
typedef int (*APP_MOD_HANDLER_T)(APP_MESSAGE_BODY *); typedef int (*APP_MOD_HANDLER_T)(APP_MESSAGE_BODY *);
int app_mailbox_put(APP_MESSAGE_BLOCK* msg_src); int app_mailbox_put(APP_MESSAGE_BLOCK *msg_src);
int app_mailbox_free(APP_MESSAGE_BLOCK* msg_p); int app_mailbox_free(APP_MESSAGE_BLOCK *msg_p);
int app_mailbox_get(APP_MESSAGE_BLOCK** msg_p); int app_mailbox_get(APP_MESSAGE_BLOCK **msg_p);
int app_os_init(void); int app_os_init(void);
int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id, APP_MOD_HANDLER_T handler); int app_set_threadhandle(enum APP_MODUAL_ID_T mod_id,
APP_MOD_HANDLER_T handler);
void * app_os_tid_get(void); void *app_os_tid_get(void);
bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id); bool app_is_module_registered(enum APP_MODUAL_ID_T mod_id);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
#endif//__FMDEC_H__ #endif //__FMDEC_H__

View file

@ -13,23 +13,23 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_utils.h"
#include "analog.h"
#include "cmsis.h" #include "cmsis.h"
#include "hal_trace.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "hal_trace.h"
#include "hal_wdt.h" #include "hal_wdt.h"
#include "pmu.h" #include "pmu.h"
#include "analog.h"
#include "app_utils.h"
#ifdef RTOS #ifdef RTOS
#include "cmsis_os.h" #include "cmsis_os.h"
#endif #endif
#define FREQ_FREE 0UL #define FREQ_FREE 0UL
#define FREQ_26M 26UL #define FREQ_26M 26UL
#define FREQ_52M 52UL #define FREQ_52M 52UL
#define FREQ_78M 78UL #define FREQ_78M 78UL
#define FREQ_104M 104UL #define FREQ_104M 104UL
#define FREQ_208M 208UL #define FREQ_208M 208UL
/* /*
* qos_users, quality of services users, this kind of user must run with the * qos_users, quality of services users, this kind of user must run with the
@ -41,22 +41,19 @@
*/ */
/* /*
* NOTE: * NOTE:
* The macro QOS_USERS works only when the APP_SYSFREQ_USER_APP_XXX is not large than * The macro QOS_USERS works only when the APP_SYSFREQ_USER_APP_XXX is not large
* 32, currently this works, but if the are more user, another way needed * than 32, currently this works, but if the are more user, another way needed
*/ */
#define QOS_USERS ((1 << (APP_SYSFREQ_USER_AI_VOICE)) | \ #define QOS_USERS \
(1 << (APP_SYSFREQ_USER_BT_A2DP))) ((1 << (APP_SYSFREQ_USER_AI_VOICE)) | (1 << (APP_SYSFREQ_USER_BT_A2DP)))
static const uint32_t freq_map[] = { static const uint32_t freq_map[] = {
[HAL_CMU_FREQ_32K] = FREQ_FREE, [HAL_CMU_FREQ_32K] = FREQ_FREE, [HAL_CMU_FREQ_26M] = FREQ_26M,
[HAL_CMU_FREQ_26M] = FREQ_26M, [HAL_CMU_FREQ_52M] = FREQ_52M, [HAL_CMU_FREQ_78M] = FREQ_78M,
[HAL_CMU_FREQ_52M] = FREQ_52M, [HAL_CMU_FREQ_104M] = FREQ_104M, [HAL_CMU_FREQ_208M] = FREQ_208M,
[HAL_CMU_FREQ_78M] = FREQ_78M,
[HAL_CMU_FREQ_104M] = FREQ_104M,
[HAL_CMU_FREQ_208M] = FREQ_208M,
}; };
static const uint32_t user_map[] = { static const uint32_t user_map[] = {
[0] = APP_SYSFREQ_USER_AI_VOICE, [0] = APP_SYSFREQ_USER_AI_VOICE,
[1] = APP_SYSFREQ_USER_BT_A2DP, [1] = APP_SYSFREQ_USER_BT_A2DP,
}; };
@ -89,95 +86,97 @@ static uint32_t qos_freqs_map;
*/ */
static uint32_t qos_users_map; static uint32_t qos_users_map;
static int app_qosfreq_req(enum APP_SYSFREQ_USER_T user, enum APP_SYSFREQ_FREQ_T freq) static int app_qosfreq_req(enum APP_SYSFREQ_USER_T user,
{ enum APP_SYSFREQ_FREQ_T freq) {
int ret; int ret;
int qos_freq_num = 0; int qos_freq_num = 0;
uint32_t max_qos_freq = 0; uint32_t max_qos_freq = 0;
int user_idx; int user_idx;
int i; int i;
uint32_t lock; uint32_t lock;
if (freq >= APP_SYSFREQ_FREQ_QTY) if (freq >= APP_SYSFREQ_FREQ_QTY)
return -1; return -1;
lock = int_lock(); lock = int_lock();
for (i = 0; i < ARRAY_SIZE(user_map); i++) { for (i = 0; i < ARRAY_SIZE(user_map); i++) {
if (user == user_map[i]) { if (user == user_map[i]) {
break; break;
}
} }
}
if (i >= ARRAY_SIZE(user_map)) { if (i >= ARRAY_SIZE(user_map)) {
int_unlock(lock);
ASSERT(0, "can not find qos user");
return 0;
}
user_idx = i;
if ((int)freq != (int)HAL_CMU_FREQ_32K) { // require freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_freqs_map |= freq << (4 * i);
qos_users_map |= 1 << user_idx;
} else { //release freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_users_map &= ~ (1 << user_idx);
}
//scan the qos_user_map and sum every user's request freq
for(i = 0; i < ARRAY_SIZE(user_map); i++) {
if ((qos_users_map >> i) & 0x1) {
uint32_t real_freq;
int freq_num;
freq_num = (qos_freqs_map >> (4 * i )) & 0xf;
real_freq = freq_map[freq_num];
max_qos_freq += real_freq;
}
}
for (i = 0; i < ARRAY_SIZE(freq_map); i++) {
if (i) {
if ((max_qos_freq > freq_map[i-1]) && (max_qos_freq <= freq_map[i])) {
qos_freq_num = i;
break;
}
} else {
if (max_qos_freq == freq_map[i]) {
qos_freq_num = i;
break;
}
}
}
if (i >= ARRAY_SIZE(freq_map)) {
qos_freq_num = (HAL_CMU_FREQ_QTY - 1);
int_unlock(lock);
TRACE(0, "WARNING: required sysfreq exceed");
// ASSERT(0, "can not find actual freq");
return 0;
}
user = APP_SYSFREQ_USER_QOS;
TRACE(2, "User %d require sysfreq %d", user, qos_freq_num);
ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user, (enum HAL_CMU_FREQ_T)qos_freq_num);
int_unlock(lock); int_unlock(lock);
return ret; ASSERT(0, "can not find qos user");
return 0;
}
user_idx = i;
if ((int)freq != (int)HAL_CMU_FREQ_32K) { // require freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_freqs_map |= freq << (4 * i);
qos_users_map |= 1 << user_idx;
} else { // release freq
qos_freqs_map &= ~(0xf << (4 * i));
qos_users_map &= ~(1 << user_idx);
}
// scan the qos_user_map and sum every user's request freq
for (i = 0; i < ARRAY_SIZE(user_map); i++) {
if ((qos_users_map >> i) & 0x1) {
uint32_t real_freq;
int freq_num;
freq_num = (qos_freqs_map >> (4 * i)) & 0xf;
real_freq = freq_map[freq_num];
max_qos_freq += real_freq;
}
}
for (i = 0; i < ARRAY_SIZE(freq_map); i++) {
if (i) {
if ((max_qos_freq > freq_map[i - 1]) && (max_qos_freq <= freq_map[i])) {
qos_freq_num = i;
break;
}
} else {
if (max_qos_freq == freq_map[i]) {
qos_freq_num = i;
break;
}
}
}
if (i >= ARRAY_SIZE(freq_map)) {
qos_freq_num = (HAL_CMU_FREQ_QTY - 1);
int_unlock(lock);
TRACE(0, "WARNING: required sysfreq exceed");
// ASSERT(0, "can not find actual freq");
return 0;
}
user = APP_SYSFREQ_USER_QOS;
TRACE(2, "User %d require sysfreq %d", user, qos_freq_num);
ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user,
(enum HAL_CMU_FREQ_T)qos_freq_num);
int_unlock(lock);
return ret;
} }
int app_sysfreq_req(enum APP_SYSFREQ_USER_T user, enum APP_SYSFREQ_FREQ_T freq) int app_sysfreq_req(enum APP_SYSFREQ_USER_T user,
{ enum APP_SYSFREQ_FREQ_T freq) {
int ret; int ret;
// if user is qos user // if user is qos user
if ((1 << user) & QOS_USERS) { if ((1 << user) & QOS_USERS) {
ret = app_qosfreq_req(user, freq); ret = app_qosfreq_req(user, freq);
} else { // if user is NOT qos user } else { // if user is NOT qos user
ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user, (enum HAL_CMU_FREQ_T)freq); ret = hal_sysfreq_req((enum HAL_SYSFREQ_USER_T)user,
} (enum HAL_CMU_FREQ_T)freq);
}
return ret; return ret;
} }
#ifdef RTOS #ifdef RTOS
@ -188,94 +187,86 @@ static osTimerId wdt_ping_timer_id;
osTimerDef(wdt_ping_timer, watchdog_ping_handler); osTimerDef(wdt_ping_timer, watchdog_ping_handler);
static uint32_t wdt_ping_period; static uint32_t wdt_ping_period;
static void watchdog_ping(void) static void watchdog_ping(void) {
{ hal_wdt_ping(HAL_WDT_ID_0);
hal_wdt_ping(HAL_WDT_ID_0);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_feed(); pmu_wdt_feed();
#endif #endif
} }
static void app_wdt_irq_handle(enum HAL_WDT_ID_T id, uint32_t status) static void app_wdt_irq_handle(enum HAL_WDT_ID_T id, uint32_t status) {
{ analog_aud_codec_mute();
analog_aud_codec_mute(); ASSERT(0, "%s id:%d status:%d", __func__, id, status);
ASSERT(0, "%s id:%d status:%d",__func__, id, status);
} }
static void pmu_wdt_irq_handle(void) static void pmu_wdt_irq_handle(void) {
{ analog_aud_codec_mute();
analog_aud_codec_mute(); ASSERT(1, "%s", __func__);
ASSERT(1, "%s", __func__);
} }
static void watchdog_ping_handler(void const *unused) static void watchdog_ping_handler(void const *unused) {
{ int ret;
int ret;
watchdog_ping(); watchdog_ping();
ret = rtx_task_idle_health_check(); ret = rtx_task_idle_health_check();
if (ret < 0) { if (ret < 0) {
ASSERT(0, "System soft lockup"); ASSERT(0, "System soft lockup");
} }
osTimerStart(wdt_ping_timer_id, wdt_ping_period); osTimerStart(wdt_ping_timer_id, wdt_ping_period);
} }
int app_wdt_open(int seconds) int app_wdt_open(int seconds) {
{ uint32_t lock = int_lock();
uint32_t lock = int_lock();
hal_wdt_set_irq_callback(HAL_WDT_ID_0, app_wdt_irq_handle); hal_wdt_set_irq_callback(HAL_WDT_ID_0, app_wdt_irq_handle);
hal_wdt_set_timeout(HAL_WDT_ID_0, seconds); hal_wdt_set_timeout(HAL_WDT_ID_0, seconds);
hal_wdt_start(HAL_WDT_ID_0); hal_wdt_start(HAL_WDT_ID_0);
pmu_wdt_set_irq_handler(pmu_wdt_irq_handle); pmu_wdt_set_irq_handler(pmu_wdt_irq_handle);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_config(seconds * 1100, seconds * 1100); pmu_wdt_config(seconds * 1100, seconds * 1100);
pmu_wdt_start(); pmu_wdt_start();
#endif #endif
int_unlock(lock); int_unlock(lock);
wdt_ping_timer_id = osTimerCreate(osTimer(wdt_ping_timer), osTimerOnce, NULL); wdt_ping_timer_id = osTimerCreate(osTimer(wdt_ping_timer), osTimerOnce, NULL);
if (!wdt_ping_timer_id) { if (!wdt_ping_timer_id) {
TRACE(0,"Warning: can not create watchdog ping timer"); TRACE(0, "Warning: can not create watchdog ping timer");
return -1; return -1;
} }
wdt_ping_period = seconds * 1000 / 4; wdt_ping_period = seconds * 1000 / 4;
osTimerStart(wdt_ping_timer_id, wdt_ping_period); osTimerStart(wdt_ping_timer_id, wdt_ping_period);
return 0; return 0;
} }
int app_wdt_reopen(int seconds) int app_wdt_reopen(int seconds) {
{ uint32_t lock = int_lock();
uint32_t lock = int_lock(); hal_wdt_stop(HAL_WDT_ID_0);
hal_wdt_stop(HAL_WDT_ID_0); hal_wdt_set_timeout(HAL_WDT_ID_0, seconds);
hal_wdt_set_timeout(HAL_WDT_ID_0, seconds); hal_wdt_start(HAL_WDT_ID_0);
hal_wdt_start(HAL_WDT_ID_0);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_config(seconds * 1000, seconds * 1000); pmu_wdt_config(seconds * 1000, seconds * 1000);
pmu_wdt_start(); pmu_wdt_start();
#endif #endif
int_unlock(lock); int_unlock(lock);
osTimerStart(wdt_ping_timer_id, wdt_ping_period); osTimerStart(wdt_ping_timer_id, wdt_ping_period);
return 0; return 0;
} }
int app_wdt_close(void) int app_wdt_close(void) {
{ uint32_t lock;
uint32_t lock;
osTimerStop(wdt_ping_timer_id); osTimerStop(wdt_ping_timer_id);
lock = int_lock(); lock = int_lock();
hal_wdt_stop(HAL_WDT_ID_0); hal_wdt_stop(HAL_WDT_ID_0);
#ifndef CHIP_BEST2000 #ifndef CHIP_BEST2000
pmu_wdt_stop(); pmu_wdt_stop();
#endif #endif
int_unlock(lock); int_unlock(lock);
return 0; return 0;
} }
#endif #endif

View file

@ -1,23 +1,23 @@
#ifdef __RAND_FROM_MIC__ #ifdef __RAND_FROM_MIC__
#include "audioflinger.h"
#include "hal_trace.h"
#include "app_utils.h"
#include "string.h"
#include "stdlib.h"
#include "stdio.h"
#include "app_bt_stream.h"
#include "randfrommic.h" #include "randfrommic.h"
#include "hal_timer.h"
#include "cmsis_os.h"
#include "cmsis_gcc.h"
#include "app_audio.h" #include "app_audio.h"
#include "app_bt_stream.h"
#include "app_utils.h"
#include "audioflinger.h"
#include "cmsis_gcc.h"
#include "cmsis_os.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#if BT_DRV_DEBUG #if BT_DRV_DEBUG
#define RAND_TRACE(n, fmt, ...) TRACE(n, fmt, ##__VA_ARGS__) #define RAND_TRACE(n, fmt, ...) TRACE(n, fmt, ##__VA_ARGS__)
#define RAND_DUMP(s,buff,len) DUMP8(s,buff,len) #define RAND_DUMP(s, buff, len) DUMP8(s, buff, len)
#else #else
#define RAND_TRACE(n, fmt, ...) #define RAND_TRACE(n, fmt, ...)
#define RAND_DUMP(s,buff,len) #define RAND_DUMP(s, buff, len)
#endif #endif
static void generateRand(bool on); static void generateRand(bool on);
@ -29,239 +29,201 @@ static uint32_t randSeed = 1;
static bool randInitialised = false; static bool randInitialised = false;
// 4 bytes aligned // 4 bytes aligned
#define RAND_GRAB_BITS_PER_SAMPLE 4 #define RAND_GRAB_BITS_PER_SAMPLE 4
#define RAND_GRAB_BITS_MASK_PER_SAMPLE ((1 << RAND_GRAB_BITS_PER_SAMPLE)-1) #define RAND_GRAB_BITS_MASK_PER_SAMPLE ((1 << RAND_GRAB_BITS_PER_SAMPLE) - 1)
RAND_NUMBER_T randomBuffer = RAND_NUMBER_T randomBuffer = {
{
25, 25,
RAND_STATUS_CLOSE, RAND_STATUS_CLOSE,
}; };
/** /**
* Description: parse mic data according to the stream cfg(bit mode and channel number) * Description: parse mic data according to the stream cfg(bit mode and channel
* only the lowest byte of each frame is taken * number) only the lowest byte of each frame is taken ADC format: 16bit mode ->
* ADC format: * [15:0] is valid 24bit mode -> [23:4] is valid 32bit mode -> [31:12] is valid
* 16bit mode -> [15:0] is valid
* 24bit mode -> [23:4] is valid
* 32bit mode -> [31:12] is valid
* *
*/ */
static int randDataParse(uint8_t *buf, uint32_t len, enum AUD_BITS_T bits, static int randDataParse(uint8_t *buf, uint32_t len, enum AUD_BITS_T bits,
enum AUD_CHANNEL_NUM_T ch_num) enum AUD_CHANNEL_NUM_T ch_num) {
{ uint8_t index = 0;
uint8_t index = 0;
union { union {
uint32_t seedValue; uint32_t seedValue;
uint8_t value[4]; uint8_t value[4];
}seedData; } seedData;
if ((NULL == buf) || if ((NULL == buf) ||
((RANDOM_CAPTURE_BUFFER_SIZE/2) > len)) // ping-pong buffer ((RANDOM_CAPTURE_BUFFER_SIZE / 2) > len)) // ping-pong buffer
{ {
return -1; return -1;
}
RAND_TRACE(1, "%s", __func__);
RAND_DUMP("%x ", buf, 16);
switch (bits) {
case AUD_BITS_16: {
uint16_t *content = (uint16_t *)buf;
for (index = 0; index < 4; index++) {
seedData.value[index] =
((*content) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
(((*(content + ch_num)) & RAND_GRAB_BITS_MASK_PER_SAMPLE)
<< RAND_GRAB_BITS_PER_SAMPLE);
content += ((8 / RAND_GRAB_BITS_PER_SAMPLE) * ch_num);
} }
break;
RAND_TRACE(1, "%s", __func__); }
RAND_DUMP("%x ",buf, 16); case AUD_BITS_24: {
uint32_t *content = (uint32_t *)buf;
switch (bits) for (index = 0; index < 4; index++) {
{ // bit 23:4 are valid
case AUD_BITS_16: seedData.value[index] =
{ (((*content) >> 4) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
uint16_t* content = (uint16_t *)buf; ((((*(content + ch_num)) >> 4) & RAND_GRAB_BITS_MASK_PER_SAMPLE)
<< RAND_GRAB_BITS_PER_SAMPLE);
for (index = 0;index < 4; index++) content += ((8 / RAND_GRAB_BITS_PER_SAMPLE) * ch_num);
{
seedData.value[index] = ((*content) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
(((*(content+ch_num)) & RAND_GRAB_BITS_MASK_PER_SAMPLE) << RAND_GRAB_BITS_PER_SAMPLE);
content += ((8/RAND_GRAB_BITS_PER_SAMPLE)*ch_num);
}
break;
}
case AUD_BITS_24:
{
uint32_t* content = (uint32_t *)buf;
for (index = 0;index < 4; index++)
{
// bit 23:4 are valid
seedData.value[index] = (((*content) >> 4) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
((((*(content+ch_num)) >> 4)&RAND_GRAB_BITS_MASK_PER_SAMPLE) << RAND_GRAB_BITS_PER_SAMPLE);
content += ((8/RAND_GRAB_BITS_PER_SAMPLE)*ch_num);
}
break;
}
case AUD_BITS_32:
{
uint32_t* content = (uint32_t *)buf;
for (index = 0;index < 4; index++)
{
// bit 31:12 are valid
seedData.value[index] = (((*content) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
((((*(content+ch_num)) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE) << RAND_GRAB_BITS_PER_SAMPLE);
content += ((8/RAND_GRAB_BITS_PER_SAMPLE)*ch_num);
}
break;
}
default:
{
return -1;
}
break;
} }
break;
}
case AUD_BITS_32: {
uint32_t *content = (uint32_t *)buf;
for (index = 0; index < 4; index++) {
// bit 31:12 are valid
seedData.value[index] =
(((*content) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE) |
((((*(content + ch_num)) >> 12) & RAND_GRAB_BITS_MASK_PER_SAMPLE)
<< RAND_GRAB_BITS_PER_SAMPLE);
content += ((8 / RAND_GRAB_BITS_PER_SAMPLE) * ch_num);
}
break;
}
default: {
return -1;
} break;
}
randSeed = seedData.seedValue; randSeed = seedData.seedValue;
return 0; return 0;
} }
static void generateRand(bool on) static void generateRand(bool on) {
{ struct AF_STREAM_CONFIG_T stream_cfg;
struct AF_STREAM_CONFIG_T stream_cfg;
RAND_TRACE(2, "%s op:%d", __func__, on); RAND_TRACE(2, "%s op:%d", __func__, on);
if (on) if (on) {
{ randomBuffer.skipRound = 10;
randomBuffer.skipRound = 10;
randomBuffer.status = random_mic_is_on(&deviceId); randomBuffer.status = random_mic_is_on(&deviceId);
RAND_TRACE(2, "%s random status = %d", __func__, randomBuffer.status); RAND_TRACE(2, "%s random status = %d", __func__, randomBuffer.status);
if (RAND_STATUS_CLOSE == randomBuffer.status) if (RAND_STATUS_CLOSE == randomBuffer.status) {
{ app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_208M);
app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_208M); app_capture_audio_mempool_init();
app_capture_audio_mempool_init(); app_capture_audio_mempool_get_buff(&captureBuffer,
app_capture_audio_mempool_get_buff(&captureBuffer, RANDOM_CAPTURE_BUFFER_SIZE);
RANDOM_CAPTURE_BUFFER_SIZE); memset(&stream_cfg, 0, sizeof(stream_cfg));
memset(&stream_cfg, 0, sizeof(stream_cfg)); stream_cfg.bits = AUD_BITS_16;
stream_cfg.bits = AUD_BITS_16; stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.sample_rate = AUD_SAMPRATE_8000;
stream_cfg.sample_rate = AUD_SAMPRATE_8000; stream_cfg.vol = TGT_VOLUME_LEVEL_15;
stream_cfg.vol = TGT_VOLUME_LEVEL_15; stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC; stream_cfg.handler = rand_data_handle;
stream_cfg.handler = rand_data_handle;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(captureBuffer); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(captureBuffer);
stream_cfg.data_size = RANDOM_CAPTURE_BUFFER_SIZE; stream_cfg.data_size = RANDOM_CAPTURE_BUFFER_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
randomBuffer.status = RAND_STATUS_OPEN; randomBuffer.status = RAND_STATUS_OPEN;
} } else if (RAND_STATUS_MIC_OPENED == randomBuffer.status) {
else if(RAND_STATUS_MIC_OPENED == randomBuffer.status) af_stream_start(deviceId, AUD_STREAM_CAPTURE);
{
af_stream_start(deviceId, AUD_STREAM_CAPTURE);
}
} }
else } else {
{ // release the acquired system clock
// release the acquired system clock app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_32K);
app_sysfreq_req(APP_SYSFREQ_USER_RANDOM, APP_SYSFREQ_32K); if (RAND_STATUS_MIC_OPENED == randomBuffer.status) {
if (RAND_STATUS_MIC_OPENED == randomBuffer.status) af_stream_stop(deviceId, AUD_STREAM_CAPTURE);
{ } else if (RAND_STATUS_OPEN == randomBuffer.status) {
af_stream_stop(deviceId, AUD_STREAM_CAPTURE); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
} af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
else if (RAND_STATUS_OPEN == randomBuffer.status)
{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
}
randomBuffer.status = RAND_STATUS_CLOSE;
} }
randomBuffer.status = RAND_STATUS_CLOSE;
}
} }
static uint32_t rand_data_handle(uint8_t *buf, uint32_t len) static uint32_t rand_data_handle(uint8_t *buf, uint32_t len) {
{ if (buf == NULL) {
if (buf == NULL) return len;
{ }
return len;
}
if ((1 == randomBuffer.skipRound) && if ((1 == randomBuffer.skipRound) &&
(!randDataParse(buf, len, AUD_BITS_16, AUD_CHANNEL_NUM_1))) (!randDataParse(buf, len, AUD_BITS_16, AUD_CHANNEL_NUM_1))) {
{ generateRand(false);
randomBuffer.skipRound = 0;
} else if (1 != randomBuffer.skipRound) {
randomBuffer.skipRound--;
}
return len;
}
void initSeed(void) {
uint8_t count = 100; // avoid deed loop
RAND_TRACE(2, "%s:+++ initialised = %d", __func__, randInitialised);
if (randInitialised) {
generateRand(true);
while ((0 != randomBuffer.skipRound) && (0 != count)) {
osDelay(10);
count--;
}
}
if ((0 == count) || (false == randInitialised)) {
RAND_TRACE(1, "%s not ready", __func__);
randSeed = (uint32_t)hal_sys_timer_get();
generateRand(false);
}
srand(randSeed);
RAND_TRACE(2, "%s:--- count = %d", __func__, count);
}
void random_status_sync(void) {
if (RAND_STATUS_OPEN == randomBuffer.status) {
RAND_TRACE(1, "%s random mic has already on,should be closed", __func__);
generateRand(false);
}
}
void random_data_process(uint8_t *buf, uint32_t len, enum AUD_BITS_T bits,
enum AUD_CHANNEL_NUM_T ch_num) {
if (buf == NULL) {
return;
}
if ((RAND_STATUS_MIC_STARTED == randomBuffer.status) ||
(RAND_STATUS_MIC_OPENED == randomBuffer.status)) {
if (len >= RANDOM_CAPTURE_BUFFER_SIZE / 2) {
RAND_TRACE(4, "%s buf address = 0x%p, bits = %d, channel num = %d",
__func__, buf, bits, ch_num);
RAND_DUMP("%02x ", buf, 32);
if ((1 == randomBuffer.skipRound) &&
(!randDataParse(buf, len, bits, ch_num))) {
generateRand(false); generateRand(false);
randomBuffer.skipRound = 0; randomBuffer.skipRound = 0;
} } else if (1 != randomBuffer.skipRound) {
else if (1 != randomBuffer.skipRound)
{
randomBuffer.skipRound--; randomBuffer.skipRound--;
}
} }
}
return len;
} }
void initSeed(void) void randInit(void) { randInitialised = true; }
{
uint8_t count = 100; // avoid deed loop
RAND_TRACE(2, "%s:+++ initialised = %d", __func__, randInitialised);
if (randInitialised)
{
generateRand(true);
while ((0 != randomBuffer.skipRound) && (0 != count))
{
osDelay(10);
count --;
}
}
if ((0 == count) || (false == randInitialised))
{
RAND_TRACE(1, "%s not ready", __func__);
randSeed = (uint32_t)hal_sys_timer_get();
generateRand(false);
}
srand(randSeed);
RAND_TRACE(2, "%s:--- count = %d", __func__, count);
}
void random_status_sync(void)
{
if (RAND_STATUS_OPEN == randomBuffer.status)
{
RAND_TRACE(1, "%s random mic has already on,should be closed", __func__);
generateRand(false);
}
}
void random_data_process(uint8_t *buf, uint32_t len,enum AUD_BITS_T bits,
enum AUD_CHANNEL_NUM_T ch_num)
{
if (buf == NULL)
{
return;
}
if ((RAND_STATUS_MIC_STARTED == randomBuffer.status) ||
(RAND_STATUS_MIC_OPENED == randomBuffer.status))
{
if (len >= RANDOM_CAPTURE_BUFFER_SIZE/2)
{
RAND_TRACE(4, "%s buf address = 0x%p, bits = %d, channel num = %d", __func__, buf, bits, ch_num);
RAND_DUMP("%02x ", buf, 32);
if ((1 == randomBuffer.skipRound) &&
(!randDataParse(buf, len, bits, ch_num)))
{
generateRand(false);
randomBuffer.skipRound = 0;
}
else if (1 != randomBuffer.skipRound)
{
randomBuffer.skipRound--;
}
}
}
}
void randInit(void)
{
randInitialised = true;
}
#endif #endif

File diff suppressed because it is too large Load diff

View file

@ -15,8 +15,9 @@
****************************************************************************/ ****************************************************************************/
#ifndef __APP_FACTORY_H__ #ifndef __APP_FACTORY_H__
#define __APP_FACTORY_H__ #define __APP_FACTORY_H__
#include <stdbool.h>
#define APP_FACTORY_TRACE(s,...) TRACE(s, ##__VA_ARGS__) #include <stdint.h>
#define APP_FACTORY_TRACE(s, ...) TRACE(s, ##__VA_ARGS__)
void app_factorymode_result_set(bool result); void app_factorymode_result_set(bool result);

View file

@ -13,171 +13,159 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_bt_stream.h"
#include "app_factory.h"
#include "app_media_player.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "resources.h" #include "resources.h"
#include "app_bt_stream.h"
#include "app_media_player.h"
#include "app_factory.h"
#include "string.h" #include "string.h"
// for audio // for audio
#include "audioflinger.h"
#include "app_audio.h" #include "app_audio.h"
#include "app_utils.h" #include "app_utils.h"
#include "audioflinger.h"
#include "app_factory_audio.h" #include "app_factory_audio.h"
#ifdef __FACTORY_MODE_SUPPORT__ #ifdef __FACTORY_MODE_SUPPORT__
#define BT_AUDIO_FACTORMODE_BUFF_SIZE (1024*2) #define BT_AUDIO_FACTORMODE_BUFF_SIZE (1024 * 2)
static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY; static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY;
static int16_t *app_audioloop_play_cache = NULL; static int16_t *app_audioloop_play_cache = NULL;
static uint32_t app_factorymode_data_come(uint8_t *buf, uint32_t len) static uint32_t app_factorymode_data_come(uint8_t *buf, uint32_t len) {
{ DUMP16("%d,", (int *)buf, 30);
DUMP16("%d,",(int*)buf,30);
app_audio_pcmbuff_put(buf, len); app_audio_pcmbuff_put(buf, len);
if (a2dp_cache_status == APP_AUDIO_CACHE_QTY){ if (a2dp_cache_status == APP_AUDIO_CACHE_QTY) {
a2dp_cache_status = APP_AUDIO_CACHE_OK; a2dp_cache_status = APP_AUDIO_CACHE_OK;
} }
return len; return len;
} }
static uint32_t app_factorymode_more_data(uint8_t *buf, uint32_t len) static uint32_t app_factorymode_more_data(uint8_t *buf, uint32_t len) {
{ if (a2dp_cache_status != APP_AUDIO_CACHE_QTY) {
if (a2dp_cache_status != APP_AUDIO_CACHE_QTY){ app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len / 2);
app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2); app_bt_stream_copy_track_one_to_two_16bits(
app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, app_audioloop_play_cache, len/2/2); (int16_t *)buf, app_audioloop_play_cache, len / 2 / 2);
} }
return len; return len;
} }
int app_factorymode_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq) int app_factorymode_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq) {
{ uint8_t *buff_play = NULL;
uint8_t *buff_play = NULL; uint8_t *buff_capture = NULL;
uint8_t *buff_capture = NULL; uint8_t *buff_loop = NULL;
uint8_t *buff_loop = NULL; struct AF_STREAM_CONFIG_T stream_cfg;
struct AF_STREAM_CONFIG_T stream_cfg; static bool isRun = false;
static bool isRun = false; APP_FACTORY_TRACE(3, "app_factorymode_audioloop work:%d op:%d freq:%d", isRun,
APP_FACTORY_TRACE(3,"app_factorymode_audioloop work:%d op:%d freq:%d", isRun, on, freq); on, freq);
if (isRun==on) if (isRun == on)
return 0; return 0;
if (on){ if (on) {
if (freq < APP_SYSFREQ_52M) { if (freq < APP_SYSFREQ_52M) {
freq = APP_SYSFREQ_52M; freq = APP_SYSFREQ_52M;
} }
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq); app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
a2dp_cache_status = APP_AUDIO_CACHE_QTY; a2dp_cache_status = APP_AUDIO_CACHE_QTY;
app_audio_mempool_init(); app_audio_mempool_init();
app_audio_mempool_get_buff(&buff_capture, BT_AUDIO_FACTORMODE_BUFF_SIZE); app_audio_mempool_get_buff(&buff_capture, BT_AUDIO_FACTORMODE_BUFF_SIZE);
app_audio_mempool_get_buff(&buff_play, BT_AUDIO_FACTORMODE_BUFF_SIZE*2); app_audio_mempool_get_buff(&buff_play, BT_AUDIO_FACTORMODE_BUFF_SIZE * 2);
app_audio_mempool_get_buff((uint8_t **)&app_audioloop_play_cache, BT_AUDIO_FACTORMODE_BUFF_SIZE*2/2/2); app_audio_mempool_get_buff((uint8_t **)&app_audioloop_play_cache,
app_audio_mempool_get_buff(&buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE<<2); BT_AUDIO_FACTORMODE_BUFF_SIZE * 2 / 2 / 2);
app_audio_pcmbuff_init(buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE<<2); app_audio_mempool_get_buff(&buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE << 2);
memset(&stream_cfg, 0, sizeof(stream_cfg)); app_audio_pcmbuff_init(buff_loop, BT_AUDIO_FACTORMODE_BUFF_SIZE << 2);
stream_cfg.bits = AUD_BITS_16; memset(&stream_cfg, 0, sizeof(stream_cfg));
//stream_cfg.channel_num = AUD_CHANNEL_NUM_1; stream_cfg.bits = AUD_BITS_16;
// stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
#ifdef SPEECH_TX_AEC_CODEC_REF #ifdef SPEECH_TX_AEC_CODEC_REF
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
#else #else
stream_cfg.channel_num = AUD_CHANNEL_NUM_1; stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
#endif #endif
#if defined(__AUDIO_RESAMPLE__) && defined(SW_CAPTURE_RESAMPLE) #if defined(__AUDIO_RESAMPLE__) && defined(SW_CAPTURE_RESAMPLE)
stream_cfg.sample_rate = AUD_SAMPRATE_8463; stream_cfg.sample_rate = AUD_SAMPRATE_8463;
#else #else
stream_cfg.sample_rate = AUD_SAMPRATE_8000; stream_cfg.sample_rate = AUD_SAMPRATE_8000;
#endif #endif
#if FPGA==0 #if FPGA == 0
stream_cfg.device = AUD_STREAM_USE_INT_CODEC; stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
#else #else
stream_cfg.device = AUD_STREAM_USE_EXT_CODEC; stream_cfg.device = AUD_STREAM_USE_EXT_CODEC;
#endif #endif
stream_cfg.vol = TGT_VOLUME_LEVEL_15; stream_cfg.vol = TGT_VOLUME_LEVEL_15;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC; stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.handler = app_factorymode_data_come; stream_cfg.handler = app_factorymode_data_come;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture);
stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE; stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
stream_cfg.channel_num = AUD_CHANNEL_NUM_2; stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER; stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.handler = app_factorymode_more_data; stream_cfg.handler = app_factorymode_more_data;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play); stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play);
stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*2; stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE * 2;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg); af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
APP_FACTORY_TRACE(0,"app_factorymode_audioloop on"); APP_FACTORY_TRACE(0, "app_factorymode_audioloop on");
} else { } else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK); af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
APP_FACTORY_TRACE(0,"app_factorymode_audioloop off"); APP_FACTORY_TRACE(0, "app_factorymode_audioloop off");
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K); app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
} }
isRun=on; isRun = on;
return 0; return 0;
} }
int app_factorymode_output_pcmpatten(audio_test_pcmpatten_t *pcmpatten, uint8_t *buf, uint32_t len) int app_factorymode_output_pcmpatten(audio_test_pcmpatten_t *pcmpatten,
{ uint8_t *buf, uint32_t len) {
uint32_t remain_size = len; uint32_t remain_size = len;
uint32_t curr_size = 0; uint32_t curr_size = 0;
if (remain_size > pcmpatten->len) if (remain_size > pcmpatten->len) {
{ do {
do{ if (pcmpatten->cuur_buf_pos) {
if (pcmpatten->cuur_buf_pos) curr_size = pcmpatten->len - pcmpatten->cuur_buf_pos;
{ memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos / 2]), curr_size);
curr_size = pcmpatten->len-pcmpatten->cuur_buf_pos; remain_size -= curr_size;
memcpy(buf,&(pcmpatten->buf[pcmpatten->cuur_buf_pos/2]), curr_size); pcmpatten->cuur_buf_pos = 0;
remain_size -= curr_size; } else if (remain_size > pcmpatten->len) {
pcmpatten->cuur_buf_pos = 0; memcpy(buf + curr_size, pcmpatten->buf, pcmpatten->len);
} curr_size += pcmpatten->len;
else if (remain_size>pcmpatten->len) remain_size -= pcmpatten->len;
{ } else {
memcpy(buf+curr_size, pcmpatten->buf, pcmpatten->len); memcpy(buf + curr_size, pcmpatten->buf, remain_size);
curr_size += pcmpatten->len; pcmpatten->cuur_buf_pos = remain_size;
remain_size -= pcmpatten->len; remain_size = 0;
} }
else } while (remain_size);
{ } else {
memcpy(buf+curr_size,pcmpatten->buf, remain_size); if ((pcmpatten->len - pcmpatten->cuur_buf_pos) >= len) {
pcmpatten->cuur_buf_pos = remain_size; memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos / 2]), len);
remain_size = 0; pcmpatten->cuur_buf_pos += len;
} } else {
}while(remain_size); curr_size = pcmpatten->len - pcmpatten->cuur_buf_pos;
} memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos / 2]), curr_size);
else pcmpatten->cuur_buf_pos = len - curr_size;
{ memcpy(buf + curr_size, pcmpatten->buf, pcmpatten->cuur_buf_pos);
if ((pcmpatten->len - pcmpatten->cuur_buf_pos) >= len)
{
memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos/2]),len);
pcmpatten->cuur_buf_pos += len;
}
else
{
curr_size = pcmpatten->len-pcmpatten->cuur_buf_pos;
memcpy(buf, &(pcmpatten->buf[pcmpatten->cuur_buf_pos/2]),curr_size);
pcmpatten->cuur_buf_pos = len - curr_size;
memcpy(buf+curr_size, pcmpatten->buf, pcmpatten->cuur_buf_pos);
}
} }
}
return 0; return 0;
} }
#include "fft128dot.h" #include "fft128dot.h"
@ -185,111 +173,118 @@ int app_factorymode_output_pcmpatten(audio_test_pcmpatten_t *pcmpatten, uint8_t
#define N 64 #define N 64
#define NFFT 128 #define NFFT 128
struct mic_st_t{ struct mic_st_t {
FftTwiddle_t w[N]; FftTwiddle_t w[N];
FftTwiddle_t w128[N*2]; FftTwiddle_t w128[N * 2];
FftData_t x[N*2]; FftData_t x[N * 2];
FftData_t data_odd[N]; FftData_t data_odd[N];
FftData_t data_even[N]; FftData_t data_even[N];
FftData_t data_odd_d[N]; FftData_t data_odd_d[N];
FftData_t data_even_d[N]; FftData_t data_even_d[N];
FftData_t data[N*2]; FftData_t data[N * 2];
signed long out[N]; signed long out[N];
}; };
int app_factorymode_mic_cancellation_run(void * mic_st, signed short *inbuf, int sample) int app_factorymode_mic_cancellation_run(void *mic_st, signed short *inbuf,
{ int sample) {
struct mic_st_t *st = (struct mic_st_t *)mic_st; struct mic_st_t *st = (struct mic_st_t *)mic_st;
int i,k,jj,ii; int i, k, jj, ii;
//int dataWidth = 16; // input word format is 16 bit twos complement fractional format 1.15 // int dataWidth = 16; // input word format is 16 bit twos complement
int twiddleWidth = 16; // input word format is 16 bit twos complement fractional format 2.14 // fractional format 1.15
FftMode_t ifft = FFT_MODE; int twiddleWidth =
16; // input word format is 16 bit twos complement fractional format 2.14
FftMode_t ifft = FFT_MODE;
make_symmetric_twiddles(st->w,N,twiddleWidth); make_symmetric_twiddles(st->w, N, twiddleWidth);
make_symmetric_twiddles(st->w128,N*2,twiddleWidth); make_symmetric_twiddles(st->w128, N * 2, twiddleWidth);
// input data // input data
for (i=0; i<sample; i++){ for (i = 0; i < sample; i++) {
st->x[i].re = inbuf[i]; st->x[i].re = inbuf[i];
st->x[i].im = 0; st->x[i].im = 0;
}
for (ii = 0; ii < 1; ii++) {
k = 0;
for (jj = 0; jj < N * 2; jj += 2) {
FftData_t tmp;
tmp.re = st->x[jj].re;
tmp.im = st->x[jj].im;
st->data_even[k].re =
tmp.re; //(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
st->data_even[k].im =
tmp.im; //(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
tmp.re = st->x[jj + 1].re;
tmp.im = st->x[jj + 1].im;
st->data_odd[k].re =
tmp.re; //(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
st->data_odd[k].im =
tmp.im; //(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
k++;
} }
for(ii = 0; ii < 1; ii++) fftr4(NFFT / 2, st->data_even, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH,
{ ifft);
k = 0; fftr4(NFFT / 2, st->data_odd, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH,
for (jj = 0; jj < N*2; jj+=2) ifft);
{
FftData_t tmp;
tmp.re = st->x[jj].re; for (jj = 0; jj < NFFT / 2; jj++) {
tmp.im = st->x[jj].im;
st->data_even[k].re = tmp.re;//(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ; int idx = dibit_reverse_int(jj, NFFT / 2);
st->data_even[k].im = tmp.im;//(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ; st->data_even_d[jj].re = st->data_even[idx].re;
tmp.re = st->x[jj+1].re; st->data_even_d[jj].im = st->data_even[idx].im;
tmp.im = st->x[jj+1].im; st->data_odd_d[jj].re = st->data_odd[idx].re;
st->data_odd[k].re = tmp.re;//(int) (double(tmp.re)*double(1 << FFTR4_INPUT_FORMAT_Y)) ; st->data_odd_d[jj].im = st->data_odd[idx].im;
st->data_odd[k].im = tmp.im;//(int) (double(tmp.im)*double(1 << FFTR4_INPUT_FORMAT_Y)) ;
k++;
}
fftr4(NFFT/2, st->data_even, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH, ifft);
fftr4(NFFT/2, st->data_odd, st->w, FFTR4_TWIDDLE_WIDTH, FFTR4_DATA_WIDTH, ifft);
for (jj = 0; jj < NFFT/2; jj++)
{
int idx = dibit_reverse_int(jj, NFFT/2);
st->data_even_d[jj].re = st->data_even[idx].re;
st->data_even_d[jj].im = st->data_even[idx].im;
st->data_odd_d[jj].re = st->data_odd[idx].re;
st->data_odd_d[jj].im = st->data_odd[idx].im;
}
for (jj=0;jj<NFFT/2;jj++)
{
long long mbr,mbi;
FftData_t ta;
FftData_t tmp;
double a;
mbr = (long long)(st->data_odd_d[jj].re) * st->w128[jj].re - (long long)(st->data_odd_d[jj].im) * st->w128[jj].im;
mbi = (long long)(st->data_odd_d[jj].im) * st->w128[jj].re + (long long)(st->data_odd_d[jj].re) * st->w128[jj].im;
ta.re = int(mbr>>(FFTR4_TWIDDLE_WIDTH-2));
ta.im = int(mbi>>(FFTR4_TWIDDLE_WIDTH-2));
st->data[jj].re = (st->data_even_d[jj].re + ta.re)/2;
st->data[jj].im = (st->data_even_d[jj].im + ta.im)/2;
//data[jj] = sat(data[jj],FFTR4_DATA_WIDTH);
st->data[jj+NFFT/2].re = (st->data_even_d[jj].re - ta.re)/2;
st->data[jj+NFFT/2].im = (st->data_even_d[jj].im - ta.im)/2;
//data[jj+NFFT/2] = sat(data[jj+NFFT/2],FFTR4_DATA_WIDTH);
a = st->data[jj].re;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.re = (int)a;
a = st->data[jj].im;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii*NFFT+jj].re = (int) tmp.re;
st->x[ii*NFFT+jj].im = (int) tmp.im;
a = st->data[jj+NFFT/2].re;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.re = (int)a;
a = st->data[jj+NFFT/2].im;///double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1 << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii*NFFT+jj+NFFT/2].re = (int) tmp.re;
st->x[ii*NFFT+jj+NFFT/2].im = (int) tmp.im;
}
} }
for (jj = 0; jj < NFFT / 2; jj++) {
long long mbr, mbi;
FftData_t ta;
FftData_t tmp;
double a;
mbr = (long long)(st->data_odd_d[jj].re) * st->w128[jj].re -
(long long)(st->data_odd_d[jj].im) * st->w128[jj].im;
mbi = (long long)(st->data_odd_d[jj].im) * st->w128[jj].re +
(long long)(st->data_odd_d[jj].re) * st->w128[jj].im;
ta.re = int(mbr >> (FFTR4_TWIDDLE_WIDTH - 2));
ta.im = int(mbi >> (FFTR4_TWIDDLE_WIDTH - 2));
st->data[jj].re = (st->data_even_d[jj].re + ta.re) / 2;
st->data[jj].im = (st->data_even_d[jj].im + ta.im) / 2;
// data[jj] = sat(data[jj],FFTR4_DATA_WIDTH);
st->data[jj + NFFT / 2].re = (st->data_even_d[jj].re - ta.re) / 2;
st->data[jj + NFFT / 2].im = (st->data_even_d[jj].im - ta.im) / 2;
// data[jj+NFFT/2] = sat(data[jj+NFFT/2],FFTR4_DATA_WIDTH);
for (i=0; i<N; i++){ a = st->data[jj].re; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1
st->out[i] = st->x[i].re * st->x[i].re + st->x[i].im * st->x[i].im; /// << FFTR4_SCALE);
tmp.re = (int)a;
a = st->data[jj].im; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);// * double(1
/// << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii * NFFT + jj].re = (int)tmp.re;
st->x[ii * NFFT + jj].im = (int)tmp.im;
a = st->data[jj + NFFT / 2].re; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);//
/// * double(1 << FFTR4_SCALE);
tmp.re = (int)a;
a = st->data[jj + NFFT / 2].im; /// double(1 << FFTR4_OUTPUT_FORMAT_Y);//
/// * double(1 << FFTR4_SCALE);
tmp.im = (int)a;
st->x[ii * NFFT + jj + NFFT / 2].re = (int)tmp.re;
st->x[ii * NFFT + jj + NFFT / 2].im = (int)tmp.im;
} }
}
return 0; for (i = 0; i < N; i++) {
st->out[i] = st->x[i].re * st->x[i].re + st->x[i].im * st->x[i].im;
}
return 0;
} }
void *app_factorymode_mic_cancellation_init(void* (* alloc_ext)(int)) void *app_factorymode_mic_cancellation_init(void *(*alloc_ext)(int)) {
{ struct mic_st_t *mic_st;
struct mic_st_t *mic_st; mic_st = (struct mic_st_t *)alloc_ext(sizeof(struct mic_st_t));
mic_st = (struct mic_st_t *)alloc_ext(sizeof(struct mic_st_t)); return (void *)mic_st;
return (void *)mic_st;
} }
#endif #endif

View file

@ -13,128 +13,120 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "cmsis_os.h"
#include "hal_trace.h"
#include "hal_sleep.h"
#include "bt_drv_interface.h"
#include "intersyshci.h"
#include "apps.h"
#include "app_factory.h"
#include "app_factory_bt.h" #include "app_factory_bt.h"
#include "app_battery.h"
#include "app_factory.h"
#include "app_utils.h" #include "app_utils.h"
#include "apps.h"
#include "bluetooth.h" #include "bluetooth.h"
#include "bt_drv_interface.h"
#include "bt_drv_reg_op.h"
#include "cmsis_os.h"
#include "conmgr_api.h"
#include "hal_bootmode.h"
#include "hal_chipid.h"
#include "hal_sleep.h"
#include "hal_trace.h"
#include "intersyshci.h"
#include "me_api.h"
#include "nvrecord.h" #include "nvrecord.h"
#include "nvrecord_dev.h" #include "nvrecord_dev.h"
#include "pmu.h" #include "pmu.h"
#include "tgt_hardware.h" #include "tgt_hardware.h"
#include "app_battery.h"
#include "bt_drv_reg_op.h"
#include "conmgr_api.h"
#include "me_api.h"
#include "hal_bootmode.h"
#include "hal_chipid.h"
#define APP_FACT_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3
#define APP_FACT_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3
#ifdef __FACTORY_MODE_SUPPORT__ #ifdef __FACTORY_MODE_SUPPORT__
static uint8_t inquiry_buff[] = {0x01, 0x72, 0x77, 0xb0, 0x18, 0x57, 0x60,\ static uint8_t inquiry_buff[] = {0x01, 0x72, 0x77, 0xb0, 0x18, 0x57, 0x60, 0x01,
0x01, 0x00, 0x00, 0x00, 0x1f, 0x00, 0x00, 0x00}; 0x00, 0x00, 0x00, 0x1f, 0x00, 0x00, 0x00};
static btif_cmgr_handler_t *app_factorymode_cmgrHandler; static btif_cmgr_handler_t *app_factorymode_cmgrHandler;
static void bt_error_check_timer_handler(void const *param); static void bt_error_check_timer_handler(void const *param);
osTimerDef(bt_error_check_timer, bt_error_check_timer_handler); osTimerDef(bt_error_check_timer, bt_error_check_timer_handler);
static osTimerId bt_error_check_timer_id = NULL; static osTimerId bt_error_check_timer_id = NULL;
uint8_t test_mode_type=0; uint8_t test_mode_type = 0;
static void bt_error_check_timer_handler(void const *param) static void bt_error_check_timer_handler(void const *param) {
{ // dump rssi
//dump rssi bt_drv_rssi_dump_handler();
bt_drv_rssi_dump_handler(); // check BT core status
//check BT core status if (bt_drv_error_check_handler()) {
if(bt_drv_error_check_handler()) if (test_mode_type == 1) {
{ hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE |
if(test_mode_type==1) HAL_SW_BOOTMODE_TEST_SIGNALINGMODE);
{ } else if (test_mode_type == 2) {
hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE|HAL_SW_BOOTMODE_TEST_SIGNALINGMODE); hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE |
} HAL_SW_BOOTMODE_TEST_NOSIGNALINGMODE);
else if(test_mode_type==2)
{
hal_sw_bootmode_set(HAL_SW_BOOTMODE_TEST_MODE|HAL_SW_BOOTMODE_TEST_NOSIGNALINGMODE);
}
hal_cmu_sys_reboot();
} }
hal_cmu_sys_reboot();
}
} }
static void app_factorymode_bt_inquiry_buff_update(void) static void app_factorymode_bt_inquiry_buff_update(void) {
{ bt_bdaddr_t flsh_dongle_addr;
bt_bdaddr_t flsh_dongle_addr; int ret = -1;
int ret = -1;
ret = nvrec_dev_get_dongleaddr(&flsh_dongle_addr); ret = nvrec_dev_get_dongleaddr(&flsh_dongle_addr);
if(0 == ret) { if (0 == ret) {
memcpy((void *)&inquiry_buff[1],(void *)flsh_dongle_addr.address,BTIF_BD_ADDR_SIZE); memcpy((void *)&inquiry_buff[1], (void *)flsh_dongle_addr.address,
DUMP8("0x%02x ", &inquiry_buff[2], BTIF_BD_ADDR_SIZE); BTIF_BD_ADDR_SIZE);
} DUMP8("0x%02x ", &inquiry_buff[2], BTIF_BD_ADDR_SIZE);
}
} }
static void app_factorymode_CmgrCallback(btif_cmgr_handler_t *cHandler, static void app_factorymode_CmgrCallback(btif_cmgr_handler_t *cHandler,
cmgr_event_t Event, cmgr_event_t Event,
bt_status_t Status) bt_status_t Status) {
{ APP_FACTORY_TRACE(4, "%s cHandler:%p Event:%d status:%d", __func__, cHandler,
APP_FACTORY_TRACE(4,"%s cHandler:%p Event:%d status:%d", __func__, cHandler, Event, Status); Event, Status);
if (Event == BTIF_CMEVENT_DATA_LINK_CON_CNF){ if (Event == BTIF_CMEVENT_DATA_LINK_CON_CNF) {
if (Status == BT_STS_SUCCESS){ if (Status == BT_STS_SUCCESS) {
APP_FACTORY_TRACE(0,"connect ok"); APP_FACTORY_TRACE(0, "connect ok");
app_factorymode_result_set(true); app_factorymode_result_set(true);
btif_cmgr_remove_data_link(cHandler); btif_cmgr_remove_data_link(cHandler);
}else{ } else {
APP_FACTORY_TRACE(0,"connect failed"); APP_FACTORY_TRACE(0, "connect failed");
app_factorymode_result_set(false); app_factorymode_result_set(false);
}
} }
}
if (Event == BTIF_CMEVENT_DATA_LINK_DIS){ if (Event == BTIF_CMEVENT_DATA_LINK_DIS) {
if (Status == BT_STS_SUCCESS){ if (Status == BT_STS_SUCCESS) {
APP_FACTORY_TRACE(0,"disconnect ok"); APP_FACTORY_TRACE(0, "disconnect ok");
}else{ } else {
APP_FACTORY_TRACE(0,"disconnect failed"); APP_FACTORY_TRACE(0, "disconnect failed");
}
} }
}
} }
static void app_factorymode_bt_InquiryResult_add(void) static void app_factorymode_bt_InquiryResult_add(void) {
{ U8 len = 15;
U8 len = 15; bool rssi = false, extended = false;
bool rssi = false, extended = false; U8 *parm = (U8 *)inquiry_buff;
U8* parm = (U8*)inquiry_buff;
/* Found one or more devices. Report to clients */ /* Found one or more devices. Report to clients */
APP_FACTORY_TRACE(4,"%s len:%d rssi:%d extended:%d", __func__, len, rssi, extended); APP_FACTORY_TRACE(4, "%s len:%d rssi:%d extended:%d", __func__, len, rssi,
DUMP8("0x%02x ", parm, len); extended);
btif_me_inquiry_result_setup(parm, rssi, extended); DUMP8("0x%02x ", parm, len);
btif_me_inquiry_result_setup(parm, rssi, extended);
} }
void app_factorymode_bt_create_connect(void) void app_factorymode_bt_create_connect(void) {
{ bt_status_t status;
bt_status_t status; bt_bdaddr_t *bdAddr = (bt_bdaddr_t *)(inquiry_buff + 1);
bt_bdaddr_t *bdAddr = (bt_bdaddr_t *)(inquiry_buff+1);
status = btif_cmgr_create_data_link(app_factorymode_cmgrHandler, bdAddr); status = btif_cmgr_create_data_link(app_factorymode_cmgrHandler, bdAddr);
APP_FACTORY_TRACE(2,"%s:%d", __func__, status); APP_FACTORY_TRACE(2, "%s:%d", __func__, status);
} }
void app_factorymode_bt_init_connect(void) void app_factorymode_bt_init_connect(void) {
{ app_factorymode_cmgrHandler = btif_cmgr_handler_create();
app_factorymode_cmgrHandler = btif_cmgr_handler_create();
btif_cmgr_register_handler(app_factorymode_cmgrHandler, btif_cmgr_register_handler(app_factorymode_cmgrHandler,
app_factorymode_CmgrCallback); app_factorymode_CmgrCallback);
app_factorymode_bt_inquiry_buff_update(); app_factorymode_bt_inquiry_buff_update();
app_factorymode_bt_InquiryResult_add(); app_factorymode_bt_InquiryResult_add();
} }
extern osTimerId app_bt_accessmode_timer; extern osTimerId app_bt_accessmode_timer;
@ -145,187 +137,187 @@ extern osTimerId app_bt_accessmode_timer;
#define XTAL_FCAP_RANGE (0xFF) #define XTAL_FCAP_RANGE (0xFF)
#endif #endif
void app_factorymode_bt_xtalrangetest(APP_KEY_STATUS *status, void *param) void app_factorymode_bt_xtalrangetest(APP_KEY_STATUS *status, void *param) {
{ dev_addr_name devinfo;
dev_addr_name devinfo; uint32_t fcap = 0;
uint32_t fcap = 0; APP_FACTORY_TRACE(1, "%s", __func__);
APP_FACTORY_TRACE(1,"%s",__func__);
#ifdef __WATCHER_DOG_RESET__ #ifdef __WATCHER_DOG_RESET__
app_wdt_close(); app_wdt_close();
#endif #endif
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
app_stop_10_second_timer(APP_PAIR_TIMER_ID); app_stop_10_second_timer(APP_PAIR_TIMER_ID);
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
if (app_bt_accessmode_timer){ if (app_bt_accessmode_timer) {
osTimerStop(app_bt_accessmode_timer); osTimerStop(app_bt_accessmode_timer);
} }
if (!bt_error_check_timer_id){ if (!bt_error_check_timer_id) {
bt_error_check_timer_id = osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL); bt_error_check_timer_id =
} osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL);
if (bt_error_check_timer_id != NULL) { }
osTimerStart(bt_error_check_timer_id, 1000); if (bt_error_check_timer_id != NULL) {
} osTimerStart(bt_error_check_timer_id, 1000);
test_mode_type = 1; }
app_status_indication_set(APP_STATUS_INDICATION_TESTMODE); test_mode_type = 1;
pmu_sleep_en(0); app_status_indication_set(APP_STATUS_INDICATION_TESTMODE);
BESHCI_Close(); pmu_sleep_en(0);
btdrv_hciopen(); BESHCI_Close();
btdrv_hci_reset(); btdrv_hciopen();
btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_sleep_config(0); btdrv_sleep_config(0);
osDelay(2000); osDelay(2000);
btdrv_ins_patch_test_init(); btdrv_ins_patch_test_init();
btdrv_feature_default(); btdrv_feature_default();
#endif #endif
devinfo.btd_addr = bt_addr; devinfo.btd_addr = bt_addr;
devinfo.ble_addr = ble_addr; devinfo.ble_addr = ble_addr;
devinfo.localname = BT_LOCAL_NAME; devinfo.localname = BT_LOCAL_NAME;
nvrec_dev_localname_addr_init(&devinfo); nvrec_dev_localname_addr_init(&devinfo);
btdrv_write_localinfo((char *)devinfo.localname, strlen(devinfo.localname) + 1, devinfo.btd_addr); btdrv_write_localinfo((char *)devinfo.localname,
strlen(devinfo.localname) + 1, devinfo.btd_addr);
btdrv_vco_test_start(78); btdrv_vco_test_start(78);
while(1){ while (1) {
btdrv_rf_set_xtal_fcap(fcap%XTAL_FCAP_RANGE, 1); btdrv_rf_set_xtal_fcap(fcap % XTAL_FCAP_RANGE, 1);
osDelay(300); osDelay(300);
TRACE(2,"xtal tune:%d", fcap%XTAL_FCAP_RANGE); TRACE(2, "xtal tune:%d", fcap % XTAL_FCAP_RANGE);
fcap++; fcap++;
} }
} }
void app_factorymode_bt_signalingtest(APP_KEY_STATUS *status, void *param) void app_factorymode_bt_signalingtest(APP_KEY_STATUS *status, void *param) {
{ dev_addr_name devinfo;
dev_addr_name devinfo; APP_FACTORY_TRACE(1, "%s", __func__);
APP_FACTORY_TRACE(1,"%s",__func__);
#ifdef __WATCHER_DOG_RESET__ #ifdef __WATCHER_DOG_RESET__
app_wdt_close(); app_wdt_close();
#endif #endif
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
app_stop_10_second_timer(APP_PAIR_TIMER_ID); app_stop_10_second_timer(APP_PAIR_TIMER_ID);
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
if (app_bt_accessmode_timer){ if (app_bt_accessmode_timer) {
osTimerStop(app_bt_accessmode_timer); osTimerStop(app_bt_accessmode_timer);
} }
if (!bt_error_check_timer_id){ if (!bt_error_check_timer_id) {
bt_error_check_timer_id = osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL); bt_error_check_timer_id =
} osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL);
if (bt_error_check_timer_id != NULL) { }
osTimerStart(bt_error_check_timer_id, 1000); if (bt_error_check_timer_id != NULL) {
} osTimerStart(bt_error_check_timer_id, 1000);
test_mode_type = 1; }
app_status_indication_set(APP_STATUS_INDICATION_TESTMODE); test_mode_type = 1;
pmu_sleep_en(0); app_status_indication_set(APP_STATUS_INDICATION_TESTMODE);
BESHCI_Close(); pmu_sleep_en(0);
btdrv_hciopen(); BESHCI_Close();
btdrv_ins_patch_test_init(); btdrv_hciopen();
btdrv_hci_reset(); btdrv_ins_patch_test_init();
btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_sleep_config(0); btdrv_sleep_config(0);
osDelay(2000); osDelay(2000);
btdrv_testmode_start(); btdrv_testmode_start();
btdrv_feature_default(); btdrv_feature_default();
#endif #endif
devinfo.btd_addr = bt_addr; devinfo.btd_addr = bt_addr;
devinfo.ble_addr = ble_addr; devinfo.ble_addr = ble_addr;
devinfo.localname = BT_LOCAL_NAME; devinfo.localname = BT_LOCAL_NAME;
devinfo.ble_name= BT_LOCAL_NAME; devinfo.ble_name = BT_LOCAL_NAME;
nvrec_dev_localname_addr_init(&devinfo); nvrec_dev_localname_addr_init(&devinfo);
#ifdef __IBRT_IBRT_TESTMODE__ #ifdef __IBRT_IBRT_TESTMODE__
uint8_t ibrt_address[6] = {0x11,0x22,0x33,0x44,0x55,0x66}; uint8_t ibrt_address[6] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
memcpy(bt_addr,ibrt_address,6); memcpy(bt_addr, ibrt_address, 6);
memcpy(devinfo.btd_addr,ibrt_address,6); memcpy(devinfo.btd_addr, ibrt_address, 6);
#endif #endif
btdrv_write_localinfo((char *)devinfo.localname, strlen(devinfo.localname) + 1, devinfo.btd_addr); btdrv_write_localinfo((char *)devinfo.localname,
bt_drv_extra_config_after_init(); strlen(devinfo.localname) + 1, devinfo.btd_addr);
btdrv_enable_dut(); bt_drv_extra_config_after_init();
btdrv_enable_dut();
#ifdef __IBRT_IBRT_TESTMODE__ #ifdef __IBRT_IBRT_TESTMODE__
btdrv_enable_ibrt_test(); btdrv_enable_ibrt_test();
#endif #endif
} }
int app_battery_stop(void); int app_battery_stop(void);
void app_factorymode_bt_nosignalingtest(APP_KEY_STATUS *status, void *param) void app_factorymode_bt_nosignalingtest(APP_KEY_STATUS *status, void *param) {
{ dev_addr_name devinfo;
dev_addr_name devinfo; APP_FACTORY_TRACE(1, "%s", __func__);
APP_FACTORY_TRACE(1,"%s",__func__);
#ifdef __WATCHER_DOG_RESET__ #ifdef __WATCHER_DOG_RESET__
app_wdt_close(); app_wdt_close();
#endif #endif
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
app_stop_10_second_timer(APP_PAIR_TIMER_ID); app_stop_10_second_timer(APP_PAIR_TIMER_ID);
app_stop_10_second_timer(APP_POWEROFF_TIMER_ID); app_stop_10_second_timer(APP_POWEROFF_TIMER_ID);
app_status_indication_set(APP_STATUS_INDICATION_TESTMODE1); app_status_indication_set(APP_STATUS_INDICATION_TESTMODE1);
osTimerStop(app_bt_accessmode_timer); osTimerStop(app_bt_accessmode_timer);
if (!bt_error_check_timer_id){ if (!bt_error_check_timer_id) {
bt_error_check_timer_id = osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL); bt_error_check_timer_id =
} osTimerCreate(osTimer(bt_error_check_timer), osTimerPeriodic, NULL);
if (bt_error_check_timer_id != NULL) { }
osTimerStart(bt_error_check_timer_id, 1000); if (bt_error_check_timer_id != NULL) {
} osTimerStart(bt_error_check_timer_id, 1000);
test_mode_type = 2; }
app_battery_stop(); test_mode_type = 2;
pmu_sleep_en(0); app_battery_stop();
BESHCI_Close(); pmu_sleep_en(0);
btdrv_hciopen(); BESHCI_Close();
btdrv_ins_patch_test_init(); btdrv_hciopen();
bt_drv_reg_op_key_gen_after_reset(false); btdrv_ins_patch_test_init();
btdrv_hci_reset(); bt_drv_reg_op_key_gen_after_reset(false);
btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_sleep_config(0); btdrv_sleep_config(0);
#endif #endif
osDelay(2000); osDelay(2000);
btdrv_testmode_start(); btdrv_testmode_start();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_feature_default(); btdrv_feature_default();
devinfo.btd_addr = bt_addr; devinfo.btd_addr = bt_addr;
devinfo.ble_addr = ble_addr; devinfo.ble_addr = ble_addr;
devinfo.localname = BT_LOCAL_NAME; devinfo.localname = BT_LOCAL_NAME;
devinfo.ble_name= BT_LOCAL_NAME; devinfo.ble_name = BT_LOCAL_NAME;
nvrec_dev_localname_addr_init(&devinfo); nvrec_dev_localname_addr_init(&devinfo);
btdrv_write_localinfo((char *)devinfo.localname, strlen(devinfo.localname) + 1, devinfo.btd_addr); btdrv_write_localinfo((char *)devinfo.localname,
strlen(devinfo.localname) + 1, devinfo.btd_addr);
#endif #endif
bt_drv_extra_config_after_init(); bt_drv_extra_config_after_init();
btdrv_hcioff(); btdrv_hcioff();
#ifdef __BT_DEBUG_TPORTS__ #ifdef __BT_DEBUG_TPORTS__
{ {
extern void bt_enable_tports(void); extern void bt_enable_tports(void);
bt_enable_tports(); bt_enable_tports();
//hal_iomux_tportopen(); // hal_iomux_tportopen();
} }
#endif #endif
btdrv_uart_bridge_loop(); btdrv_uart_bridge_loop();
} }
int app_factorymode_bt_xtalcalib_proc(void) int app_factorymode_bt_xtalcalib_proc(void) {
{ uint32_t capval = 0x80;
uint32_t capval = 0x80; int nRet;
int nRet;
APP_FACTORY_TRACE(1,"%s",__func__); APP_FACTORY_TRACE(1, "%s", __func__);
hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_FACT_CPU_WAKE_LOCK);
APP_FACTORY_TRACE(1,"calib default, capval:%d", capval); APP_FACTORY_TRACE(1, "calib default, capval:%d", capval);
btdrv_hciopen(); btdrv_hciopen();
btdrv_hci_reset(); btdrv_hci_reset();
#ifndef BT_50_FUNCTION #ifndef BT_50_FUNCTION
btdrv_ins_patch_test_init(); btdrv_ins_patch_test_init();
#endif #endif
btdrv_hcioff(); btdrv_hcioff();
capval = 0x80; capval = 0x80;
bt_drv_calib_open(); bt_drv_calib_open();
nRet = bt_drv_calib_result_porc(&capval); nRet = bt_drv_calib_result_porc(&capval);
bt_drv_calib_close(); bt_drv_calib_close();
TRACE(2,"!!!!!!!!!!!!!!!!!!!!!!!!!!!calib ret:%d, capval:%d", nRet, capval); TRACE(2, "!!!!!!!!!!!!!!!!!!!!!!!!!!!calib ret:%d, capval:%d", nRet, capval);
if (!nRet) if (!nRet)
nvrec_dev_set_xtal_fcap((unsigned int)capval); nvrec_dev_set_xtal_fcap((unsigned int)capval);
return nRet; return nRet;
} }
void app_factorymode_bt_xtalcalib(APP_KEY_STATUS *status, void *param) void app_factorymode_bt_xtalcalib(APP_KEY_STATUS *status, void *param) {
{ APP_FACTORY_TRACE(1, "%s", __func__);
APP_FACTORY_TRACE(1,"%s",__func__); app_factorymode_bt_xtalcalib_proc();
app_factorymode_bt_xtalcalib_proc();
} }
#endif #endif

View file

@ -1,179 +1,180 @@
#ifdef __USB_COMM__ #ifdef __USB_COMM__
#include "stdint.h"
#include "stdbool.h"
#include "plat_types.h"
#include "string.h"
#include "stdio.h"
#include "tool_msg.h"
#include "sys_api_cdc_comm.h"
#include "app_factory_cdc_comm.h" #include "app_factory_cdc_comm.h"
#include "plat_types.h"
#include "stdbool.h"
#include "stdint.h"
#include "stdio.h"
#include "string.h"
#include "sys_api_cdc_comm.h"
#include "tool_msg.h"
static enum PARSE_STATE parse_state; static enum PARSE_STATE parse_state;
static struct message_t recv_msg; static struct message_t recv_msg;
static struct message_t send_msg = { { PREFIX_CHAR, }, }; static struct message_t send_msg = {
{
PREFIX_CHAR,
},
};
static unsigned char check_sum(unsigned char *buf, unsigned char len) static unsigned char check_sum(unsigned char *buf, unsigned char len) {
{ int i;
int i; unsigned char sum = 0;
unsigned char sum = 0;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
sum += buf[i]; sum += buf[i];
} }
return sum; return sum;
} }
int send_reply(const unsigned char *payload, unsigned int len) int send_reply(const unsigned char *payload, unsigned int len) {
{ int ret = 0;
int ret = 0;
if (len + 1 > sizeof(send_msg.data)) { if (len + 1 > sizeof(send_msg.data)) {
TRACE(1,"Packet length too long: %u", len); TRACE(1, "Packet length too long: %u", len);
return -1; return -1;
} }
send_msg.hdr.type = recv_msg.hdr.type; send_msg.hdr.type = recv_msg.hdr.type;
send_msg.hdr.seq = recv_msg.hdr.seq; send_msg.hdr.seq = recv_msg.hdr.seq;
send_msg.hdr.len = len; send_msg.hdr.len = len;
memcpy(&send_msg.data[0], payload, len); memcpy(&send_msg.data[0], payload, len);
send_msg.data[len] = ~check_sum((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg) - 1); send_msg.data[len] =
~check_sum((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg) - 1);
ret = send_data((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg)); ret = send_data((unsigned char *)&send_msg, MSG_TOTAL_LEN(&send_msg));
return ret; return ret;
} }
static void reset_parse_state(unsigned char **buf, size_t *len) static void reset_parse_state(unsigned char **buf, size_t *len) {
{ parse_state = PARSE_HEADER;
parse_state = PARSE_HEADER; memset(&recv_msg.hdr, 0, sizeof(recv_msg.hdr));
memset(&recv_msg.hdr, 0, sizeof(recv_msg.hdr));
*buf = (unsigned char *)&recv_msg.hdr; *buf = (unsigned char *)&recv_msg.hdr;
*len = sizeof(recv_msg.hdr); *len = sizeof(recv_msg.hdr);
} }
static enum ERR_CODE check_msg_hdr(void) static enum ERR_CODE check_msg_hdr(void) {
{ enum ERR_CODE errcode = ERR_NONE;
enum ERR_CODE errcode = ERR_NONE;
switch (recv_msg.hdr.type) { switch (recv_msg.hdr.type) {
case TYPE_SYS: case TYPE_SYS:
if (recv_msg.hdr.len != 1 && recv_msg.hdr.len != 5) { if (recv_msg.hdr.len != 1 && recv_msg.hdr.len != 5) {
//TRACE(1,"SYS msg length error: %u", recv_msg.hdr.len); // TRACE(1,"SYS msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN; errcode = ERR_LEN;
}
break;
case TYPE_READ:
if (recv_msg.hdr.len != 4) {
//TRACE(1,"READ msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
}
break;
case TYPE_WRITE:
if (recv_msg.hdr.len <= 4 || recv_msg.hdr.len > 20) {
//TRACE(1,"WRITE msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
}
break;
default:
break;
} }
break;
if (errcode == ERR_NONE && recv_msg.hdr.len + 1 > sizeof(recv_msg.data)) { case TYPE_READ:
errcode = ERR_LEN; if (recv_msg.hdr.len != 4) {
// TRACE(1,"READ msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
} }
break;
case TYPE_WRITE:
if (recv_msg.hdr.len <= 4 || recv_msg.hdr.len > 20) {
// TRACE(1,"WRITE msg length error: %u", recv_msg.hdr.len);
errcode = ERR_LEN;
}
break;
default:
break;
}
return errcode; if (errcode == ERR_NONE && recv_msg.hdr.len + 1 > sizeof(recv_msg.data)) {
errcode = ERR_LEN;
}
return errcode;
} }
static enum ERR_CODE handle_sys_cmd(enum SYS_CMD_TYPE cmd, unsigned char *param, unsigned int len) static enum ERR_CODE handle_sys_cmd(enum SYS_CMD_TYPE cmd, unsigned char *param,
{ unsigned int len) {
unsigned char cret[5]; unsigned char cret[5];
unsigned int bootmode; unsigned int bootmode;
cret[0] = ERR_NONE; cret[0] = ERR_NONE;
if (cmd == SYS_CMD_SET_BOOTMODE || cmd == SYS_CMD_CLR_BOOTMODE) { if (cmd == SYS_CMD_SET_BOOTMODE || cmd == SYS_CMD_CLR_BOOTMODE) {
if (len != 4) { if (len != 4) {
TRACE(2,"Invalid SYS CMD len %u for cmd: 0x%x", len, cmd); TRACE(2, "Invalid SYS CMD len %u for cmd: 0x%x", len, cmd);
return ERR_DATA_LEN; return ERR_DATA_LEN;
}
} else {
if (len != 0) {
TRACE(2,"Invalid SYS CMD len %u for cmd: 0x%x", len, cmd);
return ERR_DATA_LEN;
}
} }
} else {
switch (cmd) { if (len != 0) {
case SYS_CMD_REBOOT: { TRACE(2, "Invalid SYS CMD len %u for cmd: 0x%x", len, cmd);
TRACE(0,"--- Reboot---"); return ERR_DATA_LEN;
send_reply(cret, 1);
system_reboot();
break;
}
case SYS_CMD_SHUTDOWN: {
TRACE(0,"--- Shutdown ---");
send_reply(cret, 1);
system_shutdown();
break;
}
case SYS_CMD_SET_BOOTMODE: {
TRACE(0,"--- Set bootmode ---");
memcpy(&bootmode, param, 4);
system_set_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_CLR_BOOTMODE: {
TRACE(0,"--- Clear bootmode ---");
memcpy(&bootmode, param, 4);
system_clear_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_GET_BOOTMODE: {
TRACE(0,"--- Get bootmode ---");
bootmode = system_get_bootmode();
memcpy(&cret[1], &bootmode, 4);
send_reply(cret, 5);
break;
}
default: {
TRACE(1,"Invalid command: 0x%x", recv_msg.data[0]);
return ERR_SYS_CMD;
}
} }
}
return ERR_NONE; switch (cmd) {
case SYS_CMD_REBOOT: {
TRACE(0, "--- Reboot---");
send_reply(cret, 1);
system_reboot();
break;
}
case SYS_CMD_SHUTDOWN: {
TRACE(0, "--- Shutdown ---");
send_reply(cret, 1);
system_shutdown();
break;
}
case SYS_CMD_SET_BOOTMODE: {
TRACE(0, "--- Set bootmode ---");
memcpy(&bootmode, param, 4);
system_set_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_CLR_BOOTMODE: {
TRACE(0, "--- Clear bootmode ---");
memcpy(&bootmode, param, 4);
system_clear_bootmode(bootmode);
send_reply(cret, 1);
break;
}
case SYS_CMD_GET_BOOTMODE: {
TRACE(0, "--- Get bootmode ---");
bootmode = system_get_bootmode();
memcpy(&cret[1], &bootmode, 4);
send_reply(cret, 5);
break;
}
default: {
TRACE(1, "Invalid command: 0x%x", recv_msg.data[0]);
return ERR_SYS_CMD;
}
}
return ERR_NONE;
} }
static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra) static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra) {
{ enum ERR_CODE errcode = ERR_NONE;
enum ERR_CODE errcode = ERR_NONE;
#if 0 #if 0
uint32_t rlen = 0; uint32_t rlen = 0;
#endif #endif
*extra = 0; *extra = 0;
// Checksum // Checksum
if (check_sum((unsigned char *)&recv_msg, MSG_TOTAL_LEN(&recv_msg)) != 0xFF) { if (check_sum((unsigned char *)&recv_msg, MSG_TOTAL_LEN(&recv_msg)) != 0xFF) {
TRACE(0,"Checksum error"); TRACE(0, "Checksum error");
return ERR_CHECKSUM; return ERR_CHECKSUM;
}
switch (recv_msg.hdr.type) {
case TYPE_SYS: {
TRACE_TIME(0, "------ SYS CMD ------");
errcode = handle_sys_cmd((enum SYS_CMD_TYPE)recv_msg.data[0],
&recv_msg.data[1], recv_msg.hdr.len - 1);
if (errcode != ERR_NONE) {
return errcode;
} }
break;
switch (recv_msg.hdr.type) { }
case TYPE_SYS: { case TYPE_READ: {
TRACE_TIME(0,"------ SYS CMD ------"); TRACE_TIME(0, "------ READ CMD ------");
errcode = handle_sys_cmd((enum SYS_CMD_TYPE)recv_msg.data[0], &recv_msg.data[1], recv_msg.hdr.len - 1);
if (errcode != ERR_NONE) {
return errcode;
}
break;
}
case TYPE_READ: {
TRACE_TIME(0,"------ READ CMD ------");
#if 0 #if 0
uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2]; uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2];
uint8_t data[4] = {0}; uint8_t data[4] = {0};
@ -184,10 +185,10 @@ static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra)
send_reply(data, rlen); send_reply(data, rlen);
} }
#endif #endif
break; break;
} }
case TYPE_WRITE: { case TYPE_WRITE: {
TRACE_TIME(0,"------ WRITE CMD ------"); TRACE_TIME(0, "------ WRITE CMD ------");
#if 0 #if 0
uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2]; uint32_t addr = (recv_msg.data[0] << 16) | (recv_msg.data[1] << 8) | recv_msg.data[2];
uint32_t wdata = (recv_msg.data[3] << 24) | (recv_msg.data[4] << 16) | (recv_msg.data[5] << 8) | recv_msg.data[6]; uint32_t wdata = (recv_msg.data[3] << 24) | (recv_msg.data[4] << 16) | (recv_msg.data[5] << 8) | recv_msg.data[6];
@ -198,117 +199,115 @@ static enum ERR_CODE handle_data(unsigned char **buf, size_t *len, int *extra)
else else
send_reply(data, 1); send_reply(data, 1);
#endif #endif
break; break;
} }
default: default:
break; break;
} }
return ERR_NONE; return ERR_NONE;
} }
static int parse_packet(unsigned char **buf, size_t *len) static int parse_packet(unsigned char **buf, size_t *len) {
{ enum ERR_CODE errcode;
enum ERR_CODE errcode; int rlen = *len;
int rlen = *len; unsigned char *data;
unsigned char *data; int i;
int i; int extra;
int extra; unsigned char cret;
unsigned char cret;
switch (parse_state) { switch (parse_state) {
case PARSE_HEADER: case PARSE_HEADER:
ASSERT(rlen > 0 && rlen <= sizeof(recv_msg.hdr), "Invalid rlen!"); ASSERT(rlen > 0 && rlen <= sizeof(recv_msg.hdr), "Invalid rlen!");
if (recv_msg.hdr.prefix == PREFIX_CHAR) { if (recv_msg.hdr.prefix == PREFIX_CHAR) {
errcode = check_msg_hdr(); errcode = check_msg_hdr();
if (errcode != ERR_NONE) { if (errcode != ERR_NONE) {
goto _err; goto _err;
} }
parse_state = PARSE_DATA; parse_state = PARSE_DATA;
*buf = &recv_msg.data[0]; *buf = &recv_msg.data[0];
*len = recv_msg.hdr.len + 1; *len = recv_msg.hdr.len + 1;
} else { } else {
data = (unsigned char *)&recv_msg.hdr.prefix; data = (unsigned char *)&recv_msg.hdr.prefix;
for (i = 1; i < rlen; i++) { for (i = 1; i < rlen; i++) {
if (data[i] == PREFIX_CHAR) { if (data[i] == PREFIX_CHAR) {
memmove(&recv_msg.hdr.prefix, &data[i], rlen - i); memmove(&recv_msg.hdr.prefix, &data[i], rlen - i);
break; break;
} }
} }
*buf = &data[rlen - i]; *buf = &data[rlen - i];
*len = sizeof(recv_msg.hdr) + i - rlen; *len = sizeof(recv_msg.hdr) + i - rlen;
}
break;
case PARSE_DATA:
errcode = handle_data(buf, len, &extra);
if (errcode != ERR_NONE) {
goto _err;
}
// Receive next message
reset_parse_state(buf, len);
break;
default:
TRACE(1,"Invalid parse_state: %d", parse_state);
break;
} }
break;
case PARSE_DATA:
errcode = handle_data(buf, len, &extra);
if (errcode != ERR_NONE) {
goto _err;
}
// Receive next message
reset_parse_state(buf, len);
break;
default:
TRACE(1, "Invalid parse_state: %d", parse_state);
break;
}
return 0; return 0;
_err: _err:
cancel_input(); cancel_input();
cret = (unsigned char)errcode; cret = (unsigned char)errcode;
send_reply(&cret, 1); send_reply(&cret, 1);
return 1; return 1;
} }
void comm_loop(void) void comm_loop(void) {
{ int ret;
int ret; unsigned char *buf = NULL;
unsigned char *buf = NULL; size_t len = 0;
size_t len = 0; size_t buf_len, rlen;
size_t buf_len, rlen;
_sync: _sync:
reset_transport(); reset_transport();
reset_parse_state(&buf, &len); reset_parse_state(&buf, &len);
while (1) { while (1) {
rlen = 0; rlen = 0;
if (parse_state == PARSE_HEADER) { if (parse_state == PARSE_HEADER) {
set_recv_timeout(default_recv_timeout_idle); set_recv_timeout(default_recv_timeout_idle);
} else { } else {
set_recv_timeout(default_recv_timeout_short); set_recv_timeout(default_recv_timeout_short);
}
buf_len = 0;
ret = recv_data_ex(buf, buf_len, len, &rlen);
if (ret) {
TRACE(1,"Receiving data failed: %d", ret);
goto _err;
}
if (len != rlen) {
TRACE(2,"Receiving part of the data: expect=%u real=%u", len, rlen);
goto _err;
}
ret = parse_packet(&buf, &len);
if (ret) {
TRACE(0,"Parsing packet failed");
goto _err;
}
} }
buf_len = 0;
ret = recv_data_ex(buf, buf_len, len, &rlen);
if (ret) {
TRACE(1, "Receiving data failed: %d", ret);
goto _err;
}
if (len != rlen) {
TRACE(2, "Receiving part of the data: expect=%u real=%u", len, rlen);
goto _err;
}
ret = parse_packet(&buf, &len);
if (ret) {
TRACE(0, "Parsing packet failed");
goto _err;
}
}
_err: _err:
ret = handle_error(); ret = handle_error();
if (ret == 0) { if (ret == 0) {
TRACE(0,"retry ..."); TRACE(0, "retry ...");
goto _sync; goto _sync;
} }
return; return;
} }
#endif #endif

View file

@ -8,10 +8,11 @@
#include "usb_cdc.h" #include "usb_cdc.h"
#endif #endif
#define TIMEOUT_INFINITE ((uint32_t)-1) #define TIMEOUT_INFINITE ((uint32_t)-1)
const unsigned int default_recv_timeout_short = MS_TO_TICKS(500); const unsigned int default_recv_timeout_short = MS_TO_TICKS(500);
const unsigned int default_recv_timeout_idle = TIMEOUT_INFINITE; //MS_TO_TICKS(10 * 60 * 1000); const unsigned int default_recv_timeout_idle =
TIMEOUT_INFINITE; // MS_TO_TICKS(10 * 60 * 1000);
const unsigned int default_recv_timeout_4k_data = MS_TO_TICKS(500); const unsigned int default_recv_timeout_4k_data = MS_TO_TICKS(500);
const unsigned int default_send_timeout = MS_TO_TICKS(500); const unsigned int default_send_timeout = MS_TO_TICKS(500);
@ -29,201 +30,165 @@ static const struct USB_SERIAL_CFG_T cdc_cfg = {
.mode = USB_SERIAL_API_NONBLOCKING, .mode = USB_SERIAL_API_NONBLOCKING,
}; };
void reset_transport(void) void reset_transport(void) {
{ cancel_xfer = false;
cancel_xfer = false;
if (xfer_timer) { if (xfer_timer) {
hwtimer_stop(xfer_timer); hwtimer_stop(xfer_timer);
} else { } else {
xfer_timer = hwtimer_alloc(NULL, NULL); xfer_timer = hwtimer_alloc(NULL, NULL);
} }
usb_serial_flush_recv_buffer(); usb_serial_flush_recv_buffer();
usb_serial_init_xfer(); usb_serial_init_xfer();
set_recv_timeout(default_recv_timeout_short); set_recv_timeout(default_recv_timeout_short);
set_send_timeout(default_send_timeout); set_send_timeout(default_send_timeout);
} }
void set_recv_timeout(unsigned int timeout) void set_recv_timeout(unsigned int timeout) { recv_timeout = timeout; }
{
recv_timeout = timeout; void set_send_timeout(unsigned int timeout) { send_timeout = timeout; }
static void usb_send_timeout(void *param) { usb_serial_cancel_send(); }
static void usb_send_timer_start(void) {
if (send_timeout == TIMEOUT_INFINITE) {
return;
}
if (xfer_timer) {
hwtimer_update_then_start(xfer_timer, usb_send_timeout, NULL, send_timeout);
}
} }
void set_send_timeout(unsigned int timeout) static void usb_send_timer_stop(void) {
{ if (xfer_timer) {
send_timeout = timeout; hwtimer_stop(xfer_timer);
}
} }
static void usb_send_timeout(void *param) static int usb_send_data(const unsigned char *buf, size_t len) {
{ int ret;
usb_serial_cancel_send();
usb_send_timer_start();
ret = usb_serial_send(buf, len);
usb_send_timer_stop();
return ret;
} }
static void usb_send_timer_start(void) int send_data(const unsigned char *buf, size_t len) {
{ if (cancel_xfer) {
if (send_timeout == TIMEOUT_INFINITE) { return -1;
return; }
} return usb_send_data(buf, len);
if (xfer_timer) {
hwtimer_update_then_start(xfer_timer, usb_send_timeout, NULL, send_timeout);
}
} }
static void usb_send_timer_stop(void) static void usb_recv_timeout(void *param) { usb_serial_cancel_recv(); }
{
if (xfer_timer) { static void usb_recv_timer_start(void) {
hwtimer_stop(xfer_timer); if (recv_timeout == TIMEOUT_INFINITE) {
} return;
}
if (xfer_timer) {
hwtimer_update_then_start(xfer_timer, usb_recv_timeout, NULL, recv_timeout);
}
} }
static int usb_send_data(const unsigned char *buf, size_t len) static void usb_recv_timer_stop(void) {
{ if (xfer_timer) {
int ret; hwtimer_stop(xfer_timer);
}
usb_send_timer_start();
ret = usb_serial_send(buf, len);
usb_send_timer_stop();
return ret;
} }
int send_data(const unsigned char *buf, size_t len) static int usb_recv_data(unsigned char *buf, size_t len, size_t *rlen) {
{ int ret;
if (cancel_xfer) {
return -1; usb_recv_timer_start();
} ret = usb_serial_recv(buf, len);
return usb_send_data(buf, len); usb_recv_timer_stop();
if (ret == 0) {
*rlen = len;
}
return ret;
} }
static void usb_recv_timeout(void *param) int recv_data_ex(unsigned char *buf, size_t len, size_t expect, size_t *rlen) {
{ if (cancel_xfer) {
usb_serial_cancel_recv(); return -1;
}
return usb_recv_data(buf, expect, rlen);
} }
static void usb_recv_timer_start(void) static int usb_handle_error(void) {
{ int ret;
if (recv_timeout == TIMEOUT_INFINITE) {
return;
}
if (xfer_timer) { TRACE(0, "****** Send break ******");
hwtimer_update_then_start(xfer_timer, usb_recv_timeout, NULL, recv_timeout);
} // Send break signal, to tell the peer to reset the connection
ret = usb_serial_send_break();
if (ret) {
TRACE(1, "Sending break failed: %d", ret);
}
return ret;
} }
static void usb_recv_timer_stop(void) int handle_error(void) {
{ int ret = 0;
if (xfer_timer) { uint32_t err_time;
hwtimer_stop(xfer_timer);
} hal_sys_timer_delay(MS_TO_TICKS(50));
if (!cancel_xfer) {
ret = usb_handle_error();
}
err_time = hal_sys_timer_get();
if (xfer_err_cnt == 0 || err_time - xfer_err_time > MS_TO_TICKS(5000)) {
xfer_err_cnt = 0;
xfer_err_time = err_time;
}
xfer_err_cnt++;
if (xfer_err_cnt < 3) {
hal_sys_timer_delay(MS_TO_TICKS(100));
} else if (xfer_err_cnt < 5) {
hal_sys_timer_delay(MS_TO_TICKS(500));
} else {
hal_sys_timer_delay(MS_TO_TICKS(2000));
}
return ret;
} }
static int usb_recv_data(unsigned char *buf, size_t len, size_t *rlen) static int usb_cancel_input(void) { return usb_serial_flush_recv_buffer(); }
{
int ret;
usb_recv_timer_start(); int cancel_input(void) { return usb_cancel_input(); }
ret = usb_serial_recv(buf, len);
usb_recv_timer_stop(); void system_reboot(void) {
if (ret == 0) { hal_sys_timer_delay(MS_TO_TICKS(10));
*rlen = len; hal_cmu_sys_reboot();
}
return ret;
} }
int recv_data_ex(unsigned char *buf, size_t len, size_t expect, size_t *rlen) void system_shutdown(void) {
{
if (cancel_xfer) {
return -1;
}
return usb_recv_data(buf, expect, rlen);
}
static int usb_handle_error(void)
{
int ret;
TRACE(0,"****** Send break ******");
// Send break signal, to tell the peer to reset the connection
ret = usb_serial_send_break();
if (ret) {
TRACE(1,"Sending break failed: %d", ret);
}
return ret;
}
int handle_error(void)
{
int ret = 0;
uint32_t err_time;
hal_sys_timer_delay(MS_TO_TICKS(50));
if (!cancel_xfer) {
ret = usb_handle_error();
}
err_time = hal_sys_timer_get();
if (xfer_err_cnt == 0 || err_time - xfer_err_time > MS_TO_TICKS(5000)) {
xfer_err_cnt = 0;
xfer_err_time = err_time;
}
xfer_err_cnt++;
if (xfer_err_cnt < 3) {
hal_sys_timer_delay(MS_TO_TICKS(100));
} else if (xfer_err_cnt < 5) {
hal_sys_timer_delay(MS_TO_TICKS(500));
} else {
hal_sys_timer_delay(MS_TO_TICKS(2000));
}
return ret;
}
static int usb_cancel_input(void)
{
return usb_serial_flush_recv_buffer();
}
int cancel_input(void)
{
return usb_cancel_input();
}
void system_reboot(void)
{
hal_sys_timer_delay(MS_TO_TICKS(10));
hal_cmu_sys_reboot();
}
void system_shutdown(void)
{
#if 0 #if 0
if (dld_transport == TRANSPORT_USB) { if (dld_transport == TRANSPORT_USB) {
// Avoid PC usb serial driver hanging // Avoid PC usb serial driver hanging
usb_serial_close(); usb_serial_close();
} }
#endif #endif
hal_sys_timer_delay(MS_TO_TICKS(10)); hal_sys_timer_delay(MS_TO_TICKS(10));
pmu_shutdown(); pmu_shutdown();
} }
void system_set_bootmode(unsigned int bootmode) void system_set_bootmode(unsigned int bootmode) {
{ bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED);
bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED); hal_sw_bootmode_set(bootmode);
hal_sw_bootmode_set(bootmode);
} }
void system_clear_bootmode(unsigned int bootmode) void system_clear_bootmode(unsigned int bootmode) {
{ bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED);
bootmode &= ~(HAL_SW_BOOTMODE_READ_ENABLED | HAL_SW_BOOTMODE_WRITE_ENABLED); hal_sw_bootmode_clear(bootmode);
hal_sw_bootmode_clear(bootmode);
} }
unsigned int system_get_bootmode(void) unsigned int system_get_bootmode(void) { return hal_sw_bootmode_get(); }
{
return hal_sw_bootmode_get();
}
#endif #endif

View file

@ -13,155 +13,145 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_key.h"
#include "app_thread.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h"
#include "list.h" #include "list.h"
#include "string.h" #include "string.h"
#include "app_thread.h"
#include "app_key.h"
#include "hal_trace.h"
#define APP_KEY_TRACE(s,...) //TRACE(s, ##__VA_ARGS__) #define APP_KEY_TRACE(s, ...) // TRACE(s, ##__VA_ARGS__)
#define KEY_EVENT_CNT_LIMIT (3) #define KEY_EVENT_CNT_LIMIT (3)
typedef struct { typedef struct {
list_t *key_list; list_t *key_list;
}APP_KEY_CONFIG; } APP_KEY_CONFIG;
APP_KEY_CONFIG app_key_conifg = { APP_KEY_CONFIG app_key_conifg = {.key_list = NULL};
.key_list = NULL
};
osPoolDef (app_key_handle_mempool, 20, APP_KEY_HANDLE); osPoolDef(app_key_handle_mempool, 20, APP_KEY_HANDLE);
osPoolId app_key_handle_mempool = NULL; osPoolId app_key_handle_mempool = NULL;
static uint8_t key_event_cnt = 0; static uint8_t key_event_cnt = 0;
static int key_event_process(uint32_t key_code, uint8_t key_event) static int key_event_process(uint32_t key_code, uint8_t key_event) {
{ uint32_t app_keyevt;
uint32_t app_keyevt; APP_MESSAGE_BLOCK msg;
APP_MESSAGE_BLOCK msg;
if (key_event_cnt>KEY_EVENT_CNT_LIMIT){
return 0;
}else{
key_event_cnt++;
}
msg.mod_id = APP_MODUAL_KEY;
APP_KEY_SET_MESSAGE(app_keyevt, key_code, key_event);
msg.msg_body.message_id = app_keyevt;
msg.msg_body.message_ptr = (uint32_t)NULL;
app_mailbox_put(&msg);
if (key_event_cnt > KEY_EVENT_CNT_LIMIT) {
return 0; return 0;
} else {
key_event_cnt++;
}
msg.mod_id = APP_MODUAL_KEY;
APP_KEY_SET_MESSAGE(app_keyevt, key_code, key_event);
msg.msg_body.message_id = app_keyevt;
msg.msg_body.message_ptr = (uint32_t)NULL;
app_mailbox_put(&msg);
return 0;
} }
void app_key_simulate_key_event(uint32_t key_code, uint8_t key_event) void app_key_simulate_key_event(uint32_t key_code, uint8_t key_event) {
{ key_event_process(key_code, key_event);
key_event_process(key_code, key_event);
} }
static void app_key_handle_free(void *key_handle) static void app_key_handle_free(void *key_handle) {
{ osPoolFree(app_key_handle_mempool, key_handle);
osPoolFree (app_key_handle_mempool, key_handle);
} }
static APP_KEY_HANDLE *app_key_handle_find(const APP_KEY_STATUS *key_status) static APP_KEY_HANDLE *app_key_handle_find(const APP_KEY_STATUS *key_status) {
{ APP_KEY_HANDLE *key_handle = NULL;
APP_KEY_HANDLE *key_handle = NULL; list_node_t *node = NULL;
list_node_t *node = NULL;
for (node = list_begin(app_key_conifg.key_list); node != list_end(app_key_conifg.key_list); node = list_next(node)) { for (node = list_begin(app_key_conifg.key_list);
key_handle = (APP_KEY_HANDLE *)list_node(node); node != list_end(app_key_conifg.key_list); node = list_next(node)) {
if ((key_handle->key_status.code == key_status->code)&&(key_handle->key_status.event == key_status->event)) key_handle = (APP_KEY_HANDLE *)list_node(node);
return key_handle; if ((key_handle->key_status.code == key_status->code) &&
} (key_handle->key_status.event == key_status->event))
return key_handle;
}
return NULL; return NULL;
} }
static int app_key_handle_process(APP_MESSAGE_BODY *msg_body) static int app_key_handle_process(APP_MESSAGE_BODY *msg_body) {
{ APP_KEY_STATUS key_status;
APP_KEY_STATUS key_status; APP_KEY_HANDLE *key_handle = NULL;
APP_KEY_HANDLE *key_handle = NULL;
APP_KEY_GET_CODE(msg_body->message_id, key_status.code); APP_KEY_GET_CODE(msg_body->message_id, key_status.code);
APP_KEY_GET_EVENT(msg_body->message_id, key_status.event); APP_KEY_GET_EVENT(msg_body->message_id, key_status.event);
APP_KEY_TRACE(3,"%s code:%d event:%d",__func__,key_status.code, key_status.event); APP_KEY_TRACE(3, "%s code:%d event:%d", __func__, key_status.code,
key_status.event);
key_event_cnt--; key_event_cnt--;
key_handle = app_key_handle_find(&key_status); key_handle = app_key_handle_find(&key_status);
if (key_handle != NULL && key_handle->function!= NULL) if (key_handle != NULL && key_handle->function != NULL)
((APP_KEY_HANDLE_CB_T)key_handle->function)(&key_status,key_handle->param); ((APP_KEY_HANDLE_CB_T)key_handle->function)(&key_status, key_handle->param);
return 0; return 0;
} }
int app_key_handle_registration(const APP_KEY_HANDLE *key_handle) int app_key_handle_registration(const APP_KEY_HANDLE *key_handle) {
{ APP_KEY_HANDLE *dest_key_handle = NULL;
APP_KEY_HANDLE *dest_key_handle = NULL; APP_KEY_TRACE(1, "%s", __func__);
APP_KEY_TRACE(1,"%s",__func__); dest_key_handle = app_key_handle_find(&(key_handle->key_status));
dest_key_handle = app_key_handle_find(&(key_handle->key_status));
APP_KEY_TRACE(2,"%s dest handle:0x%x",__func__,dest_key_handle); APP_KEY_TRACE(2, "%s dest handle:0x%x", __func__, dest_key_handle);
if (dest_key_handle == NULL){ if (dest_key_handle == NULL) {
dest_key_handle = (APP_KEY_HANDLE *)osPoolCAlloc (app_key_handle_mempool); dest_key_handle = (APP_KEY_HANDLE *)osPoolCAlloc(app_key_handle_mempool);
APP_KEY_TRACE(2,"%s malloc:0x%x",__func__,dest_key_handle); APP_KEY_TRACE(2, "%s malloc:0x%x", __func__, dest_key_handle);
list_append(app_key_conifg.key_list, dest_key_handle); list_append(app_key_conifg.key_list, dest_key_handle);
} }
if (dest_key_handle == NULL) if (dest_key_handle == NULL)
return -1; return -1;
APP_KEY_TRACE(5,"%s set handle:0x%x code:%d event:%d function:%x",__func__,dest_key_handle, key_handle->key_status.code, key_handle->key_status.event, key_handle->function); APP_KEY_TRACE(5, "%s set handle:0x%x code:%d event:%d function:%x", __func__,
dest_key_handle->key_status.code = key_handle->key_status.code; dest_key_handle, key_handle->key_status.code,
dest_key_handle->key_status.event = key_handle->key_status.event; key_handle->key_status.event, key_handle->function);
dest_key_handle->string = key_handle->string; dest_key_handle->key_status.code = key_handle->key_status.code;
dest_key_handle->function = key_handle->function; dest_key_handle->key_status.event = key_handle->key_status.event;
dest_key_handle->param = key_handle->param;; dest_key_handle->string = key_handle->string;
dest_key_handle->function = key_handle->function;
dest_key_handle->param = key_handle->param;
;
return 0; return 0;
} }
void app_key_handle_clear(void) void app_key_handle_clear(void) { list_clear(app_key_conifg.key_list); }
{
list_clear(app_key_conifg.key_list); int app_key_open(int checkPwrKey) {
APP_KEY_TRACE(2, "%s %x", __func__, app_key_conifg.key_list);
if (app_key_conifg.key_list == NULL)
app_key_conifg.key_list = list_new(app_key_handle_free, NULL, NULL);
if (app_key_handle_mempool == NULL)
app_key_handle_mempool = osPoolCreate(osPool(app_key_handle_mempool));
app_set_threadhandle(APP_MODUAL_KEY, app_key_handle_process);
return hal_key_open(checkPwrKey, key_event_process);
} }
int app_key_open(int checkPwrKey) int app_key_close(void) {
{ hal_key_close();
APP_KEY_TRACE(2,"%s %x",__func__, app_key_conifg.key_list); if (app_key_conifg.key_list != NULL)
list_free(app_key_conifg.key_list);
if (app_key_conifg.key_list == NULL) app_set_threadhandle(APP_MODUAL_KEY, NULL);
app_key_conifg.key_list = list_new(app_key_handle_free, NULL, NULL); return 0;
if (app_key_handle_mempool == NULL)
app_key_handle_mempool = osPoolCreate(osPool(app_key_handle_mempool));
app_set_threadhandle(APP_MODUAL_KEY, app_key_handle_process);
return hal_key_open(checkPwrKey, key_event_process);
} }
int app_key_close(void) uint32_t app_key_read_status(uint32_t code) {
{ return (uint32_t)hal_key_read_status((enum HAL_KEY_CODE_T)code);
hal_key_close();
if (app_key_conifg.key_list != NULL)
list_free(app_key_conifg.key_list);
app_set_threadhandle(APP_MODUAL_KEY, NULL);
return 0;
}
uint32_t app_key_read_status(uint32_t code)
{
return (uint32_t)hal_key_read_status((enum HAL_KEY_CODE_T)code);
} }
#if defined(_AUTO_TEST_) #if defined(_AUTO_TEST_)
int simul_key_event_process(uint32_t key_code, uint8_t key_event) int simul_key_event_process(uint32_t key_code, uint8_t key_event) {
{ return key_event_process(key_code, key_event);
return key_event_process(key_code, key_event);
} }
#endif #endif

View file

@ -13,82 +13,87 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "hal_key.h"
#ifndef __APP_KEY_H__ #ifndef __APP_KEY_H__
#define __APP_KEY_H__ #define __APP_KEY_H__
#include "hal_key.h" #ifdef __cplusplus
extern "C" {
#endif
#define APP_KEY_SET_MESSAGE(appevt, code, evt) (appevt = (((uint32_t)code&0xffffff)<<8)|(evt&0xff)) #define APP_KEY_SET_MESSAGE(appevt, code, evt) \
#define APP_KEY_GET_CODE(appevt, code) (code = (appevt>>8)&0xffffff) (appevt = (((uint32_t)code & 0xffffff) << 8) | (evt & 0xff))
#define APP_KEY_GET_EVENT(appevt, evt) (evt = appevt&0xff) #define APP_KEY_GET_CODE(appevt, code) (code = (appevt >> 8) & 0xffffff)
#define APP_KEY_GET_EVENT(appevt, evt) (evt = appevt & 0xff)
#define APP_KEY_CODE_GOOGLE APP_KEY_CODE_FN15 #define APP_KEY_CODE_GOOGLE APP_KEY_CODE_FN15
#define APP_KEY_CODE_VOICEPATH APP_KEY_CODE_FN15 #define APP_KEY_CODE_VOICEPATH APP_KEY_CODE_FN15
#define APP_KEY_CODE_TILE APP_KEY_CODE_FN15 #define APP_KEY_CODE_TILE APP_KEY_CODE_FN15
enum APP_KEY_CODE_T { enum APP_KEY_CODE_T {
APP_KEY_CODE_NONE = HAL_KEY_CODE_NONE, APP_KEY_CODE_NONE = HAL_KEY_CODE_NONE,
APP_KEY_CODE_PWR = HAL_KEY_CODE_PWR, APP_KEY_CODE_PWR = HAL_KEY_CODE_PWR,
APP_KEY_CODE_FN1 = HAL_KEY_CODE_FN1, APP_KEY_CODE_FN1 = HAL_KEY_CODE_FN1,
APP_KEY_CODE_FN2 = HAL_KEY_CODE_FN2, APP_KEY_CODE_FN2 = HAL_KEY_CODE_FN2,
APP_KEY_CODE_FN3 = HAL_KEY_CODE_FN3, APP_KEY_CODE_FN3 = HAL_KEY_CODE_FN3,
APP_KEY_CODE_FN4 = HAL_KEY_CODE_FN4, APP_KEY_CODE_FN4 = HAL_KEY_CODE_FN4,
APP_KEY_CODE_FN5 = HAL_KEY_CODE_FN5, APP_KEY_CODE_FN5 = HAL_KEY_CODE_FN5,
APP_KEY_CODE_FN6 = HAL_KEY_CODE_FN6, APP_KEY_CODE_FN6 = HAL_KEY_CODE_FN6,
APP_KEY_CODE_FN7 = HAL_KEY_CODE_FN7, APP_KEY_CODE_FN7 = HAL_KEY_CODE_FN7,
APP_KEY_CODE_FN8 = HAL_KEY_CODE_FN8, APP_KEY_CODE_FN8 = HAL_KEY_CODE_FN8,
APP_KEY_CODE_FN9 = HAL_KEY_CODE_FN9, APP_KEY_CODE_FN9 = HAL_KEY_CODE_FN9,
APP_KEY_CODE_FN10 = HAL_KEY_CODE_FN10, APP_KEY_CODE_FN10 = HAL_KEY_CODE_FN10,
APP_KEY_CODE_FN11 = HAL_KEY_CODE_FN11, APP_KEY_CODE_FN11 = HAL_KEY_CODE_FN11,
APP_KEY_CODE_FN12 = HAL_KEY_CODE_FN12, APP_KEY_CODE_FN12 = HAL_KEY_CODE_FN12,
APP_KEY_CODE_FN13 = HAL_KEY_CODE_FN13, APP_KEY_CODE_FN13 = HAL_KEY_CODE_FN13,
APP_KEY_CODE_FN14 = HAL_KEY_CODE_FN14, APP_KEY_CODE_FN14 = HAL_KEY_CODE_FN14,
APP_KEY_CODE_FN15 = HAL_KEY_CODE_FN15, APP_KEY_CODE_FN15 = HAL_KEY_CODE_FN15,
}; };
enum APP_KEY_EVENT_T { enum APP_KEY_EVENT_T {
APP_KEY_EVENT_NONE = HAL_KEY_EVENT_NONE, APP_KEY_EVENT_NONE = HAL_KEY_EVENT_NONE,
APP_KEY_EVENT_DOWN = HAL_KEY_EVENT_DOWN, APP_KEY_EVENT_DOWN = HAL_KEY_EVENT_DOWN,
APP_KEY_EVENT_FIRST_DOWN = HAL_KEY_EVENT_FIRST_DOWN, APP_KEY_EVENT_FIRST_DOWN = HAL_KEY_EVENT_FIRST_DOWN,
APP_KEY_EVENT_CONTINUED_DOWN = HAL_KEY_EVENT_CONTINUED_DOWN, APP_KEY_EVENT_CONTINUED_DOWN = HAL_KEY_EVENT_CONTINUED_DOWN,
APP_KEY_EVENT_UP = HAL_KEY_EVENT_UP, APP_KEY_EVENT_UP = HAL_KEY_EVENT_UP,
APP_KEY_EVENT_UP_AFTER_LONGPRESS = HAL_KEY_EVENT_UP_AFTER_LONGPRESS, APP_KEY_EVENT_UP_AFTER_LONGPRESS = HAL_KEY_EVENT_UP_AFTER_LONGPRESS,
APP_KEY_EVENT_LONGPRESS = HAL_KEY_EVENT_LONGPRESS, APP_KEY_EVENT_LONGPRESS = HAL_KEY_EVENT_LONGPRESS,
APP_KEY_EVENT_LONGLONGPRESS = HAL_KEY_EVENT_LONGLONGPRESS, APP_KEY_EVENT_LONGLONGPRESS = HAL_KEY_EVENT_LONGLONGPRESS,
APP_KEY_EVENT_CLICK = HAL_KEY_EVENT_CLICK, APP_KEY_EVENT_CLICK = HAL_KEY_EVENT_CLICK,
APP_KEY_EVENT_DOUBLECLICK = HAL_KEY_EVENT_DOUBLECLICK, APP_KEY_EVENT_DOUBLECLICK = HAL_KEY_EVENT_DOUBLECLICK,
APP_KEY_EVENT_TRIPLECLICK = HAL_KEY_EVENT_TRIPLECLICK, APP_KEY_EVENT_TRIPLECLICK = HAL_KEY_EVENT_TRIPLECLICK,
APP_KEY_EVENT_ULTRACLICK = HAL_KEY_EVENT_ULTRACLICK, APP_KEY_EVENT_ULTRACLICK = HAL_KEY_EVENT_ULTRACLICK,
APP_KEY_EVENT_RAMPAGECLICK = HAL_KEY_EVENT_RAMPAGECLICK, APP_KEY_EVENT_RAMPAGECLICK = HAL_KEY_EVENT_RAMPAGECLICK,
APP_KEY_EVENT_SIXTHCLICK = HAL_KEY_EVENT_SIXTHCLICK, APP_KEY_EVENT_SIXTHCLICK = HAL_KEY_EVENT_SIXTHCLICK,
APP_KEY_EVENT_SEVENTHCLICK = HAL_KEY_EVENT_SEVENTHCLICK, APP_KEY_EVENT_SEVENTHCLICK = HAL_KEY_EVENT_SEVENTHCLICK,
APP_KEY_EVENT_EIGHTHCLICK = HAL_KEY_EVENT_EIGHTHCLICK, APP_KEY_EVENT_EIGHTHCLICK = HAL_KEY_EVENT_EIGHTHCLICK,
APP_KEY_EVENT_NINETHCLICK = HAL_KEY_EVENT_NINETHCLICK, APP_KEY_EVENT_NINETHCLICK = HAL_KEY_EVENT_NINETHCLICK,
APP_KEY_EVENT_TENTHCLICK = HAL_KEY_EVENT_TENTHCLICK, APP_KEY_EVENT_TENTHCLICK = HAL_KEY_EVENT_TENTHCLICK,
APP_KEY_EVENT_REPEAT = HAL_KEY_EVENT_REPEAT, APP_KEY_EVENT_REPEAT = HAL_KEY_EVENT_REPEAT,
APP_KEY_EVENT_GROUPKEY_DOWN = HAL_KEY_EVENT_GROUPKEY_DOWN, APP_KEY_EVENT_GROUPKEY_DOWN = HAL_KEY_EVENT_GROUPKEY_DOWN,
APP_KEY_EVENT_GROUPKEY_REPEAT = HAL_KEY_EVENT_GROUPKEY_REPEAT, APP_KEY_EVENT_GROUPKEY_REPEAT = HAL_KEY_EVENT_GROUPKEY_REPEAT,
APP_KEY_EVENT_INITDOWN = HAL_KEY_EVENT_INITDOWN, APP_KEY_EVENT_INITDOWN = HAL_KEY_EVENT_INITDOWN,
APP_KEY_EVENT_INITUP = HAL_KEY_EVENT_INITUP, APP_KEY_EVENT_INITUP = HAL_KEY_EVENT_INITUP,
APP_KEY_EVENT_INITLONGPRESS = HAL_KEY_EVENT_INITLONGPRESS, APP_KEY_EVENT_INITLONGPRESS = HAL_KEY_EVENT_INITLONGPRESS,
APP_KEY_EVENT_INITLONGLONGPRESS = HAL_KEY_EVENT_INITLONGLONGPRESS, APP_KEY_EVENT_INITLONGLONGPRESS = HAL_KEY_EVENT_INITLONGLONGPRESS,
APP_KEY_EVENT_INITFINISHED = HAL_KEY_EVENT_INITFINISHED, APP_KEY_EVENT_INITFINISHED = HAL_KEY_EVENT_INITFINISHED,
APP_KEY_EVENT_NUM = HAL_KEY_EVENT_NUM, APP_KEY_EVENT_NUM = HAL_KEY_EVENT_NUM,
}; };
typedef struct { typedef struct {
uint32_t code; uint32_t code;
uint8_t event; uint8_t event;
}APP_KEY_STATUS; } APP_KEY_STATUS;
typedef void (*APP_KEY_HANDLE_CB_T)(APP_KEY_STATUS*, void *param); typedef void (*APP_KEY_HANDLE_CB_T)(APP_KEY_STATUS *, void *param);
typedef struct { typedef struct {
APP_KEY_STATUS key_status; APP_KEY_STATUS key_status;
const char* string; const char *string;
APP_KEY_HANDLE_CB_T function; APP_KEY_HANDLE_CB_T function;
void *param; void *param;
} APP_KEY_HANDLE; } APP_KEY_HANDLE;
int app_key_open(int checkPwrKey); int app_key_open(int checkPwrKey);
@ -106,4 +111,8 @@ void app_key_simulate_key_event(uint32_t key_code, uint8_t key_event);
#if defined(_AUTO_TEST_) #if defined(_AUTO_TEST_)
int simul_key_event_process(uint32_t key_code, uint8_t key_event); int simul_key_event_process(uint32_t key_code, uint8_t key_event);
#endif #endif
#endif//__FMDEC_H__
#ifdef __cplusplus
};
#endif
#endif //__FMDEC_H__

File diff suppressed because it is too large Load diff

View file

@ -13,21 +13,21 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "stdio.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "stdio.h"
#include "string.h" #include "string.h"
#include "hal_iomux.h"
#include "app_key.h" #include "app_key.h"
#include "hal_trace.h" #include "hal_iomux.h"
#include "hal_sleep.h" #include "hal_sleep.h"
#include "hal_trace.h"
#include "audioflinger.h"
#include "audiobuffer.h"
#include "app_thread.h" #include "app_thread.h"
#include "app_utils.h" #include "app_utils.h"
#include "bt_drv_interface.h" #include "audiobuffer.h"
#include "audioflinger.h"
#include "besbt.h" #include "besbt.h"
#include "bt_drv_interface.h"
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
#include "anc_usb_app.h" #include "anc_usb_app.h"
@ -35,278 +35,299 @@
//#include "dualadc_audio_app.h" //#include "dualadc_audio_app.h"
#endif #endif
#define APP_TESTER_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3 #define APP_TESTER_CPU_WAKE_LOCK HAL_CPU_WAKE_LOCK_USER_3
extern "C" int hal_analogif_reg_write(unsigned short reg, unsigned short val); extern "C" int hal_analogif_reg_write(unsigned short reg, unsigned short val);
extern "C" void OS_NotifyEvm(void); extern "C" void OS_NotifyEvm(void);
extern void app_anc_usb_init(void); extern void app_anc_usb_init(void);
#define REG(a) *(volatile uint32_t *)(a) #define REG(a) *(volatile uint32_t *)(a)
void bt_signaling_test(APP_KEY_STATUS *status, void *param) void bt_signaling_test(APP_KEY_STATUS *status, void *param) {
{ TRACE(3, "%s %d,%d", __func__, status->code, status->event);
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK);
btdrv_testmode_start(); btdrv_testmode_start();
btdrv_enable_dut(); btdrv_enable_dut();
} }
void bt_stack_test(APP_KEY_STATUS *status, void *param) void bt_stack_test(APP_KEY_STATUS *status, void *param) {
{ TRACE(3, "%s %d,%d", __func__, status->code, status->event);
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
btdrv_start_bt(); btdrv_start_bt();
BesbtInit(); BesbtInit();
} }
void bt_ble_test(APP_KEY_STATUS *status, void *param) void bt_ble_test(APP_KEY_STATUS *status, void *param) {
{ TRACE(3, "%s %d,%d", __func__, status->code, status->event);
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK); hal_cpu_wake_lock(APP_TESTER_CPU_WAKE_LOCK);
btdrv_testmode_start(); btdrv_testmode_start();
btdrv_hcioff(); btdrv_hcioff();
hal_iomux_set_uart1(); hal_iomux_set_uart1();
btdrv_uart_bridge_loop(); btdrv_uart_bridge_loop();
} }
void bt_test_104m(APP_KEY_STATUS *status, void *param) void bt_test_104m(APP_KEY_STATUS *status, void *param) {
{ TRACE(3, "%s %d,%d", __func__, status->code, status->event);
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_analogif_reg_write(0x35,0x0); hal_analogif_reg_write(0x35, 0x0);
hal_analogif_reg_write(0x36,0x8000); hal_analogif_reg_write(0x36, 0x8000);
hal_analogif_reg_write(0x37,0x1000); hal_analogif_reg_write(0x37, 0x1000);
hal_analogif_reg_write(0x31,0xfd31); hal_analogif_reg_write(0x31, 0xfd31);
REG(0xd0350248) = 0X80C00000; REG(0xd0350248) = 0X80C00000;
hal_analogif_reg_write(0xC,0x3790); hal_analogif_reg_write(0xC, 0x3790);
} }
void bt_change_to_iic(APP_KEY_STATUS *status, void *param) void bt_change_to_iic(APP_KEY_STATUS *status, void *param) {
{ TRACE(3, "%s %d,%d", __func__, status->code, status->event);
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_iomux_set_analog_i2c(); hal_iomux_set_analog_i2c();
} }
void bt_change_to_uart0(APP_KEY_STATUS *status, void *param) void bt_change_to_uart0(APP_KEY_STATUS *status, void *param) {
{ TRACE(3, "%s %d,%d", __func__, status->code, status->event);
TRACE(3,"%s %d,%d",__func__, status->code, status->event);
hal_iomux_set_uart0(); hal_iomux_set_uart0();
} }
void app_switch_i2c_uart(APP_KEY_STATUS *status, void *param) void app_switch_i2c_uart(APP_KEY_STATUS *status, void *param) {
{ static uint32_t flag = 1;
static uint32_t flag = 1;
TRACE(2,"[%s] flag = %d",__func__, flag); TRACE(2, "[%s] flag = %d", __func__, flag);
if(flag) if (flag) {
{ bt_change_to_iic(NULL, NULL);
bt_change_to_iic(NULL, NULL); } else {
} bt_change_to_uart0(NULL, NULL);
else }
{ flag = !flag;
bt_change_to_uart0(NULL, NULL);
}
flag = !flag;
} }
void test_power_off(APP_KEY_STATUS *status, void *param) void test_power_off(APP_KEY_STATUS *status, void *param) {
{ TRACE(0, "app_power_off\n");
TRACE(0,"app_power_off\n");
} }
extern APP_KEY_STATUS bt_key; extern APP_KEY_STATUS bt_key;
void test_bt_key(APP_KEY_STATUS *status, void *param) void test_bt_key(APP_KEY_STATUS *status, void *param) {
{ TRACE(3, "%s %d,%d", __func__, status->code, status->event);
TRACE(3,"%s %d,%d",__func__, status->code, status->event); if (bt_key.code == 0xff) {
if(bt_key.code == 0xff) bt_key.code = status->code;
{ bt_key.event = status->event;
bt_key.code = status->code; OS_NotifyEvm();
bt_key.event = status->event; }
OS_NotifyEvm();
}
} }
#ifdef __APP_TEST_SDMMC__ #ifdef __APP_TEST_SDMMC__
#include "app_sdmmc.h" #include "app_sdmmc.h"
#define SD_BUF_SIZE (10) #define SD_BUF_SIZE (10)
uint8_t sd_buf[SD_BUF_SIZE]={0,1,2,3,4,5,6,7,8,9}; uint8_t sd_buf[SD_BUF_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
void test_sd_card() void test_sd_card() {
{ sd_open();
sd_open();
dump_data2sd(APP_SDMMC_DUMP_OPEN, NULL , 0); dump_data2sd(APP_SDMMC_DUMP_OPEN, NULL, 0);
dump_data2sd(APP_SDMMC_DUMP_WRITE,sd_buf, SD_BUF_SIZE); dump_data2sd(APP_SDMMC_DUMP_WRITE, sd_buf, SD_BUF_SIZE);
dump_data2sd(APP_SDMMC_DUMP_CLOSE, NULL, 0); dump_data2sd(APP_SDMMC_DUMP_CLOSE, NULL, 0);
} }
#endif #endif
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
extern void adc_looptester(bool on, enum AUD_IO_PATH_T input_path, enum AUD_SAMPRATE_T sample_rate); extern void adc_looptester(bool on, enum AUD_IO_PATH_T input_path,
void test_codec_loop(APP_KEY_STATUS *status, void *param) enum AUD_SAMPRATE_T sample_rate);
{ void test_codec_loop(APP_KEY_STATUS *status, void *param) {
audio_buffer_init(); audio_buffer_init();
adc_looptester(true, AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_8000); adc_looptester(true, AUD_INPUT_PATH_MAINMIC, AUD_SAMPRATE_8000);
} }
#ifdef ANC_APP #ifdef ANC_APP
void test_anc(APP_KEY_STATUS *status, void *param) void test_anc(APP_KEY_STATUS *status, void *param) { anc_usb_app((bool)param); }
{
anc_usb_app((bool)param);
}
void test_usb_audio(APP_KEY_STATUS *status, void *param) void test_usb_audio(APP_KEY_STATUS *status, void *param) {
{ usb_audio_app((bool)param);
usb_audio_app((bool)param); // dualadc_audio_app((bool)param);
//dualadc_audio_app((bool)param);
} }
#endif #endif
#endif #endif
void bt_change_to_jlink(APP_KEY_STATUS *status, void *param) void bt_change_to_jlink(APP_KEY_STATUS *status, void *param) {
{ hal_iomux_set_jtag();
hal_iomux_set_jtag();
hal_cmu_jtag_clock_enable();
hal_cmu_jtag_clock_enable();
} }
void bt_enable_tports(void) void bt_enable_tports(void) {
{ hal_iomux_set_bt_tport();
hal_iomux_set_bt_tport(); bt_drv_bt_tport_type_config();
bt_drv_bt_tport_type_config();
} }
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
extern void da_tester(uint8_t on); extern void da_tester(uint8_t on);
void bt_test_dsp_process(APP_KEY_STATUS *status, void *param) void bt_test_dsp_process(APP_KEY_STATUS *status, void *param) { da_tester(1); }
{
da_tester(1);
}
#endif #endif
#define MENU_TITLE_MAX_SIZE (50) #define MENU_TITLE_MAX_SIZE (50)
APP_KEY_HANDLE app_testcase[] = { APP_KEY_HANDLE app_testcase[] = {
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
{{APP_KEY_CODE_FN2,APP_KEY_EVENT_UP},"USB AUDIO TEST OFF",test_usb_audio, (void *)0}, {{APP_KEY_CODE_FN2, APP_KEY_EVENT_UP},
{{APP_KEY_CODE_FN5,APP_KEY_EVENT_UP},"USB AUDIO TEST ON",test_usb_audio, (void *)1}, "USB AUDIO TEST OFF",
{{APP_KEY_CODE_FN3,APP_KEY_EVENT_UP},"ANC TEST OFF",test_anc, (void *)0}, test_usb_audio,
{{APP_KEY_CODE_FN6,APP_KEY_EVENT_UP},"ANC TEST ON",test_anc, (void *)1}, (void *)0},
{{APP_KEY_CODE_FN5, APP_KEY_EVENT_UP},
"USB AUDIO TEST ON",
test_usb_audio,
(void *)1},
{{APP_KEY_CODE_FN3, APP_KEY_EVENT_UP}, "ANC TEST OFF", test_anc, (void *)0},
{{APP_KEY_CODE_FN6, APP_KEY_EVENT_UP}, "ANC TEST ON", test_anc, (void *)1},
#else #else
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
{{APP_KEY_CODE_FN1,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: test_codec_loop",test_codec_loop, NULL}, {{APP_KEY_CODE_FN1, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: test_codec_loop",
test_codec_loop,
NULL},
#endif #endif
{{APP_KEY_CODE_FN1,APP_KEY_EVENT_UP},"bt_signaling_test",bt_signaling_test, NULL}, {{APP_KEY_CODE_FN1, APP_KEY_EVENT_UP},
{{APP_KEY_CODE_FN2,APP_KEY_EVENT_UP},"bt gogogogo" ,bt_stack_test, NULL}, "bt_signaling_test",
{{APP_KEY_CODE_FN3,APP_KEY_EVENT_UP},"bt change to 104m",bt_test_104m, NULL}, bt_signaling_test,
{{APP_KEY_CODE_FN4,APP_KEY_EVENT_UP},"ble test mode" ,bt_ble_test, NULL}, NULL},
{{APP_KEY_CODE_FN2, APP_KEY_EVENT_UP}, "bt gogogogo", bt_stack_test, NULL},
{{APP_KEY_CODE_FN3, APP_KEY_EVENT_UP},
"bt change to 104m",
bt_test_104m,
NULL},
{{APP_KEY_CODE_FN4, APP_KEY_EVENT_UP}, "ble test mode", bt_ble_test, NULL},
#ifdef APP_TEST_AUDIO #ifdef APP_TEST_AUDIO
{{APP_KEY_CODE_FN5,APP_KEY_EVENT_UP},"dsp eq test" ,bt_test_dsp_process, NULL}, {{APP_KEY_CODE_FN5, APP_KEY_EVENT_UP},
"dsp eq test",
bt_test_dsp_process,
NULL},
#endif #endif
{{APP_KEY_CODE_FN5,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: bt volume up key" ,test_bt_key, NULL}, {{APP_KEY_CODE_FN5, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: bt volume up key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN6,APP_KEY_EVENT_UP},"bt volume down key" ,test_bt_key, NULL}, {{APP_KEY_CODE_FN6, APP_KEY_EVENT_UP},
{{APP_KEY_CODE_FN6,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: bt volume down key" ,test_bt_key, NULL}, "bt volume down key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN6, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: bt volume down key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN7,APP_KEY_EVENT_CLICK},"bt function key" ,test_bt_key, NULL}, {{APP_KEY_CODE_FN7, APP_KEY_EVENT_CLICK},
{{APP_KEY_CODE_FN7,APP_KEY_EVENT_DOUBLECLICK},"DOUBLECLICK: bt function key" ,test_bt_key, NULL}, "bt function key",
{{APP_KEY_CODE_FN7,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: bt function key" ,test_bt_key, NULL}, test_bt_key,
NULL},
{{APP_KEY_CODE_FN7, APP_KEY_EVENT_DOUBLECLICK},
"DOUBLECLICK: bt function key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN7, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: bt function key",
test_bt_key,
NULL},
{{APP_KEY_CODE_FN8,APP_KEY_EVENT_UP},"open jlink" ,bt_change_to_jlink, NULL}, {{APP_KEY_CODE_FN8, APP_KEY_EVENT_UP},
{{APP_KEY_CODE_FN9,APP_KEY_EVENT_UP},"iic_map2_P3_0" ,bt_change_to_iic, NULL}, "open jlink",
{{APP_KEY_CODE_PWR,APP_KEY_EVENT_LONGPRESS},"LONGPRESS: power off" ,test_power_off, NULL}, bt_change_to_jlink,
NULL},
{{APP_KEY_CODE_FN9, APP_KEY_EVENT_UP},
"iic_map2_P3_0",
bt_change_to_iic,
NULL},
{{APP_KEY_CODE_PWR, APP_KEY_EVENT_LONGPRESS},
"LONGPRESS: power off",
test_power_off,
NULL},
#endif // !(APP_TEST_AUDIO && ANC_APP) #endif // !(APP_TEST_AUDIO && ANC_APP)
{{0xff, APP_KEY_EVENT_NONE}, NULL, (uint32_t)NULL, 0}, {{0xff, APP_KEY_EVENT_NONE}, NULL, (uint32_t)NULL, 0},
}; };
int app_testcase_disp_menu(APP_KEY_HANDLE* testcase, bool printall) int app_testcase_disp_menu(APP_KEY_HANDLE *testcase, bool printall) {
{ char buf[MENU_TITLE_MAX_SIZE + 1];
char buf[MENU_TITLE_MAX_SIZE+1]; if (strlen(testcase->string) > (MENU_TITLE_MAX_SIZE - 15)) {
if (strlen(testcase->string)>(MENU_TITLE_MAX_SIZE-15)){ TRACE(0, "string too long, please check again\n");
TRACE(0,"string too long, please check again\n"); return -1;
return -1; }
}
if (printall){ if (printall) {
memset(buf, '-', sizeof(buf)-3); memset(buf, '-', sizeof(buf) - 3);
buf[0] = '|'; buf[0] = '|';
buf[MENU_TITLE_MAX_SIZE-3] = '|'; buf[MENU_TITLE_MAX_SIZE - 3] = '|';
buf[MENU_TITLE_MAX_SIZE-2] = '\r'; buf[MENU_TITLE_MAX_SIZE - 2] = '\r';
buf[MENU_TITLE_MAX_SIZE-1] = '\n'; buf[MENU_TITLE_MAX_SIZE - 1] = '\n';
buf[MENU_TITLE_MAX_SIZE] = '\0'; buf[MENU_TITLE_MAX_SIZE] = '\0';
TRACE(1,"%s", buf); TRACE(1, "%s", buf);
osDelay(1); osDelay(1);
} }
do{ do {
snprintf(buf, sizeof(buf), "| (0x%X)%s", testcase->key_status.code, testcase->string); snprintf(buf, sizeof(buf), "| (0x%X)%s", testcase->key_status.code,
memset(buf+strlen(buf), ' ', sizeof(buf)-strlen(buf)-3); testcase->string);
buf[MENU_TITLE_MAX_SIZE-3] = '|'; memset(buf + strlen(buf), ' ', sizeof(buf) - strlen(buf) - 3);
buf[MENU_TITLE_MAX_SIZE-2] = '\r'; buf[MENU_TITLE_MAX_SIZE - 3] = '|';
buf[MENU_TITLE_MAX_SIZE-1] = '\n'; buf[MENU_TITLE_MAX_SIZE - 2] = '\r';
buf[MENU_TITLE_MAX_SIZE] = '\0'; buf[MENU_TITLE_MAX_SIZE - 1] = '\n';
TRACE(1,"%s", buf); buf[MENU_TITLE_MAX_SIZE] = '\0';
testcase++; TRACE(1, "%s", buf);
}while(testcase->key_status.code != 0xff && printall); testcase++;
} while (testcase->key_status.code != 0xff && printall);
if (printall){ if (printall) {
memset(buf, '-', sizeof(buf)-3); memset(buf, '-', sizeof(buf) - 3);
buf[0] = '|'; buf[0] = '|';
buf[MENU_TITLE_MAX_SIZE-3] = '|'; buf[MENU_TITLE_MAX_SIZE - 3] = '|';
buf[MENU_TITLE_MAX_SIZE-2] = '\r'; buf[MENU_TITLE_MAX_SIZE - 2] = '\r';
buf[MENU_TITLE_MAX_SIZE-1] = '\n'; buf[MENU_TITLE_MAX_SIZE - 1] = '\n';
buf[MENU_TITLE_MAX_SIZE] = '\0'; buf[MENU_TITLE_MAX_SIZE] = '\0';
TRACE(1,"%s", buf); TRACE(1, "%s", buf);
osDelay(1); osDelay(1);
} }
return 0; return 0;
} }
int app_testcase_key_response(APP_MESSAGE_BODY *msg_body) int app_testcase_key_response(APP_MESSAGE_BODY *msg_body) {
{ uint8_t i = 0;
uint8_t i = 0; APP_KEY_STATUS key_status;
APP_KEY_STATUS key_status;
APP_KEY_GET_CODE(msg_body->message_id, key_status.code); APP_KEY_GET_CODE(msg_body->message_id, key_status.code);
APP_KEY_GET_EVENT(msg_body->message_id, key_status.event); APP_KEY_GET_EVENT(msg_body->message_id, key_status.event);
if ((key_status.code)>(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE))) if ((key_status.code) > (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE)))
return -1; return -1;
for (i=0; i<(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE)); i++){ for (i = 0; i < (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE)); i++) {
if (app_testcase[i].key_status.code == key_status.code && (app_testcase[i].key_status.event == key_status.event)) if (app_testcase[i].key_status.code == key_status.code &&
break; (app_testcase[i].key_status.event == key_status.event))
} break;
}
if (i>=(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE))) if (i >= (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE)))
return -1; return -1;
if (app_testcase[i].function != (uint32_t)NULL){ if (app_testcase[i].function != (uint32_t)NULL) {
if (app_testcase[i].string != (uint32_t)NULL) if (app_testcase[i].string != (uint32_t)NULL)
app_testcase_disp_menu(&app_testcase[i],0); app_testcase_disp_menu(&app_testcase[i], 0);
((APP_KEY_HANDLE_CB_T)app_testcase[i].function)(&key_status,app_testcase[i].param); ((APP_KEY_HANDLE_CB_T)app_testcase[i].function)(&key_status,
} app_testcase[i].param);
}
return 0; return 0;
} }
void app_test_init(void) void app_test_init(void) {
{ uint8_t i = 0;
uint8_t i = 0; TRACE(1, "%s", __func__);
TRACE(1,"%s",__func__); for (i = 0; i < (sizeof(app_testcase) / sizeof(APP_KEY_HANDLE)); i++) {
for (i=0; i<(sizeof(app_testcase)/sizeof(APP_KEY_HANDLE)); i++){ app_key_handle_registration(&app_testcase[i]);
app_key_handle_registration(&app_testcase[i]); }
} app_testcase_disp_menu(app_testcase, 1);
app_testcase_disp_menu(app_testcase, 1);
#if defined(APP_TEST_AUDIO) && defined(ANC_APP) #if defined(APP_TEST_AUDIO) && defined(ANC_APP)
app_anc_usb_init(); app_anc_usb_init();
#endif #endif
} }

View file

@ -14,241 +14,212 @@
* *
****************************************************************************/ ****************************************************************************/
//#include "mbed.h" //#include "mbed.h"
#include <stdio.h>
#include <assert.h> #include <assert.h>
#include <stdio.h>
#include "cmsis_os.h"
#include "tgt_hardware.h"
#include "hal_uart.h"
#include "hal_timer.h"
#include "audioflinger.h"
#include "lockcqueue.h"
#include "hal_trace.h"
#include "hal_cmu.h"
#include "hal_chipid.h"
#include "analog.h" #include "analog.h"
#include "app_audio.h"
#include "app_bt_stream.h" #include "app_bt_stream.h"
#include "app_overlay.h" #include "app_overlay.h"
#include "app_audio.h"
#include "app_utils.h" #include "app_utils.h"
#include "apps.h"
#include "audioflinger.h"
#include "cmsis_os.h"
#include "hal_chipid.h"
#include "hal_cmu.h"
#include "hal_codec.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_uart.h"
#include "lockcqueue.h"
#include "nvrecord.h" #include "nvrecord.h"
#include "nvrecord_env.h" #include "nvrecord_env.h"
#include "hal_codec.h" #include "tgt_hardware.h"
#include "apps.h"
#include "app_ring_merge.h" #include "app_ring_merge.h"
#include "bt_drv.h"
#include "bt_xtal_sync.h"
#include "besbt.h"
#include "app_bt_func.h" #include "app_bt_func.h"
#include "app_mic.h" #include "app_mic.h"
#include "besbt.h"
#include "bt_drv.h"
#include "bt_xtal_sync.h"
#include "app_thread.h"
#include "cqueue.h"
#include "btapp.h"
#include "app_bt_media_manager.h" #include "app_bt_media_manager.h"
#include "string.h"
#include "hal_location.h"
#include "hal_codec.h"
#include "hal_sleep.h"
#include "app_hfp.h" #include "app_hfp.h"
#include "app_thread.h"
#include "btapp.h"
#include "cqueue.h"
#include "hal_codec.h"
#include "hal_location.h"
#include "hal_sleep.h"
#include "string.h"
extern bool app_hfp_siri_is_active(void); extern bool app_hfp_siri_is_active(void);
extern int a2dp_volume_2_level_convert(uint8_t vol); extern int a2dp_volume_2_level_convert(uint8_t vol);
extern bool mic_is_already_on; extern bool mic_is_already_on;
typedef enum { typedef enum {
MIC_EVENT_START, MIC_EVENT_START,
MIC_EVENT_STOP, MIC_EVENT_STOP,
MIC_EVENT_CHECK, MIC_EVENT_CHECK,
}MIC_EVENT_TYPE; } MIC_EVENT_TYPE;
static MIC_APP_TYPE current_mictype = MIC_APP_NONE; static MIC_APP_TYPE current_mictype = MIC_APP_NONE;
static struct AF_STREAM_CONFIG_T mic_config[MIC_APP_MAX]; static struct AF_STREAM_CONFIG_T mic_config[MIC_APP_MAX];
osMutexId app_mic_mutex_id = NULL; osMutexId app_mic_mutex_id = NULL;
osMutexDef(app_mic_mutex); osMutexDef(app_mic_mutex);
// flag of is first mic date, if true ,will delete to avoid POP voice // flag of is first mic date, if true ,will delete to avoid POP voice
bool first_mic_in = false; bool first_mic_in = false;
static int internal_mic_start(MIC_APP_TYPE new_mictype) static int internal_mic_start(MIC_APP_TYPE new_mictype) {
{ TRACE(1, "MIC_EVENT_START,current_mictype=%d", current_mictype);
TRACE(1,"MIC_EVENT_START,current_mictype=%d",current_mictype); assert(new_mictype != MIC_APP_NONE);
assert(new_mictype != MIC_APP_NONE); if (current_mictype != MIC_APP_NONE) {
if (current_mictype != MIC_APP_NONE) { TRACE(0, "MIC START ERROR################");
TRACE(0,"MIC START ERROR################");
return false;
}
if (new_mictype == MIC_APP_SOC_CALL)
{
if (btapp_hfp_get_call_state() || app_hfp_siri_is_active())
{
TRACE(2,"[%s] tws_mic_start_telephone_call: %d", __func__, mic_config[new_mictype].sample_rate);
if (mic_config[new_mictype].data_ptr != NULL)
{
}
else
{
TRACE(1,"[%s] Warning sco play not started",__func__);
}
current_mictype = MIC_APP_SOC_CALL;
}
}
else if (new_mictype == MIC_APP_SPEECH_RECO)
{
}
else if (new_mictype == MIC_APP_CSPOTTER)
{
first_mic_in = true;
current_mictype = MIC_APP_CSPOTTER;
}
else if (new_mictype == MIC_APP_MICRECORD)
{
current_mictype = MIC_APP_MICRECORD;
}
else if (new_mictype == MIC_APP_OTHER)
{
TRACE(0,"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &mic_config[new_mictype]);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
return false; return false;
} }
if (new_mictype == MIC_APP_SOC_CALL) {
static int internal_mic_stop(MIC_APP_TYPE new_mictype) if (btapp_hfp_get_call_state() || app_hfp_siri_is_active()) {
{ TRACE(2, "[%s] tws_mic_start_telephone_call: %d", __func__,
TRACE(1,"MIC_EVENT_STOP,current_mictype=%d",current_mictype); mic_config[new_mictype].sample_rate);
//assert(currentMicStauts == currentStatus); if (mic_config[new_mictype].data_ptr != NULL) {
if (new_mictype != current_mictype) { } else {
TRACE(0,"MIC STOP ERROR ################"); TRACE(1, "[%s] Warning sco play not started", __func__);
return false; }
current_mictype = MIC_APP_SOC_CALL;
} }
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); } else if (new_mictype == MIC_APP_SPEECH_RECO) {
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE); } else if (new_mictype == MIC_APP_CSPOTTER) {
first_mic_in = false; first_mic_in = true;
current_mictype = MIC_APP_NONE; current_mictype = MIC_APP_CSPOTTER;
app_sysfreq_req(APP_SYSFREQ_USER_APP_3, APP_SYSFREQ_32K); } else if (new_mictype == MIC_APP_MICRECORD) {
return true; current_mictype = MIC_APP_MICRECORD;
} else if (new_mictype == MIC_APP_OTHER) {
TRACE(0, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &mic_config[new_mictype]);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
return false;
} }
static int app_mic_process(APP_MESSAGE_BODY *msg_body) static int internal_mic_stop(MIC_APP_TYPE new_mictype) {
{ TRACE(1, "MIC_EVENT_STOP,current_mictype=%d", current_mictype);
MIC_EVENT_TYPE mic_event = (MIC_EVENT_TYPE)msg_body->message_id; // assert(currentMicStauts == currentStatus);
MIC_APP_TYPE new_mictype = (MIC_APP_TYPE)msg_body->message_ptr; if (new_mictype != current_mictype) {
int ret = -1; TRACE(0, "MIC STOP ERROR ################");
TRACE(4,"%s mic_event:%d new_mictype:%d current_mictype:%d",__func__,mic_event, new_mictype, current_mictype); return false;
}
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
first_mic_in = false;
current_mictype = MIC_APP_NONE;
app_sysfreq_req(APP_SYSFREQ_USER_APP_3, APP_SYSFREQ_32K);
return true;
}
static int app_mic_process(APP_MESSAGE_BODY *msg_body) {
MIC_EVENT_TYPE mic_event = (MIC_EVENT_TYPE)msg_body->message_id;
MIC_APP_TYPE new_mictype = (MIC_APP_TYPE)msg_body->message_ptr;
int ret = -1;
TRACE(4, "%s mic_event:%d new_mictype:%d current_mictype:%d", __func__,
mic_event, new_mictype, current_mictype);
osMutexWait(app_mic_mutex_id, osWaitForever);
if (mic_event == MIC_EVENT_START)
ret = internal_mic_start(new_mictype);
else if (mic_event == MIC_EVENT_STOP)
ret = internal_mic_stop(new_mictype);
else if (mic_event == MIC_EVENT_CHECK) {
TRACE(1, "MIC_EVENT_CHECK,current_mictype=%d", current_mictype);
if (current_mictype != new_mictype) {
if (current_mictype != MIC_APP_NONE)
internal_mic_stop(current_mictype);
if (new_mictype != MIC_APP_CSPOTTER)
internal_mic_start(new_mictype);
ret = 0;
}
} else
assert(0);
osMutexRelease(app_mic_mutex_id);
return ret;
}
void app_mic_init() {
app_mic_mutex_id = osMutexCreate((osMutex(app_mic_mutex)));
app_set_threadhandle(APP_MODUAL_MIC, app_mic_process);
}
int app_mic_register(MIC_APP_TYPE mic_type,
struct AF_STREAM_CONFIG_T *newStream) {
TRACE(2, "app_mic_registration mic_type:%d,newStream=%p\n", mic_type,
newStream);
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX) {
osMutexWait(app_mic_mutex_id, osWaitForever); osMutexWait(app_mic_mutex_id, osWaitForever);
if (mic_event == MIC_EVENT_START) if (memcmp(&mic_config[mic_type], newStream,
ret = internal_mic_start(new_mictype); sizeof(struct AF_STREAM_CONFIG_T)) != 0) {
else if (mic_event == MIC_EVENT_STOP) TRACE(0, "app_mic_registration Warning mic stream config changed!!!");
ret = internal_mic_stop(new_mictype);
else if (mic_event == MIC_EVENT_CHECK)
{
TRACE(1,"MIC_EVENT_CHECK,current_mictype=%d",current_mictype);
if (current_mictype != new_mictype)
{
if (current_mictype != MIC_APP_NONE)
internal_mic_stop(current_mictype);
if (new_mictype != MIC_APP_CSPOTTER)
internal_mic_start(new_mictype);
ret = 0;
}
} }
else memcpy(&mic_config[mic_type], newStream, sizeof(struct AF_STREAM_CONFIG_T));
assert(0);
osMutexRelease(app_mic_mutex_id); osMutexRelease(app_mic_mutex_id);
return ret; return 0;
}
return -1;
} }
void app_mic_init() int app_mic_deregister(MIC_APP_TYPE mic_type) {
{ TRACE(1, "app_mic_deregister mic_type:%d\n", mic_type);
app_mic_mutex_id = osMutexCreate((osMutex(app_mic_mutex))); if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX) {
app_set_threadhandle(APP_MODUAL_MIC, app_mic_process);
}
int app_mic_register(MIC_APP_TYPE mic_type, struct AF_STREAM_CONFIG_T *newStream)
{
TRACE(2,"app_mic_registration mic_type:%d,newStream=%p\n",mic_type,newStream);
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX)
{
osMutexWait(app_mic_mutex_id, osWaitForever);
if (memcmp(&mic_config[mic_type],newStream,sizeof(struct AF_STREAM_CONFIG_T)) != 0)
{
TRACE(0,"app_mic_registration Warning mic stream config changed!!!");
}
memcpy(&mic_config[mic_type],newStream,sizeof(struct AF_STREAM_CONFIG_T));
osMutexRelease(app_mic_mutex_id);
return 0;
}
return -1;
}
int app_mic_deregister(MIC_APP_TYPE mic_type)
{
TRACE(1,"app_mic_deregister mic_type:%d\n",mic_type);
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX)
{
osMutexWait(app_mic_mutex_id, osWaitForever);
memset(&mic_config[mic_type],0,sizeof(struct AF_STREAM_CONFIG_T));
osMutexRelease(app_mic_mutex_id);
return 0;
}
return -1;
}
bool app_mic_is_registed(MIC_APP_TYPE mic_type)
{
TRACE(1,"app_mic_is_registed mic_type:%d\n",mic_type);
bool ret = false;
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX)
{
osMutexWait(app_mic_mutex_id, osWaitForever);
ret = mic_config[mic_type].data_ptr != NULL;
osMutexRelease(app_mic_mutex_id);
}
return ret;
}
bool app_mic_start(MIC_APP_TYPE mic_type)
{
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_START;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
bool app_mic_stop(MIC_APP_TYPE mic_type)
{
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_STOP;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
void app_mic_check(MIC_APP_TYPE mic_type)
{
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_CHECK;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
}
MIC_APP_TYPE app_mic_status(void)
{
MIC_APP_TYPE ret;
osMutexWait(app_mic_mutex_id, osWaitForever); osMutexWait(app_mic_mutex_id, osWaitForever);
ret= current_mictype; memset(&mic_config[mic_type], 0, sizeof(struct AF_STREAM_CONFIG_T));
osMutexRelease(app_mic_mutex_id); osMutexRelease(app_mic_mutex_id);
return ret; return 0;
}
return -1;
} }
bool app_mic_is_registed(MIC_APP_TYPE mic_type) {
TRACE(1, "app_mic_is_registed mic_type:%d\n", mic_type);
bool ret = false;
if (mic_type > MIC_APP_NONE && mic_type < MIC_APP_MAX) {
osMutexWait(app_mic_mutex_id, osWaitForever);
ret = mic_config[mic_type].data_ptr != NULL;
osMutexRelease(app_mic_mutex_id);
}
return ret;
}
bool app_mic_start(MIC_APP_TYPE mic_type) {
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_START;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
bool app_mic_stop(MIC_APP_TYPE mic_type) {
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_STOP;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
return true;
}
void app_mic_check(MIC_APP_TYPE mic_type) {
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_MIC;
msg.msg_body.message_id = MIC_EVENT_CHECK;
msg.msg_body.message_ptr = mic_type;
app_mailbox_put(&msg);
}
MIC_APP_TYPE app_mic_status(void) {
MIC_APP_TYPE ret;
osMutexWait(app_mic_mutex_id, osWaitForever);
ret = current_mictype;
osMutexRelease(app_mic_mutex_id);
return ret;
}

View file

@ -13,18 +13,18 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_bt_stream.h"
#include "app_media_player.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "resources.h" #include "resources.h"
#include "app_bt_stream.h"
#include "app_media_player.h"
//#include "app_factory.h" //#include "app_factory.h"
#include "string.h" #include "string.h"
// for audio // for audio
#include "audioflinger.h"
#include "app_audio.h" #include "app_audio.h"
#include "app_utils.h" #include "app_utils.h"
#include "audioflinger.h"
#include "hal_timer.h" #include "hal_timer.h"
#include "app_mic_alg.h" #include "app_mic_alg.h"
@ -42,26 +42,22 @@
#include "apps.h" #include "apps.h"
#ifdef WEBRTC_AGC #ifdef WEBRTC_AGC
#include "agc_main.h" #include "agc_main.h"
#endif #endif
#ifdef WL_NSX #ifdef WL_NSX
#define WEBRTC_NSX_BUFF_SIZE (14000) #define WEBRTC_NSX_BUFF_SIZE (14000)
#endif #endif
#ifdef WL_VAD #ifdef WL_VAD
#include "vad_user.h" #include "vad_user.h"
#endif #endif
#ifdef WL_DEBUG_MODE #ifdef WL_DEBUG_MODE
#include "nvrecord_env.h" #include "nvrecord_env.h"
#endif #endif
#ifdef REMOTE_UART #ifdef REMOTE_UART
#include "app_remoter_uart.h" #include "app_remoter_uart.h"
#endif #endif
@ -75,77 +71,69 @@
#include "app_i2c_sensor.h" #include "app_i2c_sensor.h"
#endif #endif
static inline float clampf(float v, float min, float max){ static inline float clampf(float v, float min, float max) {
return v < min ? min : (v > max ? max : v); return v < min ? min : (v > max ? max : v);
} }
#ifdef WL_NSX_5MS #ifdef WL_NSX_5MS
#define BT_AUDIO_FACTORMODE_BUFF_SIZE (160*2) #define BT_AUDIO_FACTORMODE_BUFF_SIZE (160 * 2)
#else #else
#define BT_AUDIO_FACTORMODE_BUFF_SIZE (6*320*16) #define BT_AUDIO_FACTORMODE_BUFF_SIZE (6 * 320 * 16)
#endif #endif
#define NSX_FRAME_SIZE 160 #define NSX_FRAME_SIZE 160
static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY; static enum APP_AUDIO_CACHE_T a2dp_cache_status = APP_AUDIO_CACHE_QTY;
#if defined(WL_AEC) #if defined(WL_AEC)
static short POSSIBLY_UNUSED aec_out[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED aec_out[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static short POSSIBLY_UNUSED far_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED far_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
#endif #endif
static short POSSIBLY_UNUSED out_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static short POSSIBLY_UNUSED tmp_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static short POSSIBLY_UNUSED out_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; // static short revert_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
static short POSSIBLY_UNUSED tmp_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; // static short audio_uart_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
//static short revert_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
//static short audio_uart_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2];
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2
static short POSSIBLY_UNUSED one_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED one_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static short POSSIBLY_UNUSED two_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED two_buff[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static short POSSIBLY_UNUSED left_out[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED left_out[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static short POSSIBLY_UNUSED right_out[BT_AUDIO_FACTORMODE_BUFF_SIZE>>2]; static short POSSIBLY_UNUSED right_out[BT_AUDIO_FACTORMODE_BUFF_SIZE >> 2];
static void POSSIBLY_UNUSED aaudio_div_stero_to_rmono(int16_t *dst_buf, int16_t *src_buf, uint32_t src_len) static void POSSIBLY_UNUSED aaudio_div_stero_to_rmono(int16_t *dst_buf,
{ int16_t *src_buf,
// Copy from tail so that it works even if dst_buf == src_buf uint32_t src_len) {
for (uint32_t i = 0; i < src_len>>1; i++) // Copy from tail so that it works even if dst_buf == src_buf
{ for (uint32_t i = 0; i < src_len >> 1; i++) {
dst_buf[i] = src_buf[i*2 + 1]; dst_buf[i] = src_buf[i * 2 + 1];
} }
} }
static void POSSIBLY_UNUSED aaudio_div_stero_to_lmono(int16_t *dst_buf, int16_t *src_buf, uint32_t src_len) static void POSSIBLY_UNUSED aaudio_div_stero_to_lmono(int16_t *dst_buf,
{ int16_t *src_buf,
// Copy from tail so that it works even if dst_buf == src_buf uint32_t src_len) {
for (uint32_t i = 0; i < src_len>>1; i++) // Copy from tail so that it works even if dst_buf == src_buf
{ for (uint32_t i = 0; i < src_len >> 1; i++) {
dst_buf[i] = src_buf[i*2 + 0]; dst_buf[i] = src_buf[i * 2 + 0];
} }
} }
static void POSSIBLY_UNUSED audio_mono2stereo_16bits(int16_t *dst_buf,
static void POSSIBLY_UNUSED audio_mono2stereo_16bits(int16_t *dst_buf, int16_t *left_buf, int16_t *right_buf, uint32_t src_len) int16_t *left_buf,
{ int16_t *right_buf,
uint32_t i = 0; uint32_t src_len) {
for (i = 0; i < src_len; ++i) { uint32_t i = 0;
dst_buf[i*2 + 0] = left_buf[i]; for (i = 0; i < src_len; ++i) {
dst_buf[i*2 + 1] = right_buf[i]; dst_buf[i * 2 + 0] = left_buf[i];
} dst_buf[i * 2 + 1] = right_buf[i];
}
} }
#elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3 #elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3
#elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 4 #elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 4
#endif #endif
@ -155,105 +143,93 @@ extern uint32_t transfer_factor;
extern uint32_t diff_energy; extern uint32_t diff_energy;
extern uint32_t level_shift; extern uint32_t level_shift;
static inline double convert_multiple_to_db(uint32_t multiple) static inline double convert_multiple_to_db(uint32_t multiple) {
{ return 20 * log10(multiple);
return 20*log10(multiple);
} }
#define DUMP_FRAME_LEN 0x3C0 #define DUMP_FRAME_LEN 0x3C0
static short POSSIBLY_UNUSED revert_buff[2+1*DUMP_FRAME_LEN]; static short POSSIBLY_UNUSED revert_buff[2 + 1 * DUMP_FRAME_LEN];
int32_t tx_pcmbuf32[960]; int32_t tx_pcmbuf32[960];
extern int app_reset(void); extern int app_reset(void);
extern void app_bt_volumeup(); extern void app_bt_volumeup();
extern void app_bt_volumedown(); extern void app_bt_volumedown();
void vol_state_process(uint32_t db_val) void vol_state_process(uint32_t db_val) {
{ TRACE(2, "db value is:%d volume_is:%d ", db_val,
TRACE(2,"db value is:%d volume_is:%d ",db_val,app_bt_stream_local_volume_get()); app_bt_stream_local_volume_get());
if((db_val < 52) && (app_bt_stream_local_volume_get() > 10))
{
app_bt_volumedown();
}
else if((db_val > 60) && (app_bt_stream_local_volume_get() < 13))
{
app_bt_volumeup();
}
else if((db_val > 72) && (app_bt_stream_local_volume_get() < 15))
{
app_bt_volumeup();
}
if ((db_val < 52) && (app_bt_stream_local_volume_get() > 10)) {
app_bt_volumedown();
} else if ((db_val > 60) && (app_bt_stream_local_volume_get() < 13)) {
app_bt_volumeup();
} else if ((db_val > 72) && (app_bt_stream_local_volume_get() < 15)) {
app_bt_volumeup();
}
} }
static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len) static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len) {
{ uint32_t pcm_len = len >> 1;
uint32_t pcm_len = len>>1;
short POSSIBLY_UNUSED *tx_pcmbuf16 = (short*)buf; short POSSIBLY_UNUSED *tx_pcmbuf16 = (short *)buf;
//DUMP16("%d, ",tx_pcmbuf16,30); // DUMP16("%d, ",tx_pcmbuf16,30);
// memcpy(tmp_buff,pcm_buff,len); // memcpy(tmp_buff,pcm_buff,len);
int32_t stime = 0; int32_t stime = 0;
static int32_t nsx_cnt = 0; static int32_t nsx_cnt = 0;
static int32_t dump_cnt = 0; static int32_t dump_cnt = 0;
nsx_cnt++;
dump_cnt++;
nsx_cnt++; DUMP16("%d,", tx_pcmbuf16, 30);
dump_cnt++; if (false == (nsx_cnt & 0x3F)) {
stime = hal_sys_timer_get();
DUMP16("%d,",tx_pcmbuf16,30); // TRACE("aecm echo time: lens:%d g_time_cnt:%d ",len, g_time_cnt);
if(false == (nsx_cnt & 0x3F)) }
{
stime = hal_sys_timer_get();
//TRACE("aecm echo time: lens:%d g_time_cnt:%d ",len, g_time_cnt);
}
#ifdef WL_DET #ifdef WL_DET
if(nsx_cnt > 100) if (nsx_cnt > 100) {
{ static double last_sum = 0, last_avg = 0;
static double last_sum = 0,last_avg = 0;
uint32_t sum_ss = 0; uint32_t sum_ss = 0;
//short db_val = 0; // short db_val = 0;
double db_sum = 0; double db_sum = 0;
for (uint32_t i_cnt = 0; i_cnt < pcm_len; i_cnt++) for (uint32_t i_cnt = 0; i_cnt < pcm_len; i_cnt++) {
{ sum_ss += ABS(tx_pcmbuf16[i_cnt]);
sum_ss += ABS(tx_pcmbuf16[i_cnt]);
}
sum_ss = 1*sum_ss/pcm_len;
db_sum = convert_multiple_to_db(sum_ss);
//db_val = (short)(100*db_sum);
last_sum += db_sum;
last_avg = last_sum/nsx_cnt;
db_sum = db_sum*(double)0.02 + last_avg*(double)0.98;
//TRACE(2,"db value is:%d sum_ss:%d ",(uint32_t)db_sum,sum_ss);
//TRACE(2,"db value is:%d ",(uint32_t)db_sum);
vol_state_process((uint32_t)db_sum);
} }
sum_ss = 1 * sum_ss / pcm_len;
db_sum = convert_multiple_to_db(sum_ss);
// db_val = (short)(100*db_sum);
last_sum += db_sum;
last_avg = last_sum / nsx_cnt;
db_sum = db_sum * (double)0.02 + last_avg * (double)0.98;
// TRACE(2,"db value is:%d sum_ss:%d ",(uint32_t)db_sum,sum_ss);
// TRACE(2,"db value is:%d ",(uint32_t)db_sum);
vol_state_process((uint32_t)db_sum);
}
#endif #endif
if (false == (nsx_cnt & 0x3F)) {
// TRACE("drc 48 mic_alg 16k nsx 3 agc 15 closed speed time:%d ms and
// pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime),
// pcm_len,hal_sysfreq_get()); TRACE("notch 500 mic_alg 16k nsx 3 agc 15
// closed speed time:%d ms and pcm_lens:%d freq:%d ",
// TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get());
TRACE(2, "denoise det speed time:%d ms and pcm_lens:%d freq:%d ",
TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len, hal_sysfreq_get());
}
if(false == (nsx_cnt & 0x3F)) if (a2dp_cache_status == APP_AUDIO_CACHE_QTY) {
{ a2dp_cache_status = APP_AUDIO_CACHE_OK;
//TRACE("drc 48 mic_alg 16k nsx 3 agc 15 closed speed time:%d ms and pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get()); }
//TRACE("notch 500 mic_alg 16k nsx 3 agc 15 closed speed time:%d ms and pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get()); return len;
TRACE(2,"denoise det speed time:%d ms and pcm_lens:%d freq:%d ", TICKS_TO_MS(hal_sys_timer_get() - stime), pcm_len,hal_sysfreq_get());
}
if (a2dp_cache_status == APP_AUDIO_CACHE_QTY){
a2dp_cache_status = APP_AUDIO_CACHE_OK;
}
return len;
} }
// static uint32_t app_mic_uart_playback_data(uint8_t *buf, uint32_t len) // static uint32_t app_mic_uart_playback_data(uint8_t *buf, uint32_t len)
@ -262,13 +238,14 @@ static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len)
// #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2 // #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2
// #ifdef WL_AEC // #ifdef WL_AEC
// app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2); // app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2);
// app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, app_audioloop_play_cache, len/2/2); // app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf,
// #else // app_audioloop_play_cache, len/2/2); #else
// app_audio_pcmbuff_get((uint8_t *)buf, len); // app_audio_pcmbuff_get((uint8_t *)buf, len);
// #endif // #endif
// #else // #else
// app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2); // app_audio_pcmbuff_get((uint8_t *)app_audioloop_play_cache, len/2);
// app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf, app_audioloop_play_cache, len/2/2); // app_bt_stream_copy_track_one_to_two_16bits((int16_t *)buf,
// app_audioloop_play_cache, len/2/2);
// #endif // #endif
// } // }
// return len; // return len;
@ -276,68 +253,63 @@ static uint32_t app_mic_alg_data_come(uint8_t *buf, uint32_t len)
static uint8_t buff_capture[BT_AUDIO_FACTORMODE_BUFF_SIZE]; static uint8_t buff_capture[BT_AUDIO_FACTORMODE_BUFF_SIZE];
int app_mic_alg_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq) int app_mic_alg_audioloop(bool on, enum APP_SYSFREQ_FREQ_T freq) {
{ struct AF_STREAM_CONFIG_T stream_cfg;
struct AF_STREAM_CONFIG_T stream_cfg; static bool isRun = false;
static bool isRun = false;
TRACE(2,"app_mic_alg work:%d op:%d freq:%d", isRun, on, freq); TRACE(2, "app_mic_alg work:%d op:%d freq:%d", isRun, on, freq);
if (isRun==on) if (isRun == on)
return 0;
if (on){
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
a2dp_cache_status = APP_AUDIO_CACHE_QTY;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.vol = CODEC_SADC_VOL;
stream_cfg.io_path = AUD_INPUT_PATH_ASRMIC;
stream_cfg.handler = app_mic_alg_data_come;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture);
stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*stream_cfg.channel_num;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
// stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
// stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
// stream_cfg.handler = app_mic_uart_playback_data;
// stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play);
// stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*2;
// af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
//af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
TRACE(2,"app_mic_uart ss loopback on");
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
//af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
//af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
TRACE(2,"app_mic_16k loopback off");
//app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
}
isRun=on;
return 0; return 0;
if (on) {
app_sysfreq_req(APP_SYSFREQ_USER_APP_0, freq);
a2dp_cache_status = APP_AUDIO_CACHE_QTY;
memset(&stream_cfg, 0, sizeof(stream_cfg));
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_1;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.vol = CODEC_SADC_VOL;
stream_cfg.io_path = AUD_INPUT_PATH_ASRMIC;
stream_cfg.handler = app_mic_alg_data_come;
stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_capture);
stream_cfg.data_size =
BT_AUDIO_FACTORMODE_BUFF_SIZE * stream_cfg.channel_num;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
// stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
// stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
// stream_cfg.handler = app_mic_uart_playback_data;
// stream_cfg.data_ptr = BT_AUDIO_CACHE_2_UNCACHE(buff_play);
// stream_cfg.data_size = BT_AUDIO_FACTORMODE_BUFF_SIZE*2;
// af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
// af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
TRACE(2, "app_mic_uart ss loopback on");
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
// af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
// af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
TRACE(2, "app_mic_16k loopback off");
// app_sysfreq_req(APP_SYSFREQ_USER_APP_0, APP_SYSFREQ_32K);
}
isRun = on;
return 0;
} }

View file

@ -13,173 +13,179 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_pwl.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "tgt_hardware.h"
#include "hal_gpio.h" #include "hal_gpio.h"
#include "hal_iomux.h" #include "hal_iomux.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "pmu.h" #include "pmu.h"
#include "app_pwl.h"
#include "string.h" #include "string.h"
#include "tgt_hardware.h"
#define APP_PWL_TRACE(s,...) #define APP_PWL_TRACE(s, ...)
//TRACE(s, ##__VA_ARGS__) // TRACE(s, ##__VA_ARGS__)
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
static void app_pwl_timehandler(void const *param); static void app_pwl_timehandler(void const *param);
osTimerDef (APP_PWL_TIMER0, app_pwl_timehandler); // define timers osTimerDef(APP_PWL_TIMER0, app_pwl_timehandler); // define timers
#if (CFG_HW_PLW_NUM == 2) #if (CFG_HW_PLW_NUM == 2)
osTimerDef (APP_PWL_TIMER1, app_pwl_timehandler); osTimerDef(APP_PWL_TIMER1, app_pwl_timehandler);
#endif #endif
struct APP_PWL_T { struct APP_PWL_T {
enum APP_PWL_ID_T id; enum APP_PWL_ID_T id;
struct APP_PWL_CFG_T config; struct APP_PWL_CFG_T config;
uint8_t partidx; uint8_t partidx;
osTimerId timer; osTimerId timer;
}; };
static struct APP_PWL_T app_pwl[APP_PWL_ID_QTY]; static struct APP_PWL_T app_pwl[APP_PWL_ID_QTY];
static void app_pwl_timehandler(void const *param) static void app_pwl_timehandler(void const *param) {
{ struct APP_PWL_T *pwl = (struct APP_PWL_T *)param;
struct APP_PWL_T *pwl = (struct APP_PWL_T *)param; struct APP_PWL_CFG_T *cfg = &(pwl->config);
struct APP_PWL_CFG_T *cfg = &(pwl->config); APP_PWL_TRACE(2, "%s %x", __func__, param);
APP_PWL_TRACE(2,"%s %x",__func__, param);
osTimerStop(pwl->timer); osTimerStop(pwl->timer);
pwl->partidx++; pwl->partidx++;
if (cfg->periodic){ if (cfg->periodic) {
if (pwl->partidx >= cfg->parttotal){ if (pwl->partidx >= cfg->parttotal) {
pwl->partidx = 0; pwl->partidx = 0;
}
}else{
if (pwl->partidx >= cfg->parttotal){
return;
}
} }
} else {
APP_PWL_TRACE(3,"idx:%d pin:%d lvl:%d", pwl->partidx, cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level); if (pwl->partidx >= cfg->parttotal) {
if(!cfg->part[pwl->partidx].level){ return;
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, true);
#endif
hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
}else{
hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, false);
#endif
} }
osTimerStart(pwl->timer, cfg->part[pwl->partidx].time); }
APP_PWL_TRACE(3, "idx:%d pin:%d lvl:%d", pwl->partidx,
cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level);
if (!cfg->part[pwl->partidx].level) {
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0
: PMU_VIORISE_REQ_USER_PWL1,
true);
#endif
hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
} else {
hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0
: PMU_VIORISE_REQ_USER_PWL1,
false);
#endif
}
osTimerStart(pwl->timer, cfg->part[pwl->partidx].time);
} }
#endif #endif
int app_pwl_open(void) int app_pwl_open(void) {
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
uint8_t i; uint8_t i;
APP_PWL_TRACE(1,"%s",__func__); APP_PWL_TRACE(1, "%s", __func__);
for (i=0;i<APP_PWL_ID_QTY;i++){ for (i = 0; i < APP_PWL_ID_QTY; i++) {
app_pwl[i].id = APP_PWL_ID_QTY; app_pwl[i].id = APP_PWL_ID_QTY;
memset(&(app_pwl[i].config), 0, sizeof(struct APP_PWL_CFG_T)); memset(&(app_pwl[i].config), 0, sizeof(struct APP_PWL_CFG_T));
hal_iomux_init((struct HAL_IOMUX_PIN_FUNCTION_MAP *)&cfg_hw_pinmux_pwl[i], 1); hal_iomux_init((struct HAL_IOMUX_PIN_FUNCTION_MAP *)&cfg_hw_pinmux_pwl[i],
hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[i].pin, HAL_GPIO_DIR_OUT, 1); 1);
} hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[i].pin,
app_pwl[APP_PWL_ID_0].timer = osTimerCreate (osTimer(APP_PWL_TIMER0), osTimerOnce, &app_pwl[APP_PWL_ID_0]); HAL_GPIO_DIR_OUT, 1);
}
app_pwl[APP_PWL_ID_0].timer = osTimerCreate(
osTimer(APP_PWL_TIMER0), osTimerOnce, &app_pwl[APP_PWL_ID_0]);
#if (CFG_HW_PLW_NUM == 2) #if (CFG_HW_PLW_NUM == 2)
app_pwl[APP_PWL_ID_1].timer = osTimerCreate (osTimer(APP_PWL_TIMER1), osTimerOnce, &app_pwl[APP_PWL_ID_1]); app_pwl[APP_PWL_ID_1].timer = osTimerCreate(
osTimer(APP_PWL_TIMER1), osTimerOnce, &app_pwl[APP_PWL_ID_1]);
#endif #endif
#endif #endif
return 0; return 0;
} }
int app_pwl_start(enum APP_PWL_ID_T id) int app_pwl_start(enum APP_PWL_ID_T id) {
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
struct APP_PWL_T *pwl = NULL; struct APP_PWL_T *pwl = NULL;
struct APP_PWL_CFG_T *cfg = NULL; struct APP_PWL_CFG_T *cfg = NULL;
if (id >= APP_PWL_ID_QTY) {
return -1;
}
if (id >= APP_PWL_ID_QTY) { APP_PWL_TRACE(2, "%s %d", __func__, id);
return -1;
}
APP_PWL_TRACE(2,"%s %d",__func__, id); pwl = &app_pwl[id];
cfg = &(pwl->config);
pwl = &app_pwl[id]; if (pwl->id == APP_PWL_ID_QTY) {
cfg = &(pwl->config); return -1;
}
if (pwl->id == APP_PWL_ID_QTY){ pwl->partidx = 0;
return -1; if (pwl->partidx >= cfg->parttotal) {
} return -1;
}
pwl->partidx = 0; osTimerStop(pwl->timer);
if (pwl->partidx >= cfg->parttotal){
return -1;
}
osTimerStop(pwl->timer); APP_PWL_TRACE(3, "idx:%d pin:%d lvl:%d", pwl->partidx,
cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level);
APP_PWL_TRACE(3,"idx:%d pin:%d lvl:%d", pwl->partidx, cfg_hw_pinmux_pwl[pwl->id].pin, cfg->part[pwl->partidx].level); if (!cfg->part[pwl->partidx].level) {
if(!cfg->part[pwl->partidx].level){
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__) #if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, false); pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0
: PMU_VIORISE_REQ_USER_PWL1,
false);
#endif #endif
hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin); hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
}else{ } else {
hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin); hal_gpio_pin_clr((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[pwl->id].pin);
#if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__) #if defined(__PMU_VIO_DYNAMIC_CTRL_MODE__)
pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0 : PMU_VIORISE_REQ_USER_PWL1, false); pmu_viorise_req(pwl->id == APP_PWL_ID_0 ? PMU_VIORISE_REQ_USER_PWL0
: PMU_VIORISE_REQ_USER_PWL1,
false);
#endif #endif
} }
osTimerStart(pwl->timer, cfg->part[pwl->partidx].time); osTimerStart(pwl->timer, cfg->part[pwl->partidx].time);
#endif #endif
return 0; return 0;
} }
int app_pwl_setup(enum APP_PWL_ID_T id, struct APP_PWL_CFG_T *cfg) int app_pwl_setup(enum APP_PWL_ID_T id, struct APP_PWL_CFG_T *cfg) {
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
if (cfg == NULL || id >= APP_PWL_ID_QTY) { if (cfg == NULL || id >= APP_PWL_ID_QTY) {
return -1; return -1;
} }
APP_PWL_TRACE(2,"%s %d",__func__, id); APP_PWL_TRACE(2, "%s %d", __func__, id);
hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin, HAL_GPIO_DIR_OUT, cfg->startlevel?0:1); hal_gpio_pin_set_dir((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin,
app_pwl[id].id = id; HAL_GPIO_DIR_OUT, cfg->startlevel ? 0 : 1);
memcpy(&(app_pwl[id].config), cfg, sizeof(struct APP_PWL_CFG_T)); app_pwl[id].id = id;
memcpy(&(app_pwl[id].config), cfg, sizeof(struct APP_PWL_CFG_T));
osTimerStop(app_pwl[id].timer); osTimerStop(app_pwl[id].timer);
#endif #endif
return 0; return 0;
} }
int app_pwl_stop(enum APP_PWL_ID_T id) int app_pwl_stop(enum APP_PWL_ID_T id) {
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
if (id >= APP_PWL_ID_QTY) { if (id >= APP_PWL_ID_QTY) {
return -1; return -1;
} }
osTimerStop(app_pwl[id].timer); osTimerStop(app_pwl[id].timer);
hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin); hal_gpio_pin_set((enum HAL_GPIO_PIN_T)cfg_hw_pinmux_pwl[id].pin);
#endif #endif
return 0; return 0;
} }
int app_pwl_close(void) int app_pwl_close(void) {
{
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
uint8_t i; uint8_t i;
for (i=0;i<APP_PWL_ID_QTY;i++){ for (i = 0; i < APP_PWL_ID_QTY; i++) {
if (app_pwl[i].id != APP_PWL_ID_QTY) if (app_pwl[i].id != APP_PWL_ID_QTY)
app_pwl_stop((enum APP_PWL_ID_T)i); app_pwl_stop((enum APP_PWL_ID_T)i);
} }
#endif #endif
return 0; return 0;
} }

View file

@ -19,182 +19,168 @@
//#include "hal_sdmmc.h" //#include "hal_sdmmc.h"
#include "SDFileSystem.h" #include "SDFileSystem.h"
#include "audioflinger.h"
#include "audiobuffer.h"
#include "app_sdmmc.h" #include "app_sdmmc.h"
#include "audiobuffer.h"
#include "audioflinger.h"
#define APP_TEST_PLAYBACK_BUFF_SIZE (120 * 20)
#define APP_TEST_PLAYBACK_BUFF_SIZE (120 * 20) #define APP_TEST_CAPTURE_BUFF_SIZE (120 * 20)
#define APP_TEST_CAPTURE_BUFF_SIZE (120 * 20) extern uint8_t app_test_playback_buff[APP_TEST_PLAYBACK_BUFF_SIZE]
extern uint8_t app_test_playback_buff[APP_TEST_PLAYBACK_BUFF_SIZE] __attribute__ ((aligned(4))); __attribute__((aligned(4)));
extern uint8_t app_test_capture_buff[APP_TEST_CAPTURE_BUFF_SIZE] __attribute__ ((aligned(4))); extern uint8_t app_test_capture_buff[APP_TEST_CAPTURE_BUFF_SIZE]
__attribute__((aligned(4)));
SDFileSystem sdfs("sd"); SDFileSystem sdfs("sd");
int sd_open() int sd_open() {
{ DIR *d = opendir("/sd");
DIR *d = opendir("/sd"); if (!d) {
if (!d) TRACE(0, "sd file system borked\n");
{ return -1;
TRACE(0,"sd file system borked\n"); }
return -1;
}
TRACE(0,"---------root---------\n"); TRACE(0, "---------root---------\n");
struct dirent *p; struct dirent *p;
while ((p = readdir(d))) while ((p = readdir(d))) {
{ int len = sizeof(dirent);
int len = sizeof( dirent); TRACE(2, "%s %d\n", p->d_name, len);
TRACE(2,"%s %d\n", p->d_name, len); }
} closedir(d);
closedir(d); TRACE(0, "--------root end-------\n");
TRACE(0,"--------root end-------\n");
} }
extern uint32_t play_wav_file(char *file_path); extern uint32_t play_wav_file(char *file_path);
extern uint32_t stop_wav_file(void); extern uint32_t stop_wav_file(void);
extern uint32_t wav_file_audio_more_data(uint8_t *buf, uint32_t len); extern uint32_t wav_file_audio_more_data(uint8_t *buf, uint32_t len);
void test_wave_play(bool on) void test_wave_play(bool on) {
{ struct AF_STREAM_CONFIG_T stream_cfg;
struct AF_STREAM_CONFIG_T stream_cfg; uint32_t reallen;
uint32_t reallen; uint32_t totalreadsize;
uint32_t totalreadsize; uint32_t stime, etime;
uint32_t stime, etime;
char wave[] = "/sd/test_music.wav"; char wave[] = "/sd/test_music.wav";
static bool isRun = false; static bool isRun = false;
if (isRun==on)
return;
else
isRun=on;
TRACE(2,"%s %d\n", __func__, on);
memset(&stream_cfg, 0, sizeof(stream_cfg));
if (on){
play_wav_file(wave);
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = 0x03;
stream_cfg.handler = wav_file_audio_more_data;
stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}else{
stop_wav_file();
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}
if (isRun == on)
return; return;
} else
isRun = on;
TRACE(2, "%s %d\n", __func__, on);
memset(&stream_cfg, 0, sizeof(stream_cfg));
if (on) {
play_wav_file(wave);
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_OUTPUT_PATH_SPEAKER;
stream_cfg.vol = 0x03;
stream_cfg.handler = wav_file_audio_more_data;
stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
} else {
stop_wav_file();
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_PLAYBACK);
}
return;
}
FIL pcm_fil; FIL pcm_fil;
FRESULT pcm_res; FRESULT pcm_res;
UINT pcm_num; UINT pcm_num;
uint32_t pcm_save_more_data(uint8_t *buf, uint32_t len) uint32_t pcm_save_more_data(uint8_t *buf, uint32_t len) {
{ // TRACE(2,"%s\n len:%d", __func__, len);
// TRACE(2,"%s\n len:%d", __func__, len);
audio_buffer_set_stereo2mono_16bits(buf, len, 1); audio_buffer_set_stereo2mono_16bits(buf, len, 1);
pcm_res = f_write(&pcm_fil,(uint8_t *)buf,len>>1,&pcm_num); pcm_res = f_write(&pcm_fil, (uint8_t *)buf, len >> 1, &pcm_num);
if(pcm_res != FR_OK) if (pcm_res != FR_OK) {
{ TRACE(2, "[%s]:error-->res = %d", __func__, pcm_res);
TRACE(2,"[%s]:error-->res = %d", __func__, pcm_res); }
} return 0;
return 0;
} }
void ad_tester(bool run) void ad_tester(bool run) {
{ char filename[] = "/sd/audio_dump.bin";
char filename[] = "/sd/audio_dump.bin";
struct AF_STREAM_CONFIG_T stream_cfg; struct AF_STREAM_CONFIG_T stream_cfg;
TRACE(2,"%s %d\n", __func__, run); TRACE(2, "%s %d\n", __func__, run);
if (run){ if (run) {
memset(&stream_cfg, 0, sizeof(stream_cfg)); memset(&stream_cfg, 0, sizeof(stream_cfg));
pcm_res = f_open(&pcm_fil,"test2.bin",FA_CREATE_ALWAYS | FA_WRITE); pcm_res = f_open(&pcm_fil, "test2.bin", FA_CREATE_ALWAYS | FA_WRITE);
if (pcm_res) { if (pcm_res) {
TRACE(2,"[%s]:Cannot creat test2.bin...%d",__func__, pcm_res); TRACE(2, "[%s]:Cannot creat test2.bin...%d", __func__, pcm_res);
return; return;
}
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.vol = 0x03;
stream_cfg.handler = pcm_save_more_data;
stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
}else{
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
osDelay(1000);
f_close(&pcm_fil);
} }
stream_cfg.bits = AUD_BITS_16;
stream_cfg.channel_num = AUD_CHANNEL_NUM_2;
stream_cfg.sample_rate = AUD_SAMPRATE_48000;
stream_cfg.device = AUD_STREAM_USE_INT_CODEC;
stream_cfg.io_path = AUD_INPUT_PATH_MAINMIC;
stream_cfg.vol = 0x03;
stream_cfg.handler = pcm_save_more_data;
stream_cfg.data_ptr = app_test_playback_buff;
stream_cfg.data_size = APP_TEST_PLAYBACK_BUFF_SIZE;
af_stream_open(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE, &stream_cfg);
af_stream_start(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
} else {
af_stream_stop(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
af_stream_close(AUD_STREAM_ID_0, AUD_STREAM_CAPTURE);
osDelay(1000);
f_close(&pcm_fil);
}
} }
// if dump data into sd, buffer length should make sd card speed enough // if dump data into sd, buffer length should make sd card speed enough
// Bench32.exe can test sd card speed in PC, then make sure bufer length, buffer length < 16k(sd driver) // Bench32.exe can test sd card speed in PC, then make sure bufer length, buffer
void dump_data2sd(enum APP_SDMMC_DUMP_T opt, uint8_t *buf, uint32_t len) // length < 16k(sd driver)
{ void dump_data2sd(enum APP_SDMMC_DUMP_T opt, uint8_t *buf, uint32_t len) {
static FIL sd_fil; static FIL sd_fil;
FRESULT res; FRESULT res;
ASSERT(opt < APP_SDMMC_DUMP_NUM, "[%s] opt(%d) >= APP_SDMMC_DUMP_NUM",
__func__, opt);
ASSERT(opt < APP_SDMMC_DUMP_NUM, "[%s] opt(%d) >= APP_SDMMC_DUMP_NUM", __func__, opt); if (opt == APP_SDMMC_DUMP_OPEN) {
// res = f_open(&sd_fil,"dump.bin",FA_CREATE_ALWAYS | FA_WRITE);
res = f_open(&sd_fil, "test.txt", FA_READ);
if(opt == APP_SDMMC_DUMP_OPEN) // ASSERT(pcm_res == FR_OK,"[%s]:Cannot creat dump.bin, res =
{ // %d",__func__, pcm_res);
// res = f_open(&sd_fil,"dump.bin",FA_CREATE_ALWAYS | FA_WRITE); }
res = f_open(&sd_fil,"test.txt",FA_READ); if (opt == APP_SDMMC_DUMP_READ) {
res = f_read(&sd_fil, buf, len, &pcm_num);
// ASSERT(pcm_res == FR_OK,"[%s]:Cannot creat dump.bin, res = %d",__func__, pcm_res); // ASSERT(pcm_res == FR_OK,"[%s]:Cannot creat dump.bin, res =
} // %d",__func__, pcm_res);
if(opt == APP_SDMMC_DUMP_READ) } else if (opt == APP_SDMMC_DUMP_WRITE) {
{ res = f_write(&sd_fil, buf, len, &pcm_num);
res = f_read(&sd_fil, buf, len, &pcm_num);
// ASSERT(pcm_res == FR_OK,"[%s]:Cannot creat dump.bin, res = %d",__func__, pcm_res); // ASSERT(pcm_res == FR_OK,"[%s]:Write dump.bin failed, res = %d",
} // __func__, pcm_res);
else if(opt == APP_SDMMC_DUMP_WRITE) } else if (opt == APP_SDMMC_DUMP_CLOSE) {
{ res = f_close(&sd_fil);
res = f_write(&sd_fil, buf, len, &pcm_num); }
// ASSERT(pcm_res == FR_OK,"[%s]:Write dump.bin failed, res = %d", __func__, pcm_res); if (res == FR_OK) {
} TRACE(3, "[%s] SUCESS: opt = %d, res = %d", __func__, opt, res);
else if(opt == APP_SDMMC_DUMP_CLOSE) } else {
{ TRACE(3, "[%s] ERROR: opt = %d, res = %d", __func__, opt, res);
res = f_close(&sd_fil); }
}
if(res == FR_OK)
{
TRACE(3,"[%s] SUCESS: opt = %d, res = %d",__func__, opt, res);
}
else
{
TRACE(3,"[%s] ERROR: opt = %d, res = %d",__func__, opt, res);
}
} }

View file

@ -13,30 +13,30 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "plat_addr_map.h" #include "analog.h"
#include "audioflinger.h"
#include "cmsis.h"
#include "hal_cmu.h" #include "hal_cmu.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "hal_iomux.h"
#include "hal_dma.h" #include "hal_dma.h"
#include "hal_key.h"
#include "hal_gpadc.h" #include "hal_gpadc.h"
#include "hal_iomux.h"
#include "hal_key.h"
#include "hal_sleep.h" #include "hal_sleep.h"
#include "hal_sysfreq.h" #include "hal_sysfreq.h"
#include "cmsis.h" #include "hal_timer.h"
#include "pmu.h" #include "hal_trace.h"
#include "analog.h"
#include "string.h"
#include "hwtimer_list.h" #include "hwtimer_list.h"
#include "audioflinger.h" #include "plat_addr_map.h"
#include "pmu.h"
#include "string.h"
#if defined(ANC_APP) #if defined(ANC_APP)
#include "anc_usb_app.h" #include "anc_usb_app.h"
#endif #endif
#include "usb_audio_app.h"
#include "dualadc_audio_app.h"
#include "usb_audio_frm_defs.h"
#include "tgt_hardware.h"
#include "audio_process.h" #include "audio_process.h"
#include "dualadc_audio_app.h"
#include "tgt_hardware.h"
#include "usb_audio_app.h"
#include "usb_audio_frm_defs.h"
#ifdef RTOS #ifdef RTOS
#include "cmsis_os.h" #include "cmsis_os.h"
@ -46,75 +46,97 @@
#endif #endif
#ifdef USB_AUDIO_SPEECH #ifdef USB_AUDIO_SPEECH
#define CODEC_BUFF_FRAME_NUM (2 * 16) #define CODEC_BUFF_FRAME_NUM (2 * 16)
#define USB_BUFF_FRAME_NUM (CODEC_BUFF_FRAME_NUM * 2) #define USB_BUFF_FRAME_NUM (CODEC_BUFF_FRAME_NUM * 2)
#else #else
#define CODEC_BUFF_FRAME_NUM 4 #define CODEC_BUFF_FRAME_NUM 4
#define USB_BUFF_FRAME_NUM 8 #define USB_BUFF_FRAME_NUM 8
#endif #endif
#if (CODEC_BUFF_FRAME_NUM >= USB_BUFF_FRAME_NUM) #if (CODEC_BUFF_FRAME_NUM >= USB_BUFF_FRAME_NUM)
#error "Codec buffer frame num should be less than usb buffer frame num (on the requirement of conflict ctrl)" #error \
"Codec buffer frame num should be less than usb buffer frame num (on the requirement of conflict ctrl)"
#endif #endif
#ifdef USB_AUDIO_DYN_CFG #ifdef USB_AUDIO_DYN_CFG
#define USB_AUDIO_PLAYBACK_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_PLAYBACK * CODEC_BUFF_FRAME_NUM, DAC_BUFF_ALIGN) #define USB_AUDIO_PLAYBACK_BUFF_SIZE \
#define USB_AUDIO_CAPTURE_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_CAPTURE * CODEC_BUFF_FRAME_NUM, ADC_BUFF_ALIGN) NON_EXP_ALIGN(MAX_FRAME_SIZE_PLAYBACK *CODEC_BUFF_FRAME_NUM, DAC_BUFF_ALIGN)
#define USB_AUDIO_CAPTURE_BUFF_SIZE \
NON_EXP_ALIGN(MAX_FRAME_SIZE_CAPTURE *CODEC_BUFF_FRAME_NUM, ADC_BUFF_ALIGN)
#define USB_AUDIO_RECV_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_RECV * USB_BUFF_FRAME_NUM, RECV_BUFF_ALIGN) #define USB_AUDIO_RECV_BUFF_SIZE \
#define USB_AUDIO_SEND_BUFF_SIZE NON_EXP_ALIGN(MAX_FRAME_SIZE_SEND * USB_BUFF_FRAME_NUM, SEND_BUFF_ALIGN) NON_EXP_ALIGN(MAX_FRAME_SIZE_RECV *USB_BUFF_FRAME_NUM, RECV_BUFF_ALIGN)
#define USB_AUDIO_SEND_BUFF_SIZE \
NON_EXP_ALIGN(MAX_FRAME_SIZE_SEND *USB_BUFF_FRAME_NUM, SEND_BUFF_ALIGN)
#if defined(CHIP_BEST1000) #if defined(CHIP_BEST1000)
// FIR EQ is working on 16-bit // FIR EQ is working on 16-bit
// FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int16_t) // FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int16_t)
#define USB_AUDIO_FIR_EQ_BUFF_SIZE USB_AUDIO_PLAYBACK_BUFF_SIZE #define USB_AUDIO_FIR_EQ_BUFF_SIZE USB_AUDIO_PLAYBACK_BUFF_SIZE
#elif defined(CHIP_BEST2000) #elif defined(CHIP_BEST2000)
// FIR EQ is working on 32-bit // FIR EQ is working on 32-bit
// FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int32_t) // FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int32_t)
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE*2) #define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * 2)
#elif defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) #elif defined(CHIP_BEST2300) || defined(CHIP_BEST2300P)
// FIR EQ is working on 32-bit // FIR EQ is working on 32-bit
// FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int32_t) // FIR_EQ_buffer_size = max_playback_symbol_number_in_buffer * sizeof(int32_t)
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE*2) #define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * 2)
#endif #endif
#else #else
#define USB_AUDIO_PLAYBACK_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_PLAYBACK * CODEC_BUFF_FRAME_NUM, DAC_BUFF_ALIGN) #define USB_AUDIO_PLAYBACK_BUFF_SIZE \
#define USB_AUDIO_CAPTURE_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_CAPTURE * CODEC_BUFF_FRAME_NUM, ADC_BUFF_ALIGN) NON_EXP_ALIGN(FRAME_SIZE_PLAYBACK *CODEC_BUFF_FRAME_NUM, DAC_BUFF_ALIGN)
#define USB_AUDIO_CAPTURE_BUFF_SIZE \
NON_EXP_ALIGN(FRAME_SIZE_CAPTURE *CODEC_BUFF_FRAME_NUM, ADC_BUFF_ALIGN)
#define USB_AUDIO_RECV_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_RECV * USB_BUFF_FRAME_NUM, RECV_BUFF_ALIGN) #define USB_AUDIO_RECV_BUFF_SIZE \
#define USB_AUDIO_SEND_BUFF_SIZE NON_EXP_ALIGN(FRAME_SIZE_SEND * USB_BUFF_FRAME_NUM, SEND_BUFF_ALIGN) NON_EXP_ALIGN(FRAME_SIZE_RECV *USB_BUFF_FRAME_NUM, RECV_BUFF_ALIGN)
#define USB_AUDIO_SEND_BUFF_SIZE \
NON_EXP_ALIGN(FRAME_SIZE_SEND *USB_BUFF_FRAME_NUM, SEND_BUFF_ALIGN)
#if defined(CHIP_BEST1000) #if defined(CHIP_BEST1000)
// FIR EQ is working on 16-bit // FIR EQ is working on 16-bit
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int16_t) / SAMPLE_SIZE_PLAYBACK) #define USB_AUDIO_FIR_EQ_BUFF_SIZE \
(USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int16_t) / SAMPLE_SIZE_PLAYBACK)
#elif defined(CHIP_BEST2000) #elif defined(CHIP_BEST2000)
// FIR EQ is working on 16-bit // FIR EQ is working on 16-bit
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int32_t) / SAMPLE_SIZE_PLAYBACK) #define USB_AUDIO_FIR_EQ_BUFF_SIZE \
(USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int32_t) / SAMPLE_SIZE_PLAYBACK)
#elif defined(CHIP_BEST2300) || defined(CHIP_BEST2300P) #elif defined(CHIP_BEST2300) || defined(CHIP_BEST2300P)
// FIR EQ is working on 16-bit // FIR EQ is working on 16-bit
#define USB_AUDIO_FIR_EQ_BUFF_SIZE (USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int32_t) / SAMPLE_SIZE_PLAYBACK) #define USB_AUDIO_FIR_EQ_BUFF_SIZE \
(USB_AUDIO_PLAYBACK_BUFF_SIZE * sizeof(int32_t) / SAMPLE_SIZE_PLAYBACK)
#endif #endif
#endif #endif
#if (defined(CHIP_BEST1000) && (defined(ANC_APP) || defined(_DUAL_AUX_MIC_))) && (CHAN_NUM_CAPTURE == CHAN_NUM_SEND) #if (defined(CHIP_BEST1000) && \
// Resample input buffer size should be (half_of_max_sample_num * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE). (defined(ANC_APP) || defined(_DUAL_AUX_MIC_))) && \
// half_of_max_sample_num = 48000 / 1000 * CODEC_BUFF_FRAME_NUM / 2 * 48 / 44 (CHAN_NUM_CAPTURE == CHAN_NUM_SEND)
#define RESAMPLE_INPUT_BUFF_SIZE ALIGN(48000 / 1000 * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE * CODEC_BUFF_FRAME_NUM / 2 * 48 / 44, 4) // Resample input buffer size should be (half_of_max_sample_num *
// SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE). half_of_max_sample_num = 48000 /
// 1000 * CODEC_BUFF_FRAME_NUM / 2 * 48 / 44
#define RESAMPLE_INPUT_BUFF_SIZE \
ALIGN(48000 / 1000 * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE * \
CODEC_BUFF_FRAME_NUM / 2 * 48 / 44, \
4)
#else #else
#define RESAMPLE_INPUT_BUFF_SIZE 0 #define RESAMPLE_INPUT_BUFF_SIZE 0
#endif #endif
// Resample history buffer size should be // Resample history buffer size should be
// sizeof(struct RESAMPLE_CTRL_T) + ((SAMPLE_NUM + phase_coef_num) * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE) // sizeof(struct RESAMPLE_CTRL_T) + ((SAMPLE_NUM + phase_coef_num) *
#define RESAMPLE_HISTORY_BUFF_SIZE (50 + (256 * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE)) // SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE)
#define USB_AUDIO_RESAMPLE_BUFF_SIZE (RESAMPLE_INPUT_BUFF_SIZE + RESAMPLE_HISTORY_BUFF_SIZE) #define RESAMPLE_HISTORY_BUFF_SIZE \
(50 + (256 * SAMPLE_SIZE_CAPTURE * CHAN_NUM_CAPTURE))
#define USB_AUDIO_RESAMPLE_BUFF_SIZE \
(RESAMPLE_INPUT_BUFF_SIZE + RESAMPLE_HISTORY_BUFF_SIZE)
#define ALIGNED4 ALIGNED(4) #define ALIGNED4 ALIGNED(4)
#if defined(USB_AUDIO_APP) || defined(DUALADC_AUDIO_TEST) #if defined(USB_AUDIO_APP) || defined(DUALADC_AUDIO_TEST)
#ifdef AUDIO_ANC_FB_MC #ifdef AUDIO_ANC_FB_MC
static uint8_t ALIGNED4 playback_buff[USB_AUDIO_PLAYBACK_BUFF_SIZE * 9];//max 48->384 or 44.1->44.1*8; static uint8_t ALIGNED4 playback_buff[USB_AUDIO_PLAYBACK_BUFF_SIZE *
9]; // max 48->384 or 44.1->44.1*8;
#else #else
static uint8_t ALIGNED4 playback_buff[USB_AUDIO_PLAYBACK_BUFF_SIZE]; static uint8_t ALIGNED4 playback_buff[USB_AUDIO_PLAYBACK_BUFF_SIZE];
#endif #endif
@ -125,7 +147,8 @@ static uint8_t ALIGNED4 capture_buff[USB_AUDIO_CAPTURE_BUFF_SIZE];
#ifdef USB_AUDIO_APP #ifdef USB_AUDIO_APP
#if defined(__HW_FIR_EQ_PROCESS__) && defined(__HW_IIR_EQ_PROCESS__) #if defined(__HW_FIR_EQ_PROCESS__) && defined(__HW_IIR_EQ_PROCESS__)
static uint8_t ALIGNED4 eq_buff[USB_AUDIO_FIR_EQ_BUFF_SIZE+USB_AUDIO_IIR_EQ_BUFF_SIZE]; static uint8_t ALIGNED4
eq_buff[USB_AUDIO_FIR_EQ_BUFF_SIZE + USB_AUDIO_IIR_EQ_BUFF_SIZE];
#elif defined(__HW_FIR_EQ_PROCESS__) && !defined(__HW_IIR_EQ_PROCESS__) #elif defined(__HW_FIR_EQ_PROCESS__) && !defined(__HW_IIR_EQ_PROCESS__)
static uint8_t ALIGNED4 eq_buff[USB_AUDIO_FIR_EQ_BUFF_SIZE]; static uint8_t ALIGNED4 eq_buff[USB_AUDIO_FIR_EQ_BUFF_SIZE];
#elif !defined(__HW_FIR_EQ_PROCESS__) && defined(__HW_IIR_EQ_PROCESS__) #elif !defined(__HW_FIR_EQ_PROCESS__) && defined(__HW_IIR_EQ_PROCESS__)
@ -146,202 +169,195 @@ static uint8_t ALIGNED4 send_buff[USB_AUDIO_SEND_BUFF_SIZE];
#ifdef CFG_HW_KEY_LED_PIN #ifdef CFG_HW_KEY_LED_PIN
const struct HAL_IOMUX_PIN_FUNCTION_MAP pinmux_key_led[1] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP pinmux_key_led[1] = {
{CFG_HW_KEY_LED_PIN, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL}, {CFG_HW_KEY_LED_PIN, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_NOPULL},
}; };
#endif #endif
#ifdef CFG_MIC_KEY #ifdef CFG_MIC_KEY
extern void mic_key_open (void); extern void mic_key_open(void);
#endif #endif
static void uart_i2c_switch(void) static void uart_i2c_switch(void) {
{ static int flag = 0;
static int flag = 0;
flag ^= 1; flag ^= 1;
if (flag) { if (flag) {
hal_iomux_set_analog_i2c(); hal_iomux_set_analog_i2c();
} else { } else {
hal_iomux_set_uart0(); hal_iomux_set_uart0();
} }
} }
static int POSSIBLY_UNUSED key_event_process(uint32_t key_code, uint8_t key_event) static int POSSIBLY_UNUSED key_event_process(uint32_t key_code,
{ uint8_t key_event) {
TRACE(3,"%s: code=0x%X, event=%u", __FUNCTION__, key_code, key_event); TRACE(3, "%s: code=0x%X, event=%u", __FUNCTION__, key_code, key_event);
#ifdef CFG_HW_KEY_LED_PIN #ifdef CFG_HW_KEY_LED_PIN
if (key_event == HAL_KEY_EVENT_DOWN) { if (key_event == HAL_KEY_EVENT_DOWN) {
hal_gpio_pin_set(CFG_HW_KEY_LED_PIN); hal_gpio_pin_set(CFG_HW_KEY_LED_PIN);
} else if (key_event == HAL_KEY_EVENT_UP) { } else if (key_event == HAL_KEY_EVENT_UP) {
hal_gpio_pin_clr(CFG_HW_KEY_LED_PIN); hal_gpio_pin_clr(CFG_HW_KEY_LED_PIN);
} }
#endif #endif
#ifdef USB_AUDIO_APP #ifdef USB_AUDIO_APP
if (usb_audio_app_key(key_code, key_event) == 0) { if (usb_audio_app_key(key_code, key_event) == 0) {
return 0; return 0;
} }
#endif #endif
#ifdef ANC_APP #ifdef ANC_APP
if (anc_usb_app_key(key_code, key_event) == 0) { if (anc_usb_app_key(key_code, key_event) == 0) {
return 0; return 0;
} }
#endif #endif
if (key_event == HAL_KEY_EVENT_CLICK) { if (key_event == HAL_KEY_EVENT_CLICK) {
if (key_code == HAL_KEY_CODE_FN9) { if (key_code == HAL_KEY_CODE_FN9) {
uart_i2c_switch(); uart_i2c_switch();
}
} }
}
return 0; return 0;
} }
void anc_usb_open(void) void anc_usb_open(void) {
{ TRACE(1, "%s", __FUNCTION__);
TRACE(1,"%s", __FUNCTION__);
#ifdef __AUDIO_RESAMPLE__ #ifdef __AUDIO_RESAMPLE__
hal_cmu_audio_resample_enable(); hal_cmu_audio_resample_enable();
#endif #endif
#ifdef USB_AUDIO_APP #ifdef USB_AUDIO_APP
struct USB_AUDIO_BUF_CFG cfg; struct USB_AUDIO_BUF_CFG cfg;
memset(&cfg, 0, sizeof(cfg)); memset(&cfg, 0, sizeof(cfg));
cfg.play_buf = playback_buff; cfg.play_buf = playback_buff;
#ifdef AUDIO_ANC_FB_MC #ifdef AUDIO_ANC_FB_MC
cfg.play_size = sizeof(playback_buff) / 9; cfg.play_size = sizeof(playback_buff) / 9;
#else #else
cfg.play_size = sizeof(playback_buff); cfg.play_size = sizeof(playback_buff);
#endif #endif
cfg.cap_buf = capture_buff; cfg.cap_buf = capture_buff;
cfg.cap_size = sizeof(capture_buff); cfg.cap_size = sizeof(capture_buff);
cfg.recv_buf = recv_buff; cfg.recv_buf = recv_buff;
cfg.recv_size = sizeof(recv_buff); cfg.recv_size = sizeof(recv_buff);
cfg.send_buf = send_buff; cfg.send_buf = send_buff;
cfg.send_size = sizeof(send_buff); cfg.send_size = sizeof(send_buff);
cfg.eq_buf = eq_buff; cfg.eq_buf = eq_buff;
cfg.eq_size = sizeof(eq_buff); cfg.eq_size = sizeof(eq_buff);
cfg.resample_buf = resample_buff; cfg.resample_buf = resample_buff;
cfg.resample_size = sizeof(resample_buff); cfg.resample_size = sizeof(resample_buff);
usb_audio_app_init(&cfg); usb_audio_app_init(&cfg);
usb_audio_app(1); usb_audio_app(1);
#endif #endif
#ifdef ANC_APP #ifdef ANC_APP
anc_usb_app_init(AUD_INPUT_PATH_MAINMIC, SAMPLE_RATE_PLAYBACK, SAMPLE_RATE_CAPTURE); anc_usb_app_init(AUD_INPUT_PATH_MAINMIC, SAMPLE_RATE_PLAYBACK,
SAMPLE_RATE_CAPTURE);
#endif #endif
#ifdef DUALADC_AUDIO_TEST #ifdef DUALADC_AUDIO_TEST
dualadc_audio_app_init(playback_buff, USB_AUDIO_PLAYBACK_BUFF_SIZE, dualadc_audio_app_init(playback_buff, USB_AUDIO_PLAYBACK_BUFF_SIZE,
capture_buff, USB_AUDIO_CAPTURE_BUFF_SIZE); capture_buff, USB_AUDIO_CAPTURE_BUFF_SIZE);
dualadc_audio_app(1); dualadc_audio_app(1);
#endif #endif
#if defined(CFG_MIC_KEY) #if defined(CFG_MIC_KEY)
mic_key_open(); mic_key_open();
#endif #endif
#ifdef BT_USB_AUDIO_DUAL_MODE #ifdef BT_USB_AUDIO_DUAL_MODE
return; return;
#endif #endif
// Allow sleep // Allow sleep
hal_sysfreq_req(HAL_SYSFREQ_USER_INIT, HAL_CMU_FREQ_32K); hal_sysfreq_req(HAL_SYSFREQ_USER_INIT, HAL_CMU_FREQ_32K);
while (1) { while (1) {
#ifdef USB_AUDIO_APP #ifdef USB_AUDIO_APP
usb_audio_app_loop(); usb_audio_app_loop();
#endif #endif
#ifdef ANC_APP #ifdef ANC_APP
anc_usb_app_loop(); anc_usb_app_loop();
#endif #endif
#ifdef RTOS #ifdef RTOS
// Let the task sleep // Let the task sleep
osDelay(20); osDelay(20);
#else // !RTOS #else // !RTOS
#ifdef __PC_CMD_UART__ #ifdef __PC_CMD_UART__
hal_cmd_run(); hal_cmd_run();
#endif #endif
hal_sleep_enter_sleep(); hal_sleep_enter_sleep();
#endif // !RTOS #endif // !RTOS
} }
} }
void anc_usb_close(void) void anc_usb_close(void) { usb_audio_app(0); }
{
usb_audio_app(0);
}
#ifdef CFG_HW_GPADCKEY #ifdef CFG_HW_GPADCKEY
void gpadc_key_handler(uint16_t irq_val, HAL_GPADC_MV_T volt) void gpadc_key_handler(uint16_t irq_val, HAL_GPADC_MV_T volt) {
{ static uint16_t stable_cnt = 0;
static uint16_t stable_cnt = 0; static uint16_t click_cnt = 0;
static uint16_t click_cnt = 0; static uint32_t click_time;
static uint32_t click_time; uint32_t time;
uint32_t time; enum HAL_KEY_EVENT_T event;
enum HAL_KEY_EVENT_T event; bool send_event = false;
bool send_event = false;
time = hal_sys_timer_get(); time = hal_sys_timer_get();
if (volt < 100) { if (volt < 100) {
stable_cnt++; stable_cnt++;
//TRACE(5,"adc_key down: volt=%u stable=%u click_cnt=%u click_time=%u time=%u", volt, stable_cnt, click_cnt, click_time, time); // TRACE(5,"adc_key down: volt=%u stable=%u click_cnt=%u click_time=%u
} else { // time=%u", volt, stable_cnt, click_cnt, click_time, time);
if (stable_cnt > 1) { } else {
//TRACE(5,"adc_key up: volt=%u stable=%u click_cnt=%u click_time=%u time=%u", volt, stable_cnt, click_cnt, click_time, time); if (stable_cnt > 1) {
if (click_cnt == 0 || (time - click_time) < MS_TO_TICKS(500)) { // TRACE(5,"adc_key up: volt=%u stable=%u click_cnt=%u click_time=%u
click_time = time; // time=%u", volt, stable_cnt, click_cnt, click_time, time);
click_cnt++; if (click_cnt == 0 || (time - click_time) < MS_TO_TICKS(500)) {
if (click_cnt >= 3) { click_time = time;
send_event = true; click_cnt++;
} if (click_cnt >= 3) {
} else { send_event = true;
send_event = true;
}
}
stable_cnt = 0;
if (click_cnt > 0 && (time - click_time) >= MS_TO_TICKS(500)) {
send_event = true;
}
if (send_event) {
//TRACE(5,"adc_key click: volt=%u stable=%u click_cnt=%u click_time=%u time=%u", volt, stable_cnt, click_cnt, click_time, time);
if (click_cnt == 1) {
event = HAL_KEY_EVENT_CLICK;
} else if (click_cnt == 2) {
event = HAL_KEY_EVENT_DOUBLECLICK;
} else {
event = HAL_KEY_EVENT_TRIPLECLICK;
}
key_event_process(CFG_HW_GPADCKEY, event);
click_cnt = 0;
} }
} else {
send_event = true;
}
} }
stable_cnt = 0;
if (click_cnt > 0 && (time - click_time) >= MS_TO_TICKS(500)) {
send_event = true;
}
if (send_event) {
// TRACE(5,"adc_key click: volt=%u stable=%u click_cnt=%u click_time=%u
// time=%u", volt, stable_cnt, click_cnt, click_time, time);
if (click_cnt == 1) {
event = HAL_KEY_EVENT_CLICK;
} else if (click_cnt == 2) {
event = HAL_KEY_EVENT_DOUBLECLICK;
} else {
event = HAL_KEY_EVENT_TRIPLECLICK;
}
key_event_process(CFG_HW_GPADCKEY, event);
click_cnt = 0;
}
}
} }
#endif #endif
// GDB can set a breakpoint on the main function only if it is // GDB can set a breakpoint on the main function only if it is
// declared as below, when linking with STD libraries. // declared as below, when linking with STD libraries.
int btusbaudio_entry(void) int btusbaudio_entry(void) {
{ anc_usb_open();
anc_usb_open(); return 0;
return 0;
} }
void btusbaudio_exit(void) void btusbaudio_exit(void) { anc_usb_close(); }
{
anc_usb_close();
}

View file

@ -13,9 +13,6 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "app_thread.h"
#include "cmsis_os.h" #include "cmsis_os.h"
#include "hal_trace.h" #include "hal_trace.h"
#include "app_thread.h"

View file

@ -1,20 +1,22 @@
#include <stdio.h>
#include <assert.h>
#include "cmsis_os.h"
#include "tgt_hardware.h"
#include "audioflinger.h"
#include "hal_trace.h"
#include "hal_timer.h"
#include "app_thread.h"
#include "voice_detector.h"
#include "app_voice_detector.h" #include "app_voice_detector.h"
#include "app_thread.h"
#include "audioflinger.h"
#include "cmsis_os.h"
#include "hal_timer.h"
#include "hal_trace.h"
#include "tgt_hardware.h"
#include "voice_detector.h"
#include <assert.h>
#include <stdio.h>
#define APP_VD_DEBUG #define APP_VD_DEBUG
#ifdef APP_VD_DEBUG #ifdef APP_VD_DEBUG
#define APP_VD_LOG(str, ...) LOG_DEBUG(LOG_MOD(AUD), str, ##__VA_ARGS__) #define APP_VD_LOG(str, ...) LOG_DEBUG(LOG_MOD(AUD), str, ##__VA_ARGS__)
#else #else
#define APP_VD_LOG(...) do{}while(0) #define APP_VD_LOG(...) \
do { \
} while (0)
#endif #endif
#define APP_VD_ERR(str, ...) LOG_ERROR(LOG_MOD(AUD), str, ##__VA_ARGS__) #define APP_VD_ERR(str, ...) LOG_ERROR(LOG_MOD(AUD), str, ##__VA_ARGS__)
@ -22,10 +24,8 @@ osMutexId vd_mutex_id = NULL;
osMutexDef(vd_mutex); osMutexDef(vd_mutex);
static int cmd_arr_evt_vad_start[] = { static int cmd_arr_evt_vad_start[] = {
VOICE_DET_CMD_AUD_CAP_STOP, VOICE_DET_CMD_AUD_CAP_STOP, VOICE_DET_CMD_AUD_CAP_CLOSE,
VOICE_DET_CMD_AUD_CAP_CLOSE, VOICE_DET_CMD_VAD_OPEN, VOICE_DET_CMD_VAD_START,
VOICE_DET_CMD_VAD_OPEN,
VOICE_DET_CMD_VAD_START,
VOICE_DET_CMD_SYS_CLK_32K, VOICE_DET_CMD_SYS_CLK_32K,
}; };
#if 0 #if 0
@ -44,10 +44,8 @@ static int cmd_arr_evt_cap_start[] = {
}; };
#endif #endif
static int cmd_arr_evt_close[] = { static int cmd_arr_evt_close[] = {
VOICE_DET_CMD_AUD_CAP_STOP, VOICE_DET_CMD_AUD_CAP_STOP, VOICE_DET_CMD_AUD_CAP_CLOSE,
VOICE_DET_CMD_AUD_CAP_CLOSE, VOICE_DET_CMD_VAD_STOP, VOICE_DET_CMD_VAD_CLOSE,
VOICE_DET_CMD_VAD_STOP,
VOICE_DET_CMD_VAD_CLOSE,
VOICE_DET_CMD_EXIT, VOICE_DET_CMD_EXIT,
}; };
#if 1 #if 1
@ -63,205 +61,191 @@ static int cmd_arr_evt_vad_close[] = {
VOICE_DET_CMD_EXIT, VOICE_DET_CMD_EXIT,
}; };
static int app_voice_detector_process(APP_MESSAGE_BODY *msg_body) static int app_voice_detector_process(APP_MESSAGE_BODY *msg_body) {
{ enum voice_detector_id id = (enum voice_detector_id)msg_body->message_id;
enum voice_detector_id id = (enum voice_detector_id)msg_body->message_id; enum voice_detector_evt evt = (enum voice_detector_evt)msg_body->message_ptr;
enum voice_detector_evt evt = (enum voice_detector_evt)msg_body->message_ptr; int ret = 0, num, *cmds;
int ret = 0, num, *cmds;
voice_detector_enhance_perform(id);// set sys clock to 104M or 208M voice_detector_enhance_perform(id); // set sys clock to 104M or 208M
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
switch(evt) { switch (evt) {
case VOICE_DET_EVT_VAD_START: case VOICE_DET_EVT_VAD_START:
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) { if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) {
cmds = &cmd_arr_evt_vad_start[0]; cmds = &cmd_arr_evt_vad_start[0];
num = ARRAY_SIZE(cmd_arr_evt_vad_start); num = ARRAY_SIZE(cmd_arr_evt_vad_start);
} else { } else {
cmds = &cmd_arr_evt_vad_start[2]; cmds = &cmd_arr_evt_vad_start[2];
num = ARRAY_SIZE(cmd_arr_evt_vad_start) - 2; num = ARRAY_SIZE(cmd_arr_evt_vad_start) - 2;
}
break;
case VOICE_DET_EVT_AUD_CAP_START:
cmds = cmd_arr_evt_cap_start;
num = ARRAY_SIZE(cmd_arr_evt_cap_start);
break;
case VOICE_DET_EVT_CLOSE:
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) {
cmds = &cmd_arr_evt_cap_close[0];
num = ARRAY_SIZE(cmd_arr_evt_cap_close);
} else {
cmds = &cmd_arr_evt_vad_close[0];
num = ARRAY_SIZE(cmd_arr_evt_vad_close);
}
break;
default:
cmds = cmd_arr_evt_close;
num = ARRAY_SIZE(cmd_arr_evt_close);
break;
} }
ret = voice_detector_send_cmd_array(id, cmds, num); break;
if (ret) { case VOICE_DET_EVT_AUD_CAP_START:
APP_VD_ERR("%s, send cmd error %d", __func__, ret); cmds = cmd_arr_evt_cap_start;
num = ARRAY_SIZE(cmd_arr_evt_cap_start);
break;
case VOICE_DET_EVT_CLOSE:
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_CLOSE) {
cmds = &cmd_arr_evt_cap_close[0];
num = ARRAY_SIZE(cmd_arr_evt_cap_close);
} else {
cmds = &cmd_arr_evt_vad_close[0];
num = ARRAY_SIZE(cmd_arr_evt_vad_close);
} }
ret = voice_detector_run(id, VOICE_DET_MODE_EXEC_CMD); break;
if (ret) { default:
APP_VD_ERR("%s, run cmd error %d", __func__, ret); cmds = cmd_arr_evt_close;
} num = ARRAY_SIZE(cmd_arr_evt_close);
if (evt == VOICE_DET_EVT_CLOSE) { break;
voice_detector_close(id); }
} ret = voice_detector_send_cmd_array(id, cmds, num);
osMutexRelease(vd_mutex_id); if (ret) {
return ret; APP_VD_ERR("%s, send cmd error %d", __func__, ret);
}
ret = voice_detector_run(id, VOICE_DET_MODE_EXEC_CMD);
if (ret) {
APP_VD_ERR("%s, run cmd error %d", __func__, ret);
}
if (evt == VOICE_DET_EVT_CLOSE) {
voice_detector_close(id);
}
osMutexRelease(vd_mutex_id);
return ret;
} }
static void voice_detector_send_msg(uint32_t id, uint32_t evt) static void voice_detector_send_msg(uint32_t id, uint32_t evt) {
{ APP_MESSAGE_BLOCK msg;
APP_MESSAGE_BLOCK msg;
msg.mod_id = APP_MODUAL_VOICE_DETECTOR; msg.mod_id = APP_MODUAL_VOICE_DETECTOR;
msg.msg_body.message_id = id; msg.msg_body.message_id = id;
msg.msg_body.message_ptr = evt; msg.msg_body.message_ptr = evt;
app_mailbox_put(&msg); app_mailbox_put(&msg);
} }
static void voice_detector_wakeup_system(int state, void *param) static void voice_detector_wakeup_system(int state, void *param) {
{ enum voice_detector_id id = VOICE_DETECTOR_ID_0;
enum voice_detector_id id = VOICE_DETECTOR_ID_0;
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) { if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) {
app_voice_detector_send_event(id, VOICE_DET_EVT_AUD_CAP_START); app_voice_detector_send_event(id, VOICE_DET_EVT_AUD_CAP_START);
} }
APP_VD_LOG("%s, state=%d", __func__, state); APP_VD_LOG("%s, state=%d", __func__, state);
// APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0)); // APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0));
} }
static void voice_not_detector_wakeup_system(int state, void *param) static void voice_not_detector_wakeup_system(int state, void *param) {
{ enum voice_detector_id id = VOICE_DETECTOR_ID_0;
enum voice_detector_id id = VOICE_DETECTOR_ID_0;
if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) { if (voice_detector_query_status(id) == VOICE_DET_STATE_VAD_START) {
app_voice_detector_send_event(id, VOICE_DET_EVT_VAD_START); app_voice_detector_send_event(id, VOICE_DET_EVT_VAD_START);
} }
APP_VD_LOG("%s, state=%d", __func__, state); APP_VD_LOG("%s, state=%d", __func__, state);
// APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0)); // APP_VD_LOG("cpu freq=%d", hal_sys_timer_calc_cpu_freq(5,0));
} }
void app_voice_detector_init(void) void app_voice_detector_init(void) {
{ APP_VD_LOG("%s", __func__);
APP_VD_LOG("%s", __func__);
if(vd_mutex_id == NULL){ if (vd_mutex_id == NULL) {
vd_mutex_id = osMutexCreate((osMutex(vd_mutex))); vd_mutex_id = osMutexCreate((osMutex(vd_mutex)));
app_set_threadhandle(APP_MODUAL_VOICE_DETECTOR, app_voice_detector_process); app_set_threadhandle(APP_MODUAL_VOICE_DETECTOR, app_voice_detector_process);
} }
} }
int app_voice_detector_open(enum voice_detector_id id, enum AUD_VAD_TYPE_T vad_type) int app_voice_detector_open(enum voice_detector_id id,
{ enum AUD_VAD_TYPE_T vad_type) {
int r; int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_open(id, vad_type); r = voice_detector_open(id, vad_type);
if (!r) { if (!r) {
voice_detector_setup_callback(id, VOICE_DET_FIND_APP, voice_detector_setup_callback(id, VOICE_DET_FIND_APP,
voice_detector_wakeup_system, NULL); voice_detector_wakeup_system, NULL);
voice_detector_setup_callback(id, VOICE_DET_NOT_FIND_APP, voice_detector_setup_callback(id, VOICE_DET_NOT_FIND_APP,
voice_not_detector_wakeup_system, NULL); voice_not_detector_wakeup_system, NULL);
} }
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_setup_vad(enum voice_detector_id id, int app_voice_detector_setup_vad(enum voice_detector_id id,
struct AUD_VAD_CONFIG_T *conf) struct AUD_VAD_CONFIG_T *conf) {
{ int r;
int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_setup_vad(id, conf); r = voice_detector_setup_vad(id, conf);
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_setup_stream(enum voice_detector_id id, int app_voice_detector_setup_stream(enum voice_detector_id id,
enum AUD_STREAM_T stream_id, enum AUD_STREAM_T stream_id,
struct AF_STREAM_CONFIG_T *stream) struct AF_STREAM_CONFIG_T *stream) {
{ int r;
int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_setup_stream(id, stream_id, stream); r = voice_detector_setup_stream(id, stream_id, stream);
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_setup_callback(enum voice_detector_id id, int app_voice_detector_setup_callback(enum voice_detector_id id,
enum voice_detector_cb_id func_id, enum voice_detector_cb_id func_id,
voice_detector_cb_t func, voice_detector_cb_t func, void *param) {
void *param) int r;
{
int r;
APP_VD_LOG("%s", __func__); APP_VD_LOG("%s", __func__);
if (!vd_mutex_id) { if (!vd_mutex_id) {
APP_VD_LOG("%s, mutex is null", __func__); APP_VD_LOG("%s, mutex is null", __func__);
return -1; return -1;
} }
osMutexWait(vd_mutex_id, osWaitForever); osMutexWait(vd_mutex_id, osWaitForever);
r = voice_detector_setup_callback(id, func_id, func, param); r = voice_detector_setup_callback(id, func_id, func, param);
osMutexRelease(vd_mutex_id); osMutexRelease(vd_mutex_id);
return r; return r;
} }
int app_voice_detector_send_event(enum voice_detector_id id, int app_voice_detector_send_event(enum voice_detector_id id,
enum voice_detector_evt evt) enum voice_detector_evt evt) {
{ APP_VD_LOG("%s, id=%d, evt=%d", __func__, id, evt);
APP_VD_LOG("%s, id=%d, evt=%d", __func__, id, evt);
voice_detector_send_msg(id, evt); voice_detector_send_msg(id, evt);
return 0; return 0;
} }
void app_voice_detector_close(enum voice_detector_id id) void app_voice_detector_close(enum voice_detector_id id) {
{ APP_VD_LOG("%s", __func__);
APP_VD_LOG("%s", __func__);
voice_detector_send_msg(id, VOICE_DET_EVT_CLOSE); voice_detector_send_msg(id, VOICE_DET_EVT_CLOSE);
} }
void app_voice_detector_capture_start(enum voice_detector_id id) void app_voice_detector_capture_start(enum voice_detector_id id) {
{ APP_VD_LOG("%s", __func__);
APP_VD_LOG("%s", __func__);
voice_detector_send_msg(id, VOICE_DET_EVT_AUD_CAP_START); voice_detector_send_msg(id, VOICE_DET_EVT_AUD_CAP_START);
} }
void app_voice_detector_get_vad_data_info(enum voice_detector_id id, void app_voice_detector_get_vad_data_info(
struct CODEC_VAD_BUF_INFO_T* vad_buf_info) enum voice_detector_id id, struct CODEC_VAD_BUF_INFO_T *vad_buf_info) {
{ voice_detector_get_vad_data_info(id, vad_buf_info);
voice_detector_get_vad_data_info(id, vad_buf_info);
} }

File diff suppressed because it is too large Load diff

View file

@ -13,18 +13,18 @@
* trademark and other intellectual property rights. * trademark and other intellectual property rights.
* *
****************************************************************************/ ****************************************************************************/
#include "cmsis_os.h"
#include "stdbool.h"
#include "hal_trace.h"
#include "app_pwl.h"
#include "app_status_ind.h" #include "app_status_ind.h"
#include "app_pwl.h"
#include "cmsis_os.h"
#include "hal_trace.h"
#include "stdbool.h"
#include "string.h" #include "string.h"
static APP_STATUS_INDICATION_T app_status = APP_STATUS_INDICATION_NUM; static APP_STATUS_INDICATION_T app_status = APP_STATUS_INDICATION_NUM;
static APP_STATUS_INDICATION_T app_status_ind_filter = APP_STATUS_INDICATION_NUM; static APP_STATUS_INDICATION_T app_status_ind_filter =
APP_STATUS_INDICATION_NUM;
const char *app_status_indication_str[] = const char *app_status_indication_str[] = {
{
"[POWERON]", "[POWERON]",
"[INITIAL]", "[INITIAL]",
"[PAGESCAN]", "[PAGESCAN]",
@ -64,239 +64,229 @@ const char *app_status_indication_str[] =
"[TILE_FIND]", "[TILE_FIND]",
}; };
const char *status2str(uint16_t status) {
const char *str = NULL;
const char *status2str(uint16_t status) if (status >= 0 && status < APP_STATUS_INDICATION_NUM) {
{ str = app_status_indication_str[status];
const char *str = NULL; } else {
str = "[UNKNOWN]";
}
if (status >= 0 && status < APP_STATUS_INDICATION_NUM) return str;
{
str = app_status_indication_str[status];
}
else
{
str = "[UNKNOWN]";
}
return str;
} }
int app_status_indication_filter_set(APP_STATUS_INDICATION_T status) int app_status_indication_filter_set(APP_STATUS_INDICATION_T status) {
{ app_status_ind_filter = status;
app_status_ind_filter = status; return 0;
}
APP_STATUS_INDICATION_T app_status_indication_get(void) { return app_status; }
int app_status_indication_set(APP_STATUS_INDICATION_T status) {
struct APP_PWL_CFG_T cfg0;
struct APP_PWL_CFG_T cfg1;
if (app_status == status)
return 0; return 0;
}
APP_STATUS_INDICATION_T app_status_indication_get(void) if (app_status_ind_filter == status)
{
return app_status;
}
int app_status_indication_set(APP_STATUS_INDICATION_T status)
{
struct APP_PWL_CFG_T cfg0;
struct APP_PWL_CFG_T cfg1;
if (app_status == status)
return 0;
if (app_status_ind_filter == status)
return 0;
TRACE(2,"%s %d",__func__, status);
app_status = status;
memset(&cfg0, 0, sizeof(struct APP_PWL_CFG_T));
memset(&cfg1, 0, sizeof(struct APP_PWL_CFG_T));
app_pwl_stop(APP_PWL_ID_0);
app_pwl_stop(APP_PWL_ID_1);
switch (status) {
case APP_STATUS_INDICATION_POWERON:
cfg0.part[0].level = 1;
cfg0.part[0].time = (3000);
cfg0.part[1].level = 0;
cfg0.part[1].time = (200);
cfg0.parttotal = 2;
cfg0.startlevel = 1;
cfg0.periodic = false;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
break;
case APP_STATUS_INDICATION_INITIAL:
break;
case APP_STATUS_INDICATION_PAGESCAN:
cfg0.part[0].level = 1;
cfg0.part[0].time = (300);
cfg0.part[1].level = 0;
cfg0.part[1].time = (8000);
cfg0.parttotal = 2;
cfg0.startlevel = 1;
cfg0.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
break;
case APP_STATUS_INDICATION_BOTHSCAN:
cfg0.part[0].level = 0;
cfg0.part[0].time = (300);
cfg0.part[1].level = 1;
cfg0.part[1].time = (300);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 1;
cfg1.part[0].time = (300);
cfg1.part[1].level = 0;
cfg1.part[1].time = (300);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_CONNECTING:
// LED's alternating Red/Blue
cfg0.part[0].level = 1;
cfg0.part[0].time = (300);
cfg0.part[1].level = 0;
cfg0.part[1].time = (300);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 1;
cfg1.part[0].time = (300);
cfg1.part[1].level = 0;
cfg1.part[1].time = (300);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_CONNECTED:
cfg0.part[0].level = 1;
cfg0.part[0].time = (500);
cfg0.part[1].level = 0;
cfg0.part[1].time = (3000);
cfg0.parttotal = 2;
cfg0.startlevel = 1;
cfg0.periodic = true;
cfg1.part[0].level = 0;
cfg1.part[0].time = (500);
cfg1.part[1].level = 0;
cfg1.part[1].time = (3000);
cfg1.parttotal = 2;
cfg1.startlevel = 0;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_CHARGING:
cfg1.part[0].level = 1;
cfg1.part[0].time = (5000);
cfg1.parttotal = 1;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_FULLCHARGE:
cfg0.part[0].level = 0;
cfg0.part[0].time = (5000);
cfg0.parttotal = 1;
cfg0.startlevel = 1;
cfg0.periodic = false;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg0);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_POWEROFF:
cfg1.part[0].level = 0;
cfg1.part[0].time = (100);
cfg1.parttotal = 1;
cfg1.startlevel = 1;
cfg1.periodic = false;
cfg0.part[0].level = 0;
cfg0.part[0].time = (100);
cfg0.parttotal = 1;
cfg0.startlevel = 1;
cfg0.periodic = false;
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
break;
case APP_STATUS_INDICATION_CHARGENEED:
cfg1.part[0].level = 1;
cfg1.part[0].time = (500);
cfg1.part[1].level = 0;
cfg1.part[1].time = (2000);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_TESTMODE:
cfg0.part[0].level = 0;
cfg0.part[0].time = (300);
cfg0.part[1].level = 1;
cfg0.part[1].time = (300);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 0;
cfg1.part[0].time = (300);
cfg1.part[1].level = 1;
cfg1.part[1].time = (300);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_TESTMODE1:
cfg0.part[0].level = 0;
cfg0.part[0].time = (1000);
cfg0.part[1].level = 1;
cfg0.part[1].time = (1000);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 0;
cfg1.part[0].time = (1000);
cfg1.part[1].level = 1;
cfg1.part[1].time = (1000);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
default:
break;
}
return 0; return 0;
TRACE(2, "%s %d", __func__, status);
app_status = status;
memset(&cfg0, 0, sizeof(struct APP_PWL_CFG_T));
memset(&cfg1, 0, sizeof(struct APP_PWL_CFG_T));
app_pwl_stop(APP_PWL_ID_0);
app_pwl_stop(APP_PWL_ID_1);
switch (status) {
case APP_STATUS_INDICATION_POWERON:
cfg0.part[0].level = 1;
cfg0.part[0].time = (3000);
cfg0.part[1].level = 0;
cfg0.part[1].time = (200);
cfg0.parttotal = 2;
cfg0.startlevel = 1;
cfg0.periodic = false;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
break;
case APP_STATUS_INDICATION_INITIAL:
break;
case APP_STATUS_INDICATION_PAGESCAN:
cfg0.part[0].level = 1;
cfg0.part[0].time = (300);
cfg0.part[1].level = 0;
cfg0.part[1].time = (8000);
cfg0.parttotal = 2;
cfg0.startlevel = 1;
cfg0.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
break;
case APP_STATUS_INDICATION_BOTHSCAN:
cfg0.part[0].level = 0;
cfg0.part[0].time = (300);
cfg0.part[1].level = 1;
cfg0.part[1].time = (300);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 1;
cfg1.part[0].time = (300);
cfg1.part[1].level = 0;
cfg1.part[1].time = (300);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_CONNECTING:
// LED's alternating Red/Blue
cfg0.part[0].level = 1;
cfg0.part[0].time = (300);
cfg0.part[1].level = 0;
cfg0.part[1].time = (300);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 1;
cfg1.part[0].time = (300);
cfg1.part[1].level = 0;
cfg1.part[1].time = (300);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_CONNECTED:
cfg0.part[0].level = 1;
cfg0.part[0].time = (500);
cfg0.part[1].level = 0;
cfg0.part[1].time = (3000);
cfg0.parttotal = 2;
cfg0.startlevel = 1;
cfg0.periodic = true;
cfg1.part[0].level = 0;
cfg1.part[0].time = (500);
cfg1.part[1].level = 0;
cfg1.part[1].time = (3000);
cfg1.parttotal = 2;
cfg1.startlevel = 0;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_CHARGING:
cfg1.part[0].level = 1;
cfg1.part[0].time = (5000);
cfg1.parttotal = 1;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_FULLCHARGE:
cfg0.part[0].level = 0;
cfg0.part[0].time = (5000);
cfg0.parttotal = 1;
cfg0.startlevel = 1;
cfg0.periodic = false;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg0);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_POWEROFF:
cfg1.part[0].level = 0;
cfg1.part[0].time = (100);
cfg1.parttotal = 1;
cfg1.startlevel = 1;
cfg1.periodic = false;
cfg0.part[0].level = 0;
cfg0.part[0].time = (100);
cfg0.parttotal = 1;
cfg0.startlevel = 1;
cfg0.periodic = false;
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
break;
case APP_STATUS_INDICATION_CHARGENEED:
cfg1.part[0].level = 1;
cfg1.part[0].time = (500);
cfg1.part[1].level = 0;
cfg1.part[1].time = (2000);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_TESTMODE:
cfg0.part[0].level = 0;
cfg0.part[0].time = (300);
cfg0.part[1].level = 1;
cfg0.part[1].time = (300);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 0;
cfg1.part[0].time = (300);
cfg1.part[1].level = 1;
cfg1.part[1].time = (300);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
case APP_STATUS_INDICATION_TESTMODE1:
cfg0.part[0].level = 0;
cfg0.part[0].time = (1000);
cfg0.part[1].level = 1;
cfg0.part[1].time = (1000);
cfg0.parttotal = 2;
cfg0.startlevel = 0;
cfg0.periodic = true;
cfg1.part[0].level = 0;
cfg1.part[0].time = (1000);
cfg1.part[1].level = 1;
cfg1.part[1].time = (1000);
cfg1.parttotal = 2;
cfg1.startlevel = 1;
cfg1.periodic = true;
app_pwl_setup(APP_PWL_ID_0, &cfg0);
app_pwl_start(APP_PWL_ID_0);
app_pwl_setup(APP_PWL_ID_1, &cfg1);
app_pwl_start(APP_PWL_ID_1);
break;
default:
break;
}
return 0;
} }

View file

@ -15,85 +15,88 @@
****************************************************************************/ ****************************************************************************/
#include "tgt_hardware.h" #include "tgt_hardware.h"
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = {};
};
//adckey define // adckey define
const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = { const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = {
HAL_KEY_CODE_FN9,HAL_KEY_CODE_FN8,HAL_KEY_CODE_FN7, HAL_KEY_CODE_FN9, HAL_KEY_CODE_FN8, HAL_KEY_CODE_FN7,
HAL_KEY_CODE_FN6,HAL_KEY_CODE_FN5,HAL_KEY_CODE_FN4, HAL_KEY_CODE_FN6, HAL_KEY_CODE_FN5, HAL_KEY_CODE_FN4,
HAL_KEY_CODE_FN3,HAL_KEY_CODE_FN2,HAL_KEY_CODE_FN1 HAL_KEY_CODE_FN3, HAL_KEY_CODE_FN2, HAL_KEY_CODE_FN1};
};
//gpiokey define // gpiokey define
const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = { const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = {};
};
//bt config // bt config
const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0"; const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0";
const char *BLE_DEFAULT_NAME = "BES_BLE"; const char *BLE_DEFAULT_NAME = "BES_BLE";
uint8_t ble_addr[6] = { uint8_t ble_addr[6] = {
#ifdef BLE_DEV_ADDR #ifdef BLE_DEV_ADDR
BLE_DEV_ADDR BLE_DEV_ADDR
#else #else
0xBE,0x99,0x34,0x45,0x56,0x67 0xBE, 0x99, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
uint8_t bt_addr[6] = { uint8_t bt_addr[6] = {
#ifdef BT_DEV_ADDR #ifdef BT_DEV_ADDR
BT_DEV_ADDR BT_DEV_ADDR
#else #else
0x1e,0x57,0x34,0x45,0x56,0x67 0x1e, 0x57, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
//audio config // audio config
//freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K], [12.5K:15K], [15K:17.5K], [17.5K:20K]} // freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K],
//gain range -12~+12 // [12.5K:15K], [15K:17.5K], [17.5K:20K]} gain range -12~+12
const int8_t cfg_hw_aud_eq_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {0, 0, 0, 0, 0, 0, 0, 0}; const int8_t cfg_hw_aud_eq_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {
0, 0, 0, 0, 0, 0, 0, 0};
#define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT #define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT
const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = { const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = {
{TX_PA_GAIN,0x03,-11}, {TX_PA_GAIN, 0x03, -11}, {TX_PA_GAIN, 0x03, -99},
{TX_PA_GAIN,0x03,-99}, {TX_PA_GAIN, 0x03, -45}, {TX_PA_GAIN, 0x03, -42},
{TX_PA_GAIN,0x03,-45}, {TX_PA_GAIN, 0x03, -39}, {TX_PA_GAIN, 0x03, -36},
{TX_PA_GAIN,0x03,-42}, {TX_PA_GAIN, 0x03, -33}, {TX_PA_GAIN, 0x03, -30},
{TX_PA_GAIN,0x03,-39}, {TX_PA_GAIN, 0x03, -27}, {TX_PA_GAIN, 0x03, -24},
{TX_PA_GAIN,0x03,-36}, {TX_PA_GAIN, 0x03, -21}, {TX_PA_GAIN, 0x03, -18},
{TX_PA_GAIN,0x03,-33}, {TX_PA_GAIN, 0x03, -15}, {TX_PA_GAIN, 0x03, -12},
{TX_PA_GAIN,0x03,-30}, {TX_PA_GAIN, 0x03, -9}, {TX_PA_GAIN, 0x03, -6},
{TX_PA_GAIN,0x03,-27}, {TX_PA_GAIN, 0x03, -3}, {TX_PA_GAIN, 0x03, 0}, // 0dBm
{TX_PA_GAIN,0x03,-24},
{TX_PA_GAIN,0x03,-21},
{TX_PA_GAIN,0x03,-18},
{TX_PA_GAIN,0x03,-15},
{TX_PA_GAIN,0x03,-12},
{TX_PA_GAIN,0x03, -9},
{TX_PA_GAIN,0x03, -6},
{TX_PA_GAIN,0x03, -3},
{TX_PA_GAIN,0x03, 0}, //0dBm
}; };
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
#define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1) (AUD_CHANNEL_MAP_CH0 | AUD_VMIC_MAP_VMIC1)
#define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV \
const struct AUD_IO_PATH_CFG_T cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = { (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1)
{ AUD_INPUT_PATH_MAINMIC, CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV, }, #define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV \
{ AUD_INPUT_PATH_LINEIN, CFG_HW_AUD_INPUT_PATH_LINEIN_DEV, }, (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1)
{ AUD_INPUT_PATH_VADMIC, CFG_HW_AUD_INPUT_PATH_VADMIC_DEV, }, const struct AUD_IO_PATH_CFG_T
cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = {
{
AUD_INPUT_PATH_MAINMIC,
CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV,
},
{
AUD_INPUT_PATH_LINEIN,
CFG_HW_AUD_INPUT_PATH_LINEIN_DEV,
},
{
AUD_INPUT_PATH_VADMIC,
CFG_HW_AUD_INPUT_PATH_VADMIC_DEV,
},
}; };
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE
};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg =
{HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE};

View file

@ -14,301 +14,317 @@
* *
****************************************************************************/ ****************************************************************************/
#include "tgt_hardware.h" #include "tgt_hardware.h"
#include "iir_process.h"
#include "fir_process.h"
#include "drc.h" #include "drc.h"
#include "fir_process.h"
#include "iir_process.h"
#include "limiter.h" #include "limiter.h"
#include "spectrum_fix.h" #include "spectrum_fix.h"
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = {
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE},
#endif #endif
}; };
#ifdef __APP_USE_LED_INDICATE_IBRT_STATUS__ #ifdef __APP_USE_LED_INDICATE_IBRT_STATUS__
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_ibrt_indication_pinmux_pwl[3] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_ibrt_indication_pinmux_pwl[3] = {
{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT, HAL_IOMUX_PIN_PULLUP_ENABLE}, HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT,
HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT,
HAL_IOMUX_PIN_PULLUP_ENABLE},
}; };
#endif #endif
#ifdef __KNOWLES #ifdef __KNOWLES
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_pinmux_uart[2] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_pinmux_uart[2] = {
{HAL_IOMUX_PIN_P2_2, HAL_IOMUX_FUNC_UART2_RX, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL}, {HAL_IOMUX_PIN_P2_2, HAL_IOMUX_FUNC_UART2_RX, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_P2_3, HAL_IOMUX_FUNC_UART2_TX, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL}, HAL_IOMUX_PIN_NOPULL},
{HAL_IOMUX_PIN_P2_3, HAL_IOMUX_FUNC_UART2_TX, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_NOPULL},
}; };
#endif #endif
//adckey define // adckey define
const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = { const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = {
#if (CFG_HW_ADCKEY_NUMBER > 0) #if (CFG_HW_ADCKEY_NUMBER > 0)
HAL_KEY_CODE_FN9,HAL_KEY_CODE_FN8,HAL_KEY_CODE_FN7, HAL_KEY_CODE_FN9, HAL_KEY_CODE_FN8, HAL_KEY_CODE_FN7,
HAL_KEY_CODE_FN6,HAL_KEY_CODE_FN5,HAL_KEY_CODE_FN4, HAL_KEY_CODE_FN6, HAL_KEY_CODE_FN5, HAL_KEY_CODE_FN4,
HAL_KEY_CODE_FN3,HAL_KEY_CODE_FN2,HAL_KEY_CODE_FN1, HAL_KEY_CODE_FN3, HAL_KEY_CODE_FN2, HAL_KEY_CODE_FN1,
#endif #endif
}; };
//gpiokey define // gpiokey define
#define CFG_HW_GPIOKEY_DOWN_LEVEL (0) #define CFG_HW_GPIOKEY_DOWN_LEVEL (0)
#define CFG_HW_GPIOKEY_UP_LEVEL (1) #define CFG_HW_GPIOKEY_UP_LEVEL (1)
const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = { const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = {
/* /*
#if (CFG_HW_GPIOKEY_NUM > 0) #if (CFG_HW_GPIOKEY_NUM > 0)
#ifdef BES_AUDIO_DEV_Main_Board_9v0 #ifdef BES_AUDIO_DEV_Main_Board_9v0
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P0_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P0_3, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P0_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P0_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P0_0, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN4,{HAL_IOMUX_PIN_P0_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN5,{HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P0_1, HAL_IOMUX_FUNC_AS_GPIO,
// {HAL_KEY_CODE_FN6,{HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
#else {HAL_KEY_CODE_FN4,{HAL_IOMUX_PIN_P0_2, HAL_IOMUX_FUNC_AS_GPIO,
#ifndef TPORTS_KEY_COEXIST HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, //{HAL_KEY_CODE_FN5,{HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
// {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, // {HAL_KEY_CODE_FN6,{HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #else #ifndef
#else TPORTS_KEY_COEXIST {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3,
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P1_0,
#endif HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
#endif HAL_IOMUX_PIN_PULLUP_ENABLE}},
#ifdef IS_MULTI_AI_ENABLED // {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
//{HAL_KEY_CODE_FN13,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN14,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
#endif HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #else
#endif {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO,
*/ HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #endif #endif
#ifdef IS_MULTI_AI_ENABLED
//{HAL_KEY_CODE_FN13,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN14,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #endif #endif
*/
{HAL_KEY_CODE_FN1,
{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE}},
}; };
//bt config // bt config
//const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0"; // const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0";
const char *BT_LOCAL_NAME = "PineBuds Pro"; const char *BT_LOCAL_NAME = "PineBuds Pro";
const char *BLE_DEFAULT_NAME = "BES_BLE"; const char *BLE_DEFAULT_NAME = "BES_BLE";
uint8_t ble_addr[6] = { uint8_t ble_addr[6] = {
#ifdef BLE_DEV_ADDR #ifdef BLE_DEV_ADDR
BLE_DEV_ADDR BLE_DEV_ADDR
#else #else
0xBE,0x99,0x34,0x45,0x56,0x67 0xBE, 0x99, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
uint8_t bt_addr[6] = { uint8_t bt_addr[6] = {
#ifdef BT_DEV_ADDR #ifdef BT_DEV_ADDR
BT_DEV_ADDR BT_DEV_ADDR
#else #else
0x1e,0x57,0x34,0x45,0x56,0x67 0x1e, 0x57, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
//audio config // audio config
//freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K], [12.5K:15K], [15K:17.5K], [17.5K:20K]} // freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K],
//gain range -12~+12 // [12.5K:15K], [15K:17.5K], [17.5K:20K]} gain range -12~+12
const int8_t cfg_aud_eq_sbc_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {0, 0, 0, 0, 0, 0, 0, 0}; const int8_t cfg_aud_eq_sbc_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {
0, 0, 0, 0, 0, 0, 0, 0};
#define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT #define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT
const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = { const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = {
{TX_PA_GAIN,0x03,-21}, {TX_PA_GAIN, 0x03, -21}, {TX_PA_GAIN, 0x03, -99},
{TX_PA_GAIN,0x03,-99}, {TX_PA_GAIN, 0x03, -45}, {TX_PA_GAIN, 0x03, -42},
{TX_PA_GAIN,0x03,-45}, {TX_PA_GAIN, 0x03, -39}, {TX_PA_GAIN, 0x03, -36},
{TX_PA_GAIN,0x03,-42}, {TX_PA_GAIN, 0x03, -33}, {TX_PA_GAIN, 0x03, -30},
{TX_PA_GAIN,0x03,-39}, {TX_PA_GAIN, 0x03, -27}, {TX_PA_GAIN, 0x03, -24},
{TX_PA_GAIN,0x03,-36}, {TX_PA_GAIN, 0x03, -21}, {TX_PA_GAIN, 0x03, -18},
{TX_PA_GAIN,0x03,-33}, {TX_PA_GAIN, 0x03, -15}, {TX_PA_GAIN, 0x03, -12},
{TX_PA_GAIN,0x03,-30}, {TX_PA_GAIN, 0x03, -9}, {TX_PA_GAIN, 0x03, -6},
{TX_PA_GAIN,0x03,-27}, {TX_PA_GAIN, 0x03, -3}, {TX_PA_GAIN, 0x03, 0}, // 0dBm
{TX_PA_GAIN,0x03,-24},
{TX_PA_GAIN,0x03,-21},
{TX_PA_GAIN,0x03,-18},
{TX_PA_GAIN,0x03,-15},
{TX_PA_GAIN,0x03,-12},
{TX_PA_GAIN,0x03, -9},
{TX_PA_GAIN,0x03, -6},
{TX_PA_GAIN,0x03, -3},
{TX_PA_GAIN,0x03, 0}, //0dBm
}; };
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC2|AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC2 | \
AUD_VMIC_MAP_VMIC3)
#elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3 #elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1 | AUD_CHANNEL_MAP_CH4 | \
AUD_VMIC_MAP_VMIC1)
#else #else
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3)
#endif #endif
#define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1) #define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1)
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
#define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1)
#else #else
#define CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3)
#endif #endif
const struct AUD_IO_PATH_CFG_T cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = { const struct AUD_IO_PATH_CFG_T
cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = {
#if defined(SPEECH_TX_AEC_CODEC_REF) #if defined(SPEECH_TX_AEC_CODEC_REF)
// NOTE: If enable Ch5 and CH6, need to add channel_num when setup audioflinger stream // NOTE: If enable Ch5 and CH6, need to add channel_num when setup
{ AUD_INPUT_PATH_MAINMIC, CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV | AUD_CHANNEL_MAP_CH4, }, // audioflinger stream
{
AUD_INPUT_PATH_MAINMIC,
CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV | AUD_CHANNEL_MAP_CH4,
},
#else #else
{ AUD_INPUT_PATH_MAINMIC, CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV, }, {
AUD_INPUT_PATH_MAINMIC,
CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV,
},
#endif #endif
{ AUD_INPUT_PATH_LINEIN, CFG_HW_AUD_INPUT_PATH_LINEIN_DEV, }, {
AUD_INPUT_PATH_LINEIN,
CFG_HW_AUD_INPUT_PATH_LINEIN_DEV,
},
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
{ AUD_INPUT_PATH_VADMIC, CFG_HW_AUD_INPUT_PATH_VADMIC_DEV, }, {
AUD_INPUT_PATH_VADMIC,
CFG_HW_AUD_INPUT_PATH_VADMIC_DEV,
},
#else #else
{ AUD_INPUT_PATH_ASRMIC, CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV, }, {
AUD_INPUT_PATH_ASRMIC,
CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV,
},
#endif #endif
}; };
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = {
HAL_IOMUX_PIN_P1_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P1_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE
};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg =
{HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE};
/* /*
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_INT ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_INT ={
HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE
}; };
*/ */
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SDA ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SDA = {
HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SCL ={
HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE
};
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SCL = {
HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE};
const IIR_CFG_T audio_eq_sw_iir_cfg = { const IIR_CFG_T audio_eq_sw_iir_cfg = {
.gain0 = 0, .gain0 = 0,
.gain1 = 0, .gain1 = 0,
.num = 5, .num = 5,
.param = { .param = {{IIR_TYPE_PEAK, .0, 200, 2},
{IIR_TYPE_PEAK, .0, 200, 2}, {IIR_TYPE_PEAK, .0, 600, 2},
{IIR_TYPE_PEAK, .0, 600, 2}, {IIR_TYPE_PEAK, .0, 2000.0, 2},
{IIR_TYPE_PEAK, .0, 2000.0, 2}, {IIR_TYPE_PEAK, .0, 6000.0, 2},
{IIR_TYPE_PEAK, .0, 6000.0, 2}, {IIR_TYPE_PEAK, .0, 12000.0, 2}}};
{IIR_TYPE_PEAK, .0, 12000.0, 2}
}
};
const IIR_CFG_T * const audio_eq_sw_iir_cfg_list[EQ_SW_IIR_LIST_NUM]={ const IIR_CFG_T *const audio_eq_sw_iir_cfg_list[EQ_SW_IIR_LIST_NUM] = {
&audio_eq_sw_iir_cfg, &audio_eq_sw_iir_cfg,
}; };
const FIR_CFG_T audio_eq_hw_fir_cfg_44p1k = { const FIR_CFG_T audio_eq_hw_fir_cfg_44p1k = {.gain = 0.0f,
.gain = 0.0f, .len = 384,
.len = 384, .coef = {
.coef = (1 << 23) - 1,
{ }};
(1<<23)-1,
}
};
const FIR_CFG_T audio_eq_hw_fir_cfg_48k = { const FIR_CFG_T audio_eq_hw_fir_cfg_48k = {.gain = 0.0f,
.gain = 0.0f, .len = 384,
.len = 384, .coef = {
.coef = (1 << 23) - 1,
{ }};
(1<<23)-1,
}
};
const FIR_CFG_T audio_eq_hw_fir_cfg_96k = {.gain = 0.0f,
.len = 384,
.coef = {
(1 << 23) - 1,
}};
const FIR_CFG_T audio_eq_hw_fir_cfg_96k = { const FIR_CFG_T *const audio_eq_hw_fir_cfg_list[EQ_HW_FIR_LIST_NUM] = {
.gain = 0.0f,
.len = 384,
.coef =
{
(1<<23)-1,
}
};
const FIR_CFG_T * const audio_eq_hw_fir_cfg_list[EQ_HW_FIR_LIST_NUM]={
&audio_eq_hw_fir_cfg_44p1k, &audio_eq_hw_fir_cfg_44p1k,
&audio_eq_hw_fir_cfg_48k, &audio_eq_hw_fir_cfg_48k,
&audio_eq_hw_fir_cfg_96k, &audio_eq_hw_fir_cfg_96k,
}; };
//hardware dac iir eq // hardware dac iir eq
const IIR_CFG_T audio_eq_hw_dac_iir_cfg = { const IIR_CFG_T audio_eq_hw_dac_iir_cfg = {.gain0 = 0,
.gain0 = 0, .gain1 = 0,
.gain1 = 0, .num = 8,
.num = 8, .param = {
.param = { {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, }};
}
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_dac_iir_cfg_list[EQ_HW_DAC_IIR_LIST_NUM] = {
&audio_eq_hw_dac_iir_cfg,
}; };
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_dac_iir_cfg_list[EQ_HW_DAC_IIR_LIST_NUM]={ // hardware dac iir eq
&audio_eq_hw_dac_iir_cfg,
};
//hardware dac iir eq
const IIR_CFG_T audio_eq_hw_adc_iir_adc_cfg = { const IIR_CFG_T audio_eq_hw_adc_iir_adc_cfg = {
.gain0 = 0, .gain0 = 0,
.gain1 = 0, .gain1 = 0,
.num = 1, .num = 1,
.param = { .param = {
{IIR_TYPE_PEAK, 0.0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0.0, 1000.0, 0.7},
} }};
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_adc_iir_cfg_list[EQ_HW_ADC_IIR_LIST_NUM] = {
&audio_eq_hw_adc_iir_adc_cfg,
}; };
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_adc_iir_cfg_list[EQ_HW_ADC_IIR_LIST_NUM]={ // hardware iir eq
&audio_eq_hw_adc_iir_adc_cfg, const IIR_CFG_T audio_eq_hw_iir_cfg = {.gain0 = 0,
.gain1 = 0,
.num = 8,
.param = {
{IIR_TYPE_PEAK, -10.1, 100.0, 7},
{IIR_TYPE_PEAK, -10.1, 400.0, 7},
{IIR_TYPE_PEAK, -10.1, 700.0, 7},
{IIR_TYPE_PEAK, -10.1, 1000.0, 7},
{IIR_TYPE_PEAK, -10.1, 3000.0, 7},
{IIR_TYPE_PEAK, -10.1, 5000.0, 7},
{IIR_TYPE_PEAK, -10.1, 7000.0, 7},
{IIR_TYPE_PEAK, -10.1, 9000.0, 7},
}};
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_iir_cfg_list[EQ_HW_IIR_LIST_NUM] = {
&audio_eq_hw_iir_cfg,
}; };
const DrcConfig audio_drc_cfg = {.knee = 3,
.filter_type = {14, -1},
//hardware iir eq .band_num = 2,
const IIR_CFG_T audio_eq_hw_iir_cfg = { .look_ahead_time = 10,
.gain0 = 0, .band_settings = {
.gain1 = 0, {-20, 0, 2, 3, 3000, 1},
.num = 8, {-20, 0, 2, 3, 3000, 1},
.param = { }};
{IIR_TYPE_PEAK, -10.1, 100.0, 7},
{IIR_TYPE_PEAK, -10.1, 400.0, 7},
{IIR_TYPE_PEAK, -10.1, 700.0, 7},
{IIR_TYPE_PEAK, -10.1, 1000.0, 7},
{IIR_TYPE_PEAK, -10.1, 3000.0, 7},
{IIR_TYPE_PEAK, -10.1, 5000.0, 7},
{IIR_TYPE_PEAK, -10.1, 7000.0, 7},
{IIR_TYPE_PEAK, -10.1, 9000.0, 7},
}
};
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_iir_cfg_list[EQ_HW_IIR_LIST_NUM]={
&audio_eq_hw_iir_cfg,
};
const DrcConfig audio_drc_cfg = {
.knee = 3,
.filter_type = {14, -1},
.band_num = 2,
.look_ahead_time = 10,
.band_settings = {
{-20, 0, 2, 3, 3000, 1},
{-20, 0, 2, 3, 3000, 1},
}
};
const LimiterConfig audio_drc2_cfg = { const LimiterConfig audio_drc2_cfg = {
.knee = 2, .knee = 2,
@ -324,4 +340,3 @@ const SpectrumFixConfig audio_spectrum_cfg = {
.freq_num = 9, .freq_num = 9,
.freq_list = {200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800}, .freq_list = {200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800},
}; };

View file

@ -14,188 +14,224 @@
* *
****************************************************************************/ ****************************************************************************/
#include "tgt_hardware.h" #include "tgt_hardware.h"
#include "iir_process.h"
#include "fir_process.h"
#include "drc.h" #include "drc.h"
#include "fir_process.h"
#include "iir_process.h"
#include "limiter.h" #include "limiter.h"
#include "spectrum_fix.h" #include "spectrum_fix.h"
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = {
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE},
#endif #endif
}; };
#ifdef __APP_USE_LED_INDICATE_IBRT_STATUS__ #ifdef __APP_USE_LED_INDICATE_IBRT_STATUS__
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_ibrt_indication_pinmux_pwl[3] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_ibrt_indication_pinmux_pwl[3] = {
{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT, HAL_IOMUX_PIN_PULLUP_ENABLE}, HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT,
HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT,
HAL_IOMUX_PIN_PULLUP_ENABLE},
}; };
#endif #endif
#ifdef __KNOWLES #ifdef __KNOWLES
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_pinmux_uart[2] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_pinmux_uart[2] = {
{HAL_IOMUX_PIN_P2_2, HAL_IOMUX_FUNC_UART2_RX, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL}, {HAL_IOMUX_PIN_P2_2, HAL_IOMUX_FUNC_UART2_RX, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_P2_3, HAL_IOMUX_FUNC_UART2_TX, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL}, HAL_IOMUX_PIN_NOPULL},
{HAL_IOMUX_PIN_P2_3, HAL_IOMUX_FUNC_UART2_TX, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_NOPULL},
}; };
#endif #endif
//adckey define // adckey define
const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = { const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = {
#if (CFG_HW_ADCKEY_NUMBER > 0) #if (CFG_HW_ADCKEY_NUMBER > 0)
HAL_KEY_CODE_FN9,HAL_KEY_CODE_FN8,HAL_KEY_CODE_FN7, HAL_KEY_CODE_FN9, HAL_KEY_CODE_FN8, HAL_KEY_CODE_FN7,
HAL_KEY_CODE_FN6,HAL_KEY_CODE_FN5,HAL_KEY_CODE_FN4, HAL_KEY_CODE_FN6, HAL_KEY_CODE_FN5, HAL_KEY_CODE_FN4,
HAL_KEY_CODE_FN3,HAL_KEY_CODE_FN2,HAL_KEY_CODE_FN1, HAL_KEY_CODE_FN3, HAL_KEY_CODE_FN2, HAL_KEY_CODE_FN1,
#endif #endif
}; };
//gpiokey define // gpiokey define
#define CFG_HW_GPIOKEY_DOWN_LEVEL (0) #define CFG_HW_GPIOKEY_DOWN_LEVEL (0)
#define CFG_HW_GPIOKEY_UP_LEVEL (1) #define CFG_HW_GPIOKEY_UP_LEVEL (1)
const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = { const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = {
/* /*
#if (CFG_HW_GPIOKEY_NUM > 0) #if (CFG_HW_GPIOKEY_NUM > 0)
#ifdef BES_AUDIO_DEV_Main_Board_9v0 #ifdef BES_AUDIO_DEV_Main_Board_9v0
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P0_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P0_3, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P0_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P0_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P0_0, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN4,{HAL_IOMUX_PIN_P0_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN5,{HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P0_1, HAL_IOMUX_FUNC_AS_GPIO,
// {HAL_KEY_CODE_FN6,{HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
#else {HAL_KEY_CODE_FN4,{HAL_IOMUX_PIN_P0_2, HAL_IOMUX_FUNC_AS_GPIO,
#ifndef TPORTS_KEY_COEXIST HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, //{HAL_KEY_CODE_FN5,{HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
// {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, // {HAL_KEY_CODE_FN6,{HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #else #ifndef
#else TPORTS_KEY_COEXIST {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3,
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P1_0,
#endif HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
#endif HAL_IOMUX_PIN_PULLUP_ENABLE}},
#ifdef IS_MULTI_AI_ENABLED // {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
//{HAL_KEY_CODE_FN13,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN14,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
#endif HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #else
#endif {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO,
*/ HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #endif #endif
#ifdef IS_MULTI_AI_ENABLED
//{HAL_KEY_CODE_FN13,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN14,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #endif #endif
*/
{HAL_KEY_CODE_FN1,
{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE}},
}; };
//bt config // bt config
const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0"; const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0";
const char *BLE_DEFAULT_NAME = "BES_BLE"; const char *BLE_DEFAULT_NAME = "BES_BLE";
uint8_t ble_addr[6] = { uint8_t ble_addr[6] = {
#ifdef BLE_DEV_ADDR #ifdef BLE_DEV_ADDR
BLE_DEV_ADDR BLE_DEV_ADDR
#else #else
0xBE,0x99,0x34,0x45,0x56,0x67 0xBE, 0x99, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
uint8_t bt_addr[6] = { uint8_t bt_addr[6] = {
#ifdef BT_DEV_ADDR #ifdef BT_DEV_ADDR
BT_DEV_ADDR BT_DEV_ADDR
#else #else
0x1e,0x57,0x34,0x45,0x56,0x67 0x1e, 0x57, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
//audio config // audio config
//freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K], [12.5K:15K], [15K:17.5K], [17.5K:20K]} // freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K],
//gain range -12~+12 // [12.5K:15K], [15K:17.5K], [17.5K:20K]} gain range -12~+12
const int8_t cfg_aud_eq_sbc_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {0, 0, 0, 0, 0, 0, 0, 0}; const int8_t cfg_aud_eq_sbc_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {
0, 0, 0, 0, 0, 0, 0, 0};
#define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT #define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT
const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = { const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = {
{TX_PA_GAIN,0x03,-21}, {TX_PA_GAIN, 0x03, -21}, {TX_PA_GAIN, 0x03, -99},
{TX_PA_GAIN,0x03,-99}, {TX_PA_GAIN, 0x03, -45}, {TX_PA_GAIN, 0x03, -42},
{TX_PA_GAIN,0x03,-45}, {TX_PA_GAIN, 0x03, -39}, {TX_PA_GAIN, 0x03, -36},
{TX_PA_GAIN,0x03,-42}, {TX_PA_GAIN, 0x03, -33}, {TX_PA_GAIN, 0x03, -30},
{TX_PA_GAIN,0x03,-39}, {TX_PA_GAIN, 0x03, -27}, {TX_PA_GAIN, 0x03, -24},
{TX_PA_GAIN,0x03,-36}, {TX_PA_GAIN, 0x03, -21}, {TX_PA_GAIN, 0x03, -18},
{TX_PA_GAIN,0x03,-33}, {TX_PA_GAIN, 0x03, -15}, {TX_PA_GAIN, 0x03, -12},
{TX_PA_GAIN,0x03,-30}, {TX_PA_GAIN, 0x03, -9}, {TX_PA_GAIN, 0x03, -6},
{TX_PA_GAIN,0x03,-27}, {TX_PA_GAIN, 0x03, -3}, {TX_PA_GAIN, 0x03, 0}, // 0dBm
{TX_PA_GAIN,0x03,-24},
{TX_PA_GAIN,0x03,-21},
{TX_PA_GAIN,0x03,-18},
{TX_PA_GAIN,0x03,-15},
{TX_PA_GAIN,0x03,-12},
{TX_PA_GAIN,0x03, -9},
{TX_PA_GAIN,0x03, -6},
{TX_PA_GAIN,0x03, -3},
{TX_PA_GAIN,0x03, 0}, //0dBm
}; };
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC2|AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC2 | \
AUD_VMIC_MAP_VMIC3)
#elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3 #elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1 | AUD_CHANNEL_MAP_CH4 | \
AUD_VMIC_MAP_VMIC1)
#else #else
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3)
#endif #endif
#define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1) #define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1)
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
#define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1)
#else #else
#define CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_VMIC_MAP_VMIC1)
#endif #endif
const struct AUD_IO_PATH_CFG_T cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = { const struct AUD_IO_PATH_CFG_T
cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = {
#if defined(SPEECH_TX_AEC_CODEC_REF) #if defined(SPEECH_TX_AEC_CODEC_REF)
// NOTE: If enable Ch5 and CH6, need to add channel_num when setup audioflinger stream // NOTE: If enable Ch5 and CH6, need to add channel_num when setup
{ AUD_INPUT_PATH_MAINMIC, CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV | AUD_CHANNEL_MAP_CH4, }, // audioflinger stream
{
AUD_INPUT_PATH_MAINMIC,
CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV | AUD_CHANNEL_MAP_CH4,
},
#else #else
{ AUD_INPUT_PATH_MAINMIC, CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV, }, {
AUD_INPUT_PATH_MAINMIC,
CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV,
},
#endif #endif
{ AUD_INPUT_PATH_LINEIN, CFG_HW_AUD_INPUT_PATH_LINEIN_DEV, }, {
AUD_INPUT_PATH_LINEIN,
CFG_HW_AUD_INPUT_PATH_LINEIN_DEV,
},
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
{ AUD_INPUT_PATH_VADMIC, CFG_HW_AUD_INPUT_PATH_VADMIC_DEV, }, {
AUD_INPUT_PATH_VADMIC,
CFG_HW_AUD_INPUT_PATH_VADMIC_DEV,
},
#else #else
{ AUD_INPUT_PATH_ASRMIC, CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV, }, {
AUD_INPUT_PATH_ASRMIC,
CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV,
},
#endif #endif
}; };
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg =
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE {HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_tws_channel_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_tws_channel_cfg = {
HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE//HAL_IOMUX_PIN_P1_5 500:HAL_IOMUX_PIN_P2_5 HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE // HAL_IOMUX_PIN_P1_5
// 500:HAL_IOMUX_PIN_P2_5
}; };
/* /*
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_INT ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_INT ={
HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE
}; };
*/ */
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SDA ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SDA = {
HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SCL ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SCL = {
HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
bool tgt_tws_get_channel_is_right(void) bool tgt_tws_get_channel_is_right(void) {
{
#ifdef __FIXED_TWS_EAR_SIDE__ #ifdef __FIXED_TWS_EAR_SIDE__
return TWS_EAR_SIDE_ROLE; return TWS_EAR_SIDE_ROLE;
#else #else
return hal_gpio_pin_get_val((enum HAL_GPIO_PIN_T)cfg_hw_tws_channel_cfg.pin); return hal_gpio_pin_get_val((enum HAL_GPIO_PIN_T)cfg_hw_tws_channel_cfg.pin);
#endif #endif
} }
@ -203,122 +239,103 @@ const IIR_CFG_T audio_eq_sw_iir_cfg = {
.gain0 = 0, .gain0 = 0,
.gain1 = 0, .gain1 = 0,
.num = 5, .num = 5,
.param = { .param = {{IIR_TYPE_PEAK, .0, 200, 2},
{IIR_TYPE_PEAK, .0, 200, 2}, {IIR_TYPE_PEAK, .0, 600, 2},
{IIR_TYPE_PEAK, .0, 600, 2}, {IIR_TYPE_PEAK, .0, 2000.0, 2},
{IIR_TYPE_PEAK, .0, 2000.0, 2}, {IIR_TYPE_PEAK, .0, 6000.0, 2},
{IIR_TYPE_PEAK, .0, 6000.0, 2}, {IIR_TYPE_PEAK, .0, 12000.0, 2}}};
{IIR_TYPE_PEAK, .0, 12000.0, 2}
}
};
const IIR_CFG_T * const audio_eq_sw_iir_cfg_list[EQ_SW_IIR_LIST_NUM]={ const IIR_CFG_T *const audio_eq_sw_iir_cfg_list[EQ_SW_IIR_LIST_NUM] = {
&audio_eq_sw_iir_cfg, &audio_eq_sw_iir_cfg,
}; };
const FIR_CFG_T audio_eq_hw_fir_cfg_44p1k = { const FIR_CFG_T audio_eq_hw_fir_cfg_44p1k = {.gain = 0.0f,
.gain = 0.0f, .len = 384,
.len = 384, .coef = {
.coef = (1 << 23) - 1,
{ }};
(1<<23)-1,
}
};
const FIR_CFG_T audio_eq_hw_fir_cfg_48k = { const FIR_CFG_T audio_eq_hw_fir_cfg_48k = {.gain = 0.0f,
.gain = 0.0f, .len = 384,
.len = 384, .coef = {
.coef = (1 << 23) - 1,
{ }};
(1<<23)-1,
}
};
const FIR_CFG_T audio_eq_hw_fir_cfg_96k = {.gain = 0.0f,
.len = 384,
.coef = {
(1 << 23) - 1,
}};
const FIR_CFG_T audio_eq_hw_fir_cfg_96k = { const FIR_CFG_T *const audio_eq_hw_fir_cfg_list[EQ_HW_FIR_LIST_NUM] = {
.gain = 0.0f,
.len = 384,
.coef =
{
(1<<23)-1,
}
};
const FIR_CFG_T * const audio_eq_hw_fir_cfg_list[EQ_HW_FIR_LIST_NUM]={
&audio_eq_hw_fir_cfg_44p1k, &audio_eq_hw_fir_cfg_44p1k,
&audio_eq_hw_fir_cfg_48k, &audio_eq_hw_fir_cfg_48k,
&audio_eq_hw_fir_cfg_96k, &audio_eq_hw_fir_cfg_96k,
}; };
//hardware dac iir eq // hardware dac iir eq
const IIR_CFG_T audio_eq_hw_dac_iir_cfg = { const IIR_CFG_T audio_eq_hw_dac_iir_cfg = {.gain0 = 0,
.gain0 = 0, .gain1 = 0,
.gain1 = 0, .num = 8,
.num = 8, .param = {
.param = { {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, }};
}
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_dac_iir_cfg_list[EQ_HW_DAC_IIR_LIST_NUM] = {
&audio_eq_hw_dac_iir_cfg,
}; };
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_dac_iir_cfg_list[EQ_HW_DAC_IIR_LIST_NUM]={ // hardware dac iir eq
&audio_eq_hw_dac_iir_cfg,
};
//hardware dac iir eq
const IIR_CFG_T audio_eq_hw_adc_iir_adc_cfg = { const IIR_CFG_T audio_eq_hw_adc_iir_adc_cfg = {
.gain0 = 0, .gain0 = 0,
.gain1 = 0, .gain1 = 0,
.num = 1, .num = 1,
.param = { .param = {
{IIR_TYPE_PEAK, 0.0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0.0, 1000.0, 0.7},
} }};
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_adc_iir_cfg_list[EQ_HW_ADC_IIR_LIST_NUM] = {
&audio_eq_hw_adc_iir_adc_cfg,
}; };
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_adc_iir_cfg_list[EQ_HW_ADC_IIR_LIST_NUM]={ // hardware iir eq
&audio_eq_hw_adc_iir_adc_cfg, const IIR_CFG_T audio_eq_hw_iir_cfg = {.gain0 = 0,
.gain1 = 0,
.num = 8,
.param = {
{IIR_TYPE_PEAK, -10.1, 100.0, 7},
{IIR_TYPE_PEAK, -10.1, 400.0, 7},
{IIR_TYPE_PEAK, -10.1, 700.0, 7},
{IIR_TYPE_PEAK, -10.1, 1000.0, 7},
{IIR_TYPE_PEAK, -10.1, 3000.0, 7},
{IIR_TYPE_PEAK, -10.1, 5000.0, 7},
{IIR_TYPE_PEAK, -10.1, 7000.0, 7},
{IIR_TYPE_PEAK, -10.1, 9000.0, 7},
}};
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_iir_cfg_list[EQ_HW_IIR_LIST_NUM] = {
&audio_eq_hw_iir_cfg,
}; };
const DrcConfig audio_drc_cfg = {.knee = 3,
.filter_type = {14, -1},
//hardware iir eq .band_num = 2,
const IIR_CFG_T audio_eq_hw_iir_cfg = { .look_ahead_time = 10,
.gain0 = 0, .band_settings = {
.gain1 = 0, {-20, 0, 2, 3, 3000, 1},
.num = 8, {-20, 0, 2, 3, 3000, 1},
.param = { }};
{IIR_TYPE_PEAK, -10.1, 100.0, 7},
{IIR_TYPE_PEAK, -10.1, 400.0, 7},
{IIR_TYPE_PEAK, -10.1, 700.0, 7},
{IIR_TYPE_PEAK, -10.1, 1000.0, 7},
{IIR_TYPE_PEAK, -10.1, 3000.0, 7},
{IIR_TYPE_PEAK, -10.1, 5000.0, 7},
{IIR_TYPE_PEAK, -10.1, 7000.0, 7},
{IIR_TYPE_PEAK, -10.1, 9000.0, 7},
}
};
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_iir_cfg_list[EQ_HW_IIR_LIST_NUM]={
&audio_eq_hw_iir_cfg,
};
const DrcConfig audio_drc_cfg = {
.knee = 3,
.filter_type = {14, -1},
.band_num = 2,
.look_ahead_time = 10,
.band_settings = {
{-20, 0, 2, 3, 3000, 1},
{-20, 0, 2, 3, 3000, 1},
}
};
const LimiterConfig audio_drc2_cfg = { const LimiterConfig audio_drc2_cfg = {
.knee = 2, .knee = 2,
@ -334,4 +351,3 @@ const SpectrumFixConfig audio_spectrum_cfg = {
.freq_num = 9, .freq_num = 9,
.freq_list = {200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800}, .freq_list = {200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800},
}; };

File diff suppressed because it is too large Load diff

View file

@ -14,190 +14,228 @@
* *
****************************************************************************/ ****************************************************************************/
#include "tgt_hardware.h" #include "tgt_hardware.h"
#include "iir_process.h"
#include "fir_process.h"
#include "drc.h" #include "drc.h"
#include "fir_process.h"
#include "iir_process.h"
#include "limiter.h" #include "limiter.h"
#include "spectrum_fix.h" #include "spectrum_fix.h"
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_pinmux_pwl[CFG_HW_PLW_NUM] = {
#if (CFG_HW_PLW_NUM > 0) #if (CFG_HW_PLW_NUM > 0)
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE},
#endif #endif
}; };
#ifdef __APP_USE_LED_INDICATE_IBRT_STATUS__ #ifdef __APP_USE_LED_INDICATE_IBRT_STATUS__
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_ibrt_indication_pinmux_pwl[3] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_ibrt_indication_pinmux_pwl[3] = {
{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT, HAL_IOMUX_PIN_PULLUP_ENABLE}, HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT, HAL_IOMUX_PIN_PULLUP_ENABLE}, {HAL_IOMUX_PIN_LED1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT,
HAL_IOMUX_PIN_PULLUP_ENABLE},
{HAL_IOMUX_PIN_LED2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VBAT,
HAL_IOMUX_PIN_PULLUP_ENABLE},
}; };
#endif #endif
#ifdef __KNOWLES #ifdef __KNOWLES
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_pinmux_uart[2] = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_pinmux_uart[2] = {
{HAL_IOMUX_PIN_P2_2, HAL_IOMUX_FUNC_UART2_RX, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL}, {HAL_IOMUX_PIN_P2_2, HAL_IOMUX_FUNC_UART2_RX, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_IOMUX_PIN_P2_3, HAL_IOMUX_FUNC_UART2_TX, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL}, HAL_IOMUX_PIN_NOPULL},
{HAL_IOMUX_PIN_P2_3, HAL_IOMUX_FUNC_UART2_TX, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_NOPULL},
}; };
#endif #endif
//adckey define // adckey define
const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = { const uint16_t CFG_HW_ADCKEY_MAP_TABLE[CFG_HW_ADCKEY_NUMBER] = {
#if (CFG_HW_ADCKEY_NUMBER > 0) #if (CFG_HW_ADCKEY_NUMBER > 0)
HAL_KEY_CODE_FN9,HAL_KEY_CODE_FN8,HAL_KEY_CODE_FN7, HAL_KEY_CODE_FN9, HAL_KEY_CODE_FN8, HAL_KEY_CODE_FN7,
HAL_KEY_CODE_FN6,HAL_KEY_CODE_FN5,HAL_KEY_CODE_FN4, HAL_KEY_CODE_FN6, HAL_KEY_CODE_FN5, HAL_KEY_CODE_FN4,
HAL_KEY_CODE_FN3,HAL_KEY_CODE_FN2,HAL_KEY_CODE_FN1, HAL_KEY_CODE_FN3, HAL_KEY_CODE_FN2, HAL_KEY_CODE_FN1,
#endif #endif
}; };
//gpiokey define // gpiokey define
#define CFG_HW_GPIOKEY_DOWN_LEVEL (0) #define CFG_HW_GPIOKEY_DOWN_LEVEL (0)
#define CFG_HW_GPIOKEY_UP_LEVEL (1) #define CFG_HW_GPIOKEY_UP_LEVEL (1)
const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = { const struct HAL_KEY_GPIOKEY_CFG_T cfg_hw_gpio_key_cfg[CFG_HW_GPIOKEY_NUM] = {
/* /*
#if (CFG_HW_GPIOKEY_NUM > 0) #if (CFG_HW_GPIOKEY_NUM > 0)
#ifdef BES_AUDIO_DEV_Main_Board_9v0 #ifdef BES_AUDIO_DEV_Main_Board_9v0
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P0_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P0_3, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P0_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P0_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P0_0, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN4,{HAL_IOMUX_PIN_P0_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN5,{HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P0_1, HAL_IOMUX_FUNC_AS_GPIO,
// {HAL_KEY_CODE_FN6,{HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
#else {HAL_KEY_CODE_FN4,{HAL_IOMUX_PIN_P0_2, HAL_IOMUX_FUNC_AS_GPIO,
#ifndef TPORTS_KEY_COEXIST HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, //{HAL_KEY_CODE_FN5,{HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
// {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, // {HAL_KEY_CODE_FN6,{HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO,
{HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #else #ifndef
#else TPORTS_KEY_COEXIST {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3,
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
{HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN2,{HAL_IOMUX_PIN_P1_0,
#endif HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
#endif HAL_IOMUX_PIN_PULLUP_ENABLE}},
#ifdef IS_MULTI_AI_ENABLED // {HAL_KEY_CODE_FN3,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
//{HAL_KEY_CODE_FN13,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN14,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
#endif HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #else
#endif {HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO,
*/ HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
{HAL_KEY_CODE_FN1,{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, {HAL_KEY_CODE_FN15,{HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #endif #endif
#ifdef IS_MULTI_AI_ENABLED
//{HAL_KEY_CODE_FN13,{HAL_IOMUX_PIN_P1_3, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}},
//{HAL_KEY_CODE_FN14,{HAL_IOMUX_PIN_P1_2, HAL_IOMUX_FUNC_AS_GPIO,
HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE}}, #endif #endif
*/
{HAL_KEY_CODE_FN1,
{HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE}},
}; };
//bt config // bt config
const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0"; const char *BT_LOCAL_NAME = TO_STRING(BT_DEV_NAME) "\0";
const char *BLE_DEFAULT_NAME = "BES_BLE"; const char *BLE_DEFAULT_NAME = "BES_BLE";
uint8_t ble_addr[6] = { uint8_t ble_addr[6] = {
#ifdef BLE_DEV_ADDR #ifdef BLE_DEV_ADDR
BLE_DEV_ADDR BLE_DEV_ADDR
#else #else
0xBE,0x99,0x34,0x45,0x56,0x67 0xBE, 0x99, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
uint8_t bt_addr[6] = { uint8_t bt_addr[6] = {
#ifdef BT_DEV_ADDR #ifdef BT_DEV_ADDR
BT_DEV_ADDR BT_DEV_ADDR
#else #else
0x1e,0x57,0x34,0x45,0x56,0x67 0x1e, 0x57, 0x34, 0x45,
0x56, 0x67
#endif #endif
}; };
//audio config // audio config
//freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K], [12.5K:15K], [15K:17.5K], [17.5K:20K]} // freq bands range {[0k:2.5K], [2.5k:5K], [5k:7.5K], [7.5K:10K], [10K:12.5K],
//gain range -12~+12 // [12.5K:15K], [15K:17.5K], [17.5K:20K]} gain range -12~+12
const int8_t cfg_aud_eq_sbc_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {0, 0, 0, 0, 0, 0, 0, 0}; const int8_t cfg_aud_eq_sbc_band_settings[CFG_HW_AUD_EQ_NUM_BANDS] = {
0, 0, 0, 0, 0, 0, 0, 0};
#define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT #define TX_PA_GAIN CODEC_TX_PA_GAIN_DEFAULT
const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = { const struct CODEC_DAC_VOL_T codec_dac_vol[TGT_VOLUME_LEVEL_QTY] = {
{TX_PA_GAIN,0x03,-21}, {TX_PA_GAIN, 0x03, -21}, {TX_PA_GAIN, 0x03, -99},
{TX_PA_GAIN,0x03,-99}, {TX_PA_GAIN, 0x03, -45}, {TX_PA_GAIN, 0x03, -42},
{TX_PA_GAIN,0x03,-45}, {TX_PA_GAIN, 0x03, -39}, {TX_PA_GAIN, 0x03, -36},
{TX_PA_GAIN,0x03,-42}, {TX_PA_GAIN, 0x03, -33}, {TX_PA_GAIN, 0x03, -30},
{TX_PA_GAIN,0x03,-39}, {TX_PA_GAIN, 0x03, -27}, {TX_PA_GAIN, 0x03, -24},
{TX_PA_GAIN,0x03,-36}, {TX_PA_GAIN, 0x03, -21}, {TX_PA_GAIN, 0x03, -18},
{TX_PA_GAIN,0x03,-33}, {TX_PA_GAIN, 0x03, -15}, {TX_PA_GAIN, 0x03, -12},
{TX_PA_GAIN,0x03,-30}, {TX_PA_GAIN, 0x03, -9}, {TX_PA_GAIN, 0x03, -6},
{TX_PA_GAIN,0x03,-27}, {TX_PA_GAIN, 0x03, -3}, {TX_PA_GAIN, 0x03, 0}, // 0dBm
{TX_PA_GAIN,0x03,-24},
{TX_PA_GAIN,0x03,-21},
{TX_PA_GAIN,0x03,-18},
{TX_PA_GAIN,0x03,-15},
{TX_PA_GAIN,0x03,-12},
{TX_PA_GAIN,0x03, -9},
{TX_PA_GAIN,0x03, -6},
{TX_PA_GAIN,0x03, -3},
{TX_PA_GAIN,0x03, 0}, //0dBm
}; };
#if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2 #if SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 2
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC2|AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC2 | \
AUD_VMIC_MAP_VMIC3)
#elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3 #elif SPEECH_CODEC_CAPTURE_CHANNEL_NUM == 3
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1 | AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1 | AUD_CHANNEL_MAP_CH4 | \
AUD_VMIC_MAP_VMIC1)
#else #else
#define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3)
#endif #endif
#define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV (AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1) #define CFG_HW_AUD_INPUT_PATH_LINEIN_DEV \
(AUD_CHANNEL_MAP_CH0 | AUD_CHANNEL_MAP_CH1)
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
#define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1) #define CFG_HW_AUD_INPUT_PATH_VADMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC1)
#else #else
#define CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV (AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3) #define CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV \
(AUD_CHANNEL_MAP_CH4 | AUD_VMIC_MAP_VMIC3)
#endif #endif
const struct AUD_IO_PATH_CFG_T cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = { const struct AUD_IO_PATH_CFG_T
cfg_audio_input_path_cfg[CFG_HW_AUD_INPUT_PATH_NUM] = {
#if defined(SPEECH_TX_AEC_CODEC_REF) #if defined(SPEECH_TX_AEC_CODEC_REF)
// NOTE: If enable Ch5 and CH6, need to add channel_num when setup audioflinger stream // NOTE: If enable Ch5 and CH6, need to add channel_num when setup
{ AUD_INPUT_PATH_MAINMIC, CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV | AUD_CHANNEL_MAP_CH4, }, // audioflinger stream
{
AUD_INPUT_PATH_MAINMIC,
CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV | AUD_CHANNEL_MAP_CH4,
},
#else #else
{ AUD_INPUT_PATH_MAINMIC, CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV, }, {
AUD_INPUT_PATH_MAINMIC,
CFG_HW_AUD_INPUT_PATH_MAINMIC_DEV,
},
#endif #endif
{ AUD_INPUT_PATH_LINEIN, CFG_HW_AUD_INPUT_PATH_LINEIN_DEV, }, {
AUD_INPUT_PATH_LINEIN,
CFG_HW_AUD_INPUT_PATH_LINEIN_DEV,
},
#ifdef VOICE_DETECTOR_EN #ifdef VOICE_DETECTOR_EN
{ AUD_INPUT_PATH_VADMIC, CFG_HW_AUD_INPUT_PATH_VADMIC_DEV, }, {
AUD_INPUT_PATH_VADMIC,
CFG_HW_AUD_INPUT_PATH_VADMIC_DEV,
},
#else #else
{ AUD_INPUT_PATH_ASRMIC, CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV, }, {
AUD_INPUT_PATH_ASRMIC,
CFG_HW_AUD_INPUT_PATH_ASRMIC_DEV,
},
#endif #endif
}; };
const struct HAL_IOMUX_PIN_FUNCTION_MAP MuteOutPwl ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP MuteOutPwl = {
HAL_IOMUX_PIN_P1_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_NOPULL HAL_IOMUX_PIN_P1_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_NOPULL};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_enable_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_detecter_cfg = {
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP app_battery_ext_charger_indicator_cfg =
HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE {HAL_IOMUX_PIN_NUM, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_tws_channel_cfg = { const struct HAL_IOMUX_PIN_FUNCTION_MAP cfg_hw_tws_channel_cfg = {
HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE//HAL_IOMUX_PIN_P1_5 500:HAL_IOMUX_PIN_P2_5 HAL_IOMUX_PIN_P1_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE // HAL_IOMUX_PIN_P1_5
// 500:HAL_IOMUX_PIN_P2_5
}; };
/* /*
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_INT ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_INT ={
HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P1_5, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
HAL_IOMUX_PIN_PULLUP_ENABLE
}; };
*/ */
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SDA ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SDA = {
HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P2_1, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SCL ={ const struct HAL_IOMUX_PIN_FUNCTION_MAP TOUCH_I2C_SCL = {
HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO, HAL_IOMUX_PIN_PULLUP_ENABLE HAL_IOMUX_PIN_P2_0, HAL_IOMUX_FUNC_AS_GPIO, HAL_IOMUX_PIN_VOLTAGE_VIO,
}; HAL_IOMUX_PIN_PULLUP_ENABLE};
bool tgt_tws_get_channel_is_right(void) bool tgt_tws_get_channel_is_right(void) {
{
#ifdef __FIXED_TWS_EAR_SIDE__ #ifdef __FIXED_TWS_EAR_SIDE__
return TWS_EAR_SIDE_ROLE; return TWS_EAR_SIDE_ROLE;
#else #else
return hal_gpio_pin_get_val((enum HAL_GPIO_PIN_T)cfg_hw_tws_channel_cfg.pin); return hal_gpio_pin_get_val((enum HAL_GPIO_PIN_T)cfg_hw_tws_channel_cfg.pin);
#endif #endif
} }
@ -205,122 +243,103 @@ const IIR_CFG_T audio_eq_sw_iir_cfg = {
.gain0 = 0, .gain0 = 0,
.gain1 = 0, .gain1 = 0,
.num = 5, .num = 5,
.param = { .param = {{IIR_TYPE_PEAK, .0, 200, 2},
{IIR_TYPE_PEAK, .0, 200, 2}, {IIR_TYPE_PEAK, .0, 600, 2},
{IIR_TYPE_PEAK, .0, 600, 2}, {IIR_TYPE_PEAK, .0, 2000.0, 2},
{IIR_TYPE_PEAK, .0, 2000.0, 2}, {IIR_TYPE_PEAK, .0, 6000.0, 2},
{IIR_TYPE_PEAK, .0, 6000.0, 2}, {IIR_TYPE_PEAK, .0, 12000.0, 2}}};
{IIR_TYPE_PEAK, .0, 12000.0, 2}
}
};
const IIR_CFG_T * const audio_eq_sw_iir_cfg_list[EQ_SW_IIR_LIST_NUM]={ const IIR_CFG_T *const audio_eq_sw_iir_cfg_list[EQ_SW_IIR_LIST_NUM] = {
&audio_eq_sw_iir_cfg, &audio_eq_sw_iir_cfg,
}; };
const FIR_CFG_T audio_eq_hw_fir_cfg_44p1k = { const FIR_CFG_T audio_eq_hw_fir_cfg_44p1k = {.gain = 0.0f,
.gain = 0.0f, .len = 384,
.len = 384, .coef = {
.coef = (1 << 23) - 1,
{ }};
(1<<23)-1,
}
};
const FIR_CFG_T audio_eq_hw_fir_cfg_48k = { const FIR_CFG_T audio_eq_hw_fir_cfg_48k = {.gain = 0.0f,
.gain = 0.0f, .len = 384,
.len = 384, .coef = {
.coef = (1 << 23) - 1,
{ }};
(1<<23)-1,
}
};
const FIR_CFG_T audio_eq_hw_fir_cfg_96k = {.gain = 0.0f,
.len = 384,
.coef = {
(1 << 23) - 1,
}};
const FIR_CFG_T audio_eq_hw_fir_cfg_96k = { const FIR_CFG_T *const audio_eq_hw_fir_cfg_list[EQ_HW_FIR_LIST_NUM] = {
.gain = 0.0f,
.len = 384,
.coef =
{
(1<<23)-1,
}
};
const FIR_CFG_T * const audio_eq_hw_fir_cfg_list[EQ_HW_FIR_LIST_NUM]={
&audio_eq_hw_fir_cfg_44p1k, &audio_eq_hw_fir_cfg_44p1k,
&audio_eq_hw_fir_cfg_48k, &audio_eq_hw_fir_cfg_48k,
&audio_eq_hw_fir_cfg_96k, &audio_eq_hw_fir_cfg_96k,
}; };
//hardware dac iir eq // hardware dac iir eq
const IIR_CFG_T audio_eq_hw_dac_iir_cfg = { const IIR_CFG_T audio_eq_hw_dac_iir_cfg = {.gain0 = 0,
.gain0 = 0, .gain1 = 0,
.gain1 = 0, .num = 8,
.num = 8, .param = {
.param = { {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0, 1000.0, 0.7},
{IIR_TYPE_PEAK, 0, 1000.0, 0.7}, }};
}
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_dac_iir_cfg_list[EQ_HW_DAC_IIR_LIST_NUM] = {
&audio_eq_hw_dac_iir_cfg,
}; };
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_dac_iir_cfg_list[EQ_HW_DAC_IIR_LIST_NUM]={ // hardware dac iir eq
&audio_eq_hw_dac_iir_cfg,
};
//hardware dac iir eq
const IIR_CFG_T audio_eq_hw_adc_iir_adc_cfg = { const IIR_CFG_T audio_eq_hw_adc_iir_adc_cfg = {
.gain0 = 0, .gain0 = 0,
.gain1 = 0, .gain1 = 0,
.num = 1, .num = 1,
.param = { .param = {
{IIR_TYPE_PEAK, 0.0, 1000.0, 0.7}, {IIR_TYPE_PEAK, 0.0, 1000.0, 0.7},
} }};
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_adc_iir_cfg_list[EQ_HW_ADC_IIR_LIST_NUM] = {
&audio_eq_hw_adc_iir_adc_cfg,
}; };
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_adc_iir_cfg_list[EQ_HW_ADC_IIR_LIST_NUM]={ // hardware iir eq
&audio_eq_hw_adc_iir_adc_cfg, const IIR_CFG_T audio_eq_hw_iir_cfg = {.gain0 = 0,
.gain1 = 0,
.num = 8,
.param = {
{IIR_TYPE_PEAK, -10.1, 100.0, 7},
{IIR_TYPE_PEAK, -10.1, 400.0, 7},
{IIR_TYPE_PEAK, -10.1, 700.0, 7},
{IIR_TYPE_PEAK, -10.1, 1000.0, 7},
{IIR_TYPE_PEAK, -10.1, 3000.0, 7},
{IIR_TYPE_PEAK, -10.1, 5000.0, 7},
{IIR_TYPE_PEAK, -10.1, 7000.0, 7},
{IIR_TYPE_PEAK, -10.1, 9000.0, 7},
}};
const IIR_CFG_T *const POSSIBLY_UNUSED
audio_eq_hw_iir_cfg_list[EQ_HW_IIR_LIST_NUM] = {
&audio_eq_hw_iir_cfg,
}; };
const DrcConfig audio_drc_cfg = {.knee = 3,
.filter_type = {14, -1},
//hardware iir eq .band_num = 2,
const IIR_CFG_T audio_eq_hw_iir_cfg = { .look_ahead_time = 10,
.gain0 = 0, .band_settings = {
.gain1 = 0, {-20, 0, 2, 3, 3000, 1},
.num = 8, {-20, 0, 2, 3, 3000, 1},
.param = { }};
{IIR_TYPE_PEAK, -10.1, 100.0, 7},
{IIR_TYPE_PEAK, -10.1, 400.0, 7},
{IIR_TYPE_PEAK, -10.1, 700.0, 7},
{IIR_TYPE_PEAK, -10.1, 1000.0, 7},
{IIR_TYPE_PEAK, -10.1, 3000.0, 7},
{IIR_TYPE_PEAK, -10.1, 5000.0, 7},
{IIR_TYPE_PEAK, -10.1, 7000.0, 7},
{IIR_TYPE_PEAK, -10.1, 9000.0, 7},
}
};
const IIR_CFG_T * const POSSIBLY_UNUSED audio_eq_hw_iir_cfg_list[EQ_HW_IIR_LIST_NUM]={
&audio_eq_hw_iir_cfg,
};
const DrcConfig audio_drc_cfg = {
.knee = 3,
.filter_type = {14, -1},
.band_num = 2,
.look_ahead_time = 10,
.band_settings = {
{-20, 0, 2, 3, 3000, 1},
{-20, 0, 2, 3, 3000, 1},
}
};
const LimiterConfig audio_drc2_cfg = { const LimiterConfig audio_drc2_cfg = {
.knee = 2, .knee = 2,
@ -336,4 +355,3 @@ const SpectrumFixConfig audio_spectrum_cfg = {
.freq_num = 9, .freq_num = 9,
.freq_list = {200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800}, .freq_list = {200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800},
}; };

File diff suppressed because it is too large Load diff

View file

@ -60,20 +60,15 @@
@return none @return none
*/ */
void arm_abs_f32( void arm_abs_f32(const float32_t *pSrc, float32_t *pDst, uint32_t blockSize) {
const float32_t * pSrc, uint32_t blkCnt; /* Loop counter */
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute and store result in destination buffer. */ /* Calculate absolute and store result in destination buffer. */
@ -99,8 +94,7 @@ void arm_abs_f32(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute and store result in destination buffer. */ /* Calculate absolute and store result in destination buffer. */
@ -109,7 +103,6 @@ void arm_abs_f32(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -46,53 +46,50 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF. The Q15 value -1 (0x8000) will be saturated to the maximum
allowable positive value 0x7FFF.
*/ */
void arm_abs_q15( void arm_abs_q15(const q15_t *pSrc, q15_t *pDst, uint32_t blockSize) {
const q15_t * pSrc, uint32_t blkCnt; /* Loop counter */
q15_t * pDst, q15_t in; /* Temporary input variable */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
q15_t in; /* Temporary input variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7fff) and store result in destination buffer. */ /* Calculate absolute of input (if -1 then saturated to 0x7fff) and store
* result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in); *pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in); *pDst++ = (in > 0) ? in : ((in == (q15_t)0x8000) ? 0x7fff : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in); *pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in); *pDst++ = (in > 0) ? in : ((in == (q15_t)0x8000) ? 0x7fff : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in); *pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in); *pDst++ = (in > 0) ? in : ((in == (q15_t)0x8000) ? 0x7fff : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in); *pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in); *pDst++ = (in > 0) ? in : ((in == (q15_t)0x8000) ? 0x7fff : -in);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -109,22 +106,21 @@ void arm_abs_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7fff) and store result in destination buffer. */ /* Calculate absolute of input (if -1 then saturated to 0x7fff) and store
* result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in); *pDst++ = (in > 0) ? in : (q15_t)__QSUB16(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in); *pDst++ = (in > 0) ? in : ((in == (q15_t)0x8000) ? 0x7fff : -in);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -46,50 +46,47 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF. The Q31 value -1 (0x80000000) will be saturated to the
maximum allowable positive value 0x7FFFFFFF.
*/ */
void arm_abs_q31( void arm_abs_q31(const q31_t *pSrc, q31_t *pDst, uint32_t blockSize) {
const q31_t * pSrc, uint32_t blkCnt; /* Loop counter */
q31_t * pDst, q31_t in; /* Temporary variable */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
q31_t in; /* Temporary variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and store result in destination buffer. */ /* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and
* store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in); *pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in); *pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in); *pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in); *pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in);
@ -109,13 +106,13 @@ void arm_abs_q31(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and store result in destination buffer. */ /* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and
* store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q31_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in); *pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in);
@ -124,7 +121,6 @@ void arm_abs_q31(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -48,53 +48,50 @@
Input and output buffers should be aligned by 32-bit Input and output buffers should be aligned by 32-bit
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F. The Q7 value -1 (0x80) will be saturated to the maximum
allowable positive value 0x7F.
*/ */
void arm_abs_q7( void arm_abs_q7(const q7_t *pSrc, q7_t *pDst, uint32_t blockSize) {
const q7_t * pSrc, uint32_t blkCnt; /* Loop counter */
q7_t * pDst, q7_t in; /* Temporary input variable */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
q7_t in; /* Temporary input variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7f) and store result in destination buffer. */ /* Calculate absolute of input (if -1 then saturated to 0x7f) and store
* result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? (q7_t) 0x7f : -in); *pDst++ = (in > 0) ? in : ((in == (q7_t)0x80) ? (q7_t)0x7f : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? (q7_t) 0x7f : -in); *pDst++ = (in > 0) ? in : ((in == (q7_t)0x80) ? (q7_t)0x7f : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? (q7_t) 0x7f : -in); *pDst++ = (in > 0) ? in : ((in == (q7_t)0x80) ? (q7_t)0x7f : -in);
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in); *pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? (q7_t) 0x7f : -in); *pDst++ = (in > 0) ? in : ((in == (q7_t)0x80) ? (q7_t)0x7f : -in);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -111,22 +108,21 @@ void arm_abs_q7(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = |A| */ /* C = |A| */
/* Calculate absolute of input (if -1 then saturated to 0x7f) and store result in destination buffer. */ /* Calculate absolute of input (if -1 then saturated to 0x7f) and store
* result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (in > 0) ? in : (q7_t) __QSUB(0, in); *pDst++ = (in > 0) ? in : (q7_t)__QSUB(0, in);
#else #else
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? (q7_t) 0x7f : -in); *pDst++ = (in > 0) ? in : ((in == (q7_t)0x80) ? (q7_t)0x7f : -in);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -58,21 +58,16 @@
@return none @return none
*/ */
void arm_add_f32( void arm_add_f32(const float32_t *pSrcA, const float32_t *pSrcB,
const float32_t * pSrcA, float32_t *pDst, uint32_t blockSize) {
const float32_t * pSrcB, uint32_t blkCnt; /* Loop counter */
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
/* Add and store result in destination buffer. */ /* Add and store result in destination buffer. */
@ -95,8 +90,7 @@ void arm_add_f32(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
/* Add and store result in destination buffer. */ /* Add and store result in destination buffer. */
@ -105,7 +99,6 @@ void arm_add_f32(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,20 +47,17 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. Results outside of the allowable Q15 range [0x8000 0x7FFF]
are saturated.
*/ */
void arm_add_q15( void arm_add_q15(const q15_t *pSrcA, const q15_t *pSrcB, q15_t *pDst,
const q15_t * pSrcA, uint32_t blockSize) {
const q15_t * pSrcB, uint32_t blkCnt; /* Loop counter */
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t inA1, inA2; q31_t inA1, inA2;
q31_t inB1, inB2; q31_t inB1, inB2;
#endif #endif
@ -68,26 +65,25 @@ void arm_add_q15(
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* read 2 times 2 samples at a time from sourceA */ /* read 2 times 2 samples at a time from sourceA */
inA1 = read_q15x2_ia ((q15_t **) &pSrcA); inA1 = read_q15x2_ia((q15_t **)&pSrcA);
inA2 = read_q15x2_ia ((q15_t **) &pSrcA); inA2 = read_q15x2_ia((q15_t **)&pSrcA);
/* read 2 times 2 samples at a time from sourceB */ /* read 2 times 2 samples at a time from sourceB */
inB1 = read_q15x2_ia ((q15_t **) &pSrcB); inB1 = read_q15x2_ia((q15_t **)&pSrcB);
inB2 = read_q15x2_ia ((q15_t **) &pSrcB); inB2 = read_q15x2_ia((q15_t **)&pSrcB);
/* Add and store 2 times 2 samples at a time */ /* Add and store 2 times 2 samples at a time */
write_q15x2_ia (&pDst, __QADD16(inA1, inB1)); write_q15x2_ia(&pDst, __QADD16(inA1, inB1));
write_q15x2_ia (&pDst, __QADD16(inA2, inB2)); write_q15x2_ia(&pDst, __QADD16(inA2, inB2));
#else #else
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrcA++ + *pSrcB++), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrcA++ + *pSrcB++), 16);
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrcA++ + *pSrcB++), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrcA++ + *pSrcB++), 16);
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrcA++ + *pSrcB++), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrcA++ + *pSrcB++), 16);
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrcA++ + *pSrcB++), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrcA++ + *pSrcB++), 16);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -104,21 +100,19 @@ void arm_add_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
/* Add and store result in destination buffer. */ /* Add and store result in destination buffer. */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (q15_t) __QADD16(*pSrcA++, *pSrcB++); *pDst++ = (q15_t)__QADD16(*pSrcA++, *pSrcB++);
#else #else
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrcA++ + *pSrcB++), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrcA++ + *pSrcB++), 16);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,24 +47,20 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated. Results outside of the allowable Q31 range [0x80000000
0x7FFFFFFF] are saturated.
*/ */
void arm_add_q31( void arm_add_q31(const q31_t *pSrcA, const q31_t *pSrcB, q31_t *pDst,
const q31_t * pSrcA, uint32_t blockSize) {
const q31_t * pSrcB, uint32_t blkCnt; /* Loop counter */
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
/* Add and store result in destination buffer. */ /* Add and store result in destination buffer. */
@ -90,8 +86,7 @@ void arm_add_q31(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
/* Add and store result in destination buffer. */ /* Add and store result in destination buffer. */
@ -100,7 +95,6 @@ void arm_add_q31(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,34 +47,31 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q7 range [0x80 0x7F] are saturated. Results outside of the allowable Q7 range [0x80 0x7F] are
saturated.
*/ */
void arm_add_q7( void arm_add_q7(const q7_t *pSrcA, const q7_t *pSrcB, q7_t *pDst,
const q7_t * pSrcA, uint32_t blockSize) {
const q7_t * pSrcB, uint32_t blkCnt; /* Loop counter */
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Add and store result in destination buffer (4 samples at a time). */ /* Add and store result in destination buffer (4 samples at a time). */
write_q7x4_ia (&pDst, __QADD8 (read_q7x4_ia ((q7_t **) &pSrcA), read_q7x4_ia ((q7_t **) &pSrcB))); write_q7x4_ia(&pDst, __QADD8(read_q7x4_ia((q7_t **)&pSrcA),
read_q7x4_ia((q7_t **)&pSrcB)));
#else #else
*pDst++ = (q7_t) __SSAT ((q15_t) *pSrcA++ + *pSrcB++, 8); *pDst++ = (q7_t)__SSAT((q15_t)*pSrcA++ + *pSrcB++, 8);
*pDst++ = (q7_t) __SSAT ((q15_t) *pSrcA++ + *pSrcB++, 8); *pDst++ = (q7_t)__SSAT((q15_t)*pSrcA++ + *pSrcB++, 8);
*pDst++ = (q7_t) __SSAT ((q15_t) *pSrcA++ + *pSrcB++, 8); *pDst++ = (q7_t)__SSAT((q15_t)*pSrcA++ + *pSrcB++, 8);
*pDst++ = (q7_t) __SSAT ((q15_t) *pSrcA++ + *pSrcB++, 8); *pDst++ = (q7_t)__SSAT((q15_t)*pSrcA++ + *pSrcB++, 8);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -91,17 +88,15 @@ void arm_add_q7(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + B */ /* C = A + B */
/* Add and store result in destination buffer. */ /* Add and store result in destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) *pSrcA++ + *pSrcB++, 8); *pDst++ = (q7_t)__SSAT((q15_t)*pSrcA++ + *pSrcB++, 8);
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -39,7 +39,8 @@
The vectors are multiplied element-by-element and then summed. The vectors are multiplied element-by-element and then summed.
<pre> <pre>
sum = pSrcA[0]*pSrcB[0] + pSrcA[1]*pSrcB[1] + ... + pSrcA[blockSize-1]*pSrcB[blockSize-1] sum = pSrcA[0]*pSrcB[0] + pSrcA[1]*pSrcB[1] + ... +
pSrcA[blockSize-1]*pSrcB[blockSize-1]
</pre> </pre>
There are separate functions for floating-point, Q7, Q15, and Q31 data types. There are separate functions for floating-point, Q7, Q15, and Q31 data types.
@ -59,23 +60,19 @@
@return none @return none
*/ */
void arm_dot_prod_f32( void arm_dot_prod_f32(const float32_t *pSrcA, const float32_t *pSrcB,
const float32_t * pSrcA, uint32_t blockSize, float32_t *result) {
const float32_t * pSrcB, uint32_t blkCnt; /* Loop counter */
uint32_t blockSize, float32_t sum = 0.0f; /* Temporary return variable */
float32_t * result)
{
uint32_t blkCnt; /* Loop counter */
float32_t sum = 0.0f; /* Temporary return variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
/* Calculate dot product and store result in a temporary buffer. */ /* Calculate dot product and store result in a temporary buffer. */
sum += (*pSrcA++) * (*pSrcB++); sum += (*pSrcA++) * (*pSrcB++);
@ -100,9 +97,9 @@ void arm_dot_prod_f32(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
/* Calculate dot product and store result in a temporary buffer. */ /* Calculate dot product and store result in a temporary buffer. */
sum += (*pSrcA++) * (*pSrcB++); sum += (*pSrcA++) * (*pSrcB++);

View file

@ -46,40 +46,38 @@
@return none @return none
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The intermediate multiplications are in 1.15 x 1.15 = 2.30 format and these The intermediate multiplications are in 1.15 x 1.15 = 2.30
results are added to a 64-bit accumulator in 34.30 format. format and these results are added to a 64-bit accumulator in 34.30 format.
Nonsaturating additions are used and given that there are 33 guard bits in the accumulator Nonsaturating additions are used and given that there are 33
there is no risk of overflow. guard bits in the accumulator there is no risk of overflow. The return result
The return result is in 34.30 format. is in 34.30 format.
*/ */
void arm_dot_prod_q15( void arm_dot_prod_q15(const q15_t *pSrcA, const q15_t *pSrcB,
const q15_t * pSrcA, uint32_t blockSize, q63_t *result) {
const q15_t * pSrcB, uint32_t blkCnt; /* Loop counter */
uint32_t blockSize, q63_t sum = 0; /* Temporary return variable */
q63_t * result)
{
uint32_t blkCnt; /* Loop counter */
q63_t sum = 0; /* Temporary return variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Calculate dot product and store result in a temporary buffer. */ /* Calculate dot product and store result in a temporary buffer. */
sum = __SMLALD(read_q15x2_ia ((q15_t **) &pSrcA), read_q15x2_ia ((q15_t **) &pSrcB), sum); sum = __SMLALD(read_q15x2_ia((q15_t **)&pSrcA),
sum = __SMLALD(read_q15x2_ia ((q15_t **) &pSrcA), read_q15x2_ia ((q15_t **) &pSrcB), sum); read_q15x2_ia((q15_t **)&pSrcB), sum);
sum = __SMLALD(read_q15x2_ia((q15_t **)&pSrcA),
read_q15x2_ia((q15_t **)&pSrcB), sum);
#else #else
sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++); sum += (q63_t)((q31_t)*pSrcA++ * *pSrcB++);
sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++); sum += (q63_t)((q31_t)*pSrcA++ * *pSrcB++);
sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++); sum += (q63_t)((q31_t)*pSrcA++ * *pSrcB++);
sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++); sum += (q63_t)((q31_t)*pSrcA++ * *pSrcB++);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -96,16 +94,16 @@ void arm_dot_prod_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
/* Calculate dot product and store result in a temporary buffer. */ /* Calculate dot product and store result in a temporary buffer. */
//#if defined (ARM_MATH_DSP) //#if defined (ARM_MATH_DSP)
// sum = __SMLALD(*pSrcA++, *pSrcB++, sum); // sum = __SMLALD(*pSrcA++, *pSrcB++, sum);
//#else //#else
sum += (q63_t)((q31_t) *pSrcA++ * *pSrcB++); sum += (q63_t)((q31_t)*pSrcA++ * *pSrcB++);
//#endif //#endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;

View file

@ -46,40 +46,36 @@
@return none @return none
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these The intermediate multiplications are in 1.31 x 1.31 = 2.62
are truncated to 2.48 format by discarding the lower 14 bits. format and these are truncated to 2.48 format by discarding the lower 14 bits.
The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format. The 2.48 result is then added without saturation to a 64-bit
There are 15 guard bits in the accumulator and there is no risk of overflow as long as accumulator in 16.48 format. There are 15 guard bits in the accumulator and
the length of the vectors is less than 2^16 elements. there is no risk of overflow as long as the length of the vectors is less than
The return result is in 16.48 format. 2^16 elements. The return result is in 16.48 format.
*/ */
void arm_dot_prod_q31( void arm_dot_prod_q31(const q31_t *pSrcA, const q31_t *pSrcB,
const q31_t * pSrcA, uint32_t blockSize, q63_t *result) {
const q31_t * pSrcB, uint32_t blkCnt; /* Loop counter */
uint32_t blockSize, q63_t sum = 0; /* Temporary return variable */
q63_t * result)
{
uint32_t blkCnt; /* Loop counter */
q63_t sum = 0; /* Temporary return variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
/* Calculate dot product and store result in a temporary buffer. */ /* Calculate dot product and store result in a temporary buffer. */
sum += ((q63_t) *pSrcA++ * *pSrcB++) >> 14U; sum += ((q63_t)*pSrcA++ * *pSrcB++) >> 14U;
sum += ((q63_t) *pSrcA++ * *pSrcB++) >> 14U; sum += ((q63_t)*pSrcA++ * *pSrcB++) >> 14U;
sum += ((q63_t) *pSrcA++ * *pSrcB++) >> 14U; sum += ((q63_t)*pSrcA++ * *pSrcB++) >> 14U;
sum += ((q63_t) *pSrcA++ * *pSrcB++) >> 14U; sum += ((q63_t)*pSrcA++ * *pSrcB++) >> 14U;
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
@ -95,12 +91,12 @@ void arm_dot_prod_q31(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
/* Calculate dot product and store result in a temporary buffer. */ /* Calculate dot product and store result in a temporary buffer. */
sum += ((q63_t) *pSrcA++ * *pSrcB++) >> 14U; sum += ((q63_t)*pSrcA++ * *pSrcB++) >> 14U;
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;

View file

@ -46,41 +46,37 @@
@return none @return none
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The intermediate multiplications are in 1.7 x 1.7 = 2.14 format and these The intermediate multiplications are in 1.7 x 1.7 = 2.14
results are added to an accumulator in 18.14 format. format and these results are added to an accumulator in 18.14 format.
Nonsaturating additions are used and there is no danger of wrap around as long as Nonsaturating additions are used and there is no danger of
the vectors are less than 2^18 elements long. wrap around as long as the vectors are less than 2^18 elements long. The
The return result is in 18.14 format. return result is in 18.14 format.
*/ */
void arm_dot_prod_q7( void arm_dot_prod_q7(const q7_t *pSrcA, const q7_t *pSrcB, uint32_t blockSize,
const q7_t * pSrcA, q31_t *result) {
const q7_t * pSrcB, uint32_t blkCnt; /* Loop counter */
uint32_t blockSize, q31_t sum = 0; /* Temporary return variable */
q31_t * result)
{
uint32_t blkCnt; /* Loop counter */
q31_t sum = 0; /* Temporary return variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t input1, input2; /* Temporary variables */ q31_t input1, input2; /* Temporary variables */
q31_t inA1, inA2, inB1, inB2; /* Temporary variables */ q31_t inA1, inA2, inB1, inB2; /* Temporary variables */
#endif #endif
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* read 4 samples at a time from sourceA */ /* read 4 samples at a time from sourceA */
input1 = read_q7x4_ia ((q7_t **) &pSrcA); input1 = read_q7x4_ia((q7_t **)&pSrcA);
/* read 4 samples at a time from sourceB */ /* read 4 samples at a time from sourceB */
input2 = read_q7x4_ia ((q7_t **) &pSrcB); input2 = read_q7x4_ia((q7_t **)&pSrcB);
/* extract two q7_t samples to q15_t samples */ /* extract two q7_t samples to q15_t samples */
inA1 = __SXTB16(__ROR(input1, 8)); inA1 = __SXTB16(__ROR(input1, 8));
@ -95,10 +91,10 @@ void arm_dot_prod_q7(
sum = __SMLAD(inA1, inB1, sum); sum = __SMLAD(inA1, inB1, sum);
sum = __SMLAD(inA2, inB2, sum); sum = __SMLAD(inA2, inB2, sum);
#else #else
sum += (q31_t) ((q15_t) *pSrcA++ * *pSrcB++); sum += (q31_t)((q15_t)*pSrcA++ * *pSrcB++);
sum += (q31_t) ((q15_t) *pSrcA++ * *pSrcB++); sum += (q31_t)((q15_t)*pSrcA++ * *pSrcB++);
sum += (q31_t) ((q15_t) *pSrcA++ * *pSrcB++); sum += (q31_t)((q15_t)*pSrcA++ * *pSrcB++);
sum += (q31_t) ((q15_t) *pSrcA++ * *pSrcB++); sum += (q31_t)((q15_t)*pSrcA++ * *pSrcB++);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -115,16 +111,16 @@ void arm_dot_prod_q7(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{ /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]*
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ * B[blockSize-1] */
/* Calculate dot product and store result in a temporary buffer. */ /* Calculate dot product and store result in a temporary buffer. */
//#if defined (ARM_MATH_DSP) //#if defined (ARM_MATH_DSP)
// sum = __SMLAD(*pSrcA++, *pSrcB++, sum); // sum = __SMLAD(*pSrcA++, *pSrcB++, sum);
//#else //#else
sum += (q31_t) ((q15_t) *pSrcA++ * *pSrcB++); sum += (q31_t)((q15_t)*pSrcA++ * *pSrcB++);
//#endif //#endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;

View file

@ -58,21 +58,16 @@
@return none @return none
*/ */
void arm_mult_f32( void arm_mult_f32(const float32_t *pSrcA, const float32_t *pSrcB,
const float32_t * pSrcA, float32_t *pDst, uint32_t blockSize) {
const float32_t * pSrcB, uint32_t blkCnt; /* Loop counter */
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
/* Multiply inputs and store result in destination buffer. */ /* Multiply inputs and store result in destination buffer. */
@ -98,8 +93,7 @@ void arm_mult_f32(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
/* Multiply input and store result in destination buffer. */ /* Multiply input and store result in destination buffer. */
@ -108,7 +102,6 @@ void arm_mult_f32(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,68 +47,64 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. Results outside of the allowable Q15 range [0x8000 0x7FFF]
are saturated.
*/ */
void arm_mult_q15( void arm_mult_q15(const q15_t *pSrcA, const q15_t *pSrcB, q15_t *pDst,
const q15_t * pSrcA, uint32_t blockSize) {
const q15_t * pSrcB, uint32_t blkCnt; /* Loop counter */
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t inA1, inA2, inB1, inB2; /* Temporary input variables */ q31_t inA1, inA2, inB1, inB2; /* Temporary input variables */
q15_t out1, out2, out3, out4; /* Temporary output variables */ q15_t out1, out2, out3, out4; /* Temporary output variables */
q31_t mul1, mul2, mul3, mul4; /* Temporary variables */ q31_t mul1, mul2, mul3, mul4; /* Temporary variables */
#endif #endif
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* read 2 samples at a time from sourceA */ /* read 2 samples at a time from sourceA */
inA1 = read_q15x2_ia ((q15_t **) &pSrcA); inA1 = read_q15x2_ia((q15_t **)&pSrcA);
/* read 2 samples at a time from sourceB */ /* read 2 samples at a time from sourceB */
inB1 = read_q15x2_ia ((q15_t **) &pSrcB); inB1 = read_q15x2_ia((q15_t **)&pSrcB);
/* read 2 samples at a time from sourceA */ /* read 2 samples at a time from sourceA */
inA2 = read_q15x2_ia ((q15_t **) &pSrcA); inA2 = read_q15x2_ia((q15_t **)&pSrcA);
/* read 2 samples at a time from sourceB */ /* read 2 samples at a time from sourceB */
inB2 = read_q15x2_ia ((q15_t **) &pSrcB); inB2 = read_q15x2_ia((q15_t **)&pSrcB);
/* multiply mul = sourceA * sourceB */ /* multiply mul = sourceA * sourceB */
mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16)); mul1 = (q31_t)((q15_t)(inA1 >> 16) * (q15_t)(inB1 >> 16));
mul2 = (q31_t) ((q15_t) (inA1 ) * (q15_t) (inB1 )); mul2 = (q31_t)((q15_t)(inA1) * (q15_t)(inB1));
mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16)); mul3 = (q31_t)((q15_t)(inA2 >> 16) * (q15_t)(inB2 >> 16));
mul4 = (q31_t) ((q15_t) (inA2 ) * (q15_t) (inB2 )); mul4 = (q31_t)((q15_t)(inA2) * (q15_t)(inB2));
/* saturate result to 16 bit */ /* saturate result to 16 bit */
out1 = (q15_t) __SSAT(mul1 >> 15, 16); out1 = (q15_t)__SSAT(mul1 >> 15, 16);
out2 = (q15_t) __SSAT(mul2 >> 15, 16); out2 = (q15_t)__SSAT(mul2 >> 15, 16);
out3 = (q15_t) __SSAT(mul3 >> 15, 16); out3 = (q15_t)__SSAT(mul3 >> 15, 16);
out4 = (q15_t) __SSAT(mul4 >> 15, 16); out4 = (q15_t)__SSAT(mul4 >> 15, 16);
/* store result to destination */ /* store result to destination */
#ifndef ARM_MATH_BIG_ENDIAN #ifndef ARM_MATH_BIG_ENDIAN
write_q15x2_ia (&pDst, __PKHBT(out2, out1, 16)); write_q15x2_ia(&pDst, __PKHBT(out2, out1, 16));
write_q15x2_ia (&pDst, __PKHBT(out4, out3, 16)); write_q15x2_ia(&pDst, __PKHBT(out4, out3, 16));
#else #else
write_q15x2_ia (&pDst, __PKHBT(out1, out2, 16)); write_q15x2_ia(&pDst, __PKHBT(out1, out2, 16));
write_q15x2_ia (&pDst, __PKHBT(out3, out4, 16)); write_q15x2_ia(&pDst, __PKHBT(out3, out4, 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#else #else
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16); *pDst++ = (q15_t)__SSAT((((q31_t)(*pSrcA++) * (*pSrcB++)) >> 15), 16);
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16); *pDst++ = (q15_t)__SSAT((((q31_t)(*pSrcA++) * (*pSrcB++)) >> 15), 16);
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16); *pDst++ = (q15_t)__SSAT((((q31_t)(*pSrcA++) * (*pSrcB++)) >> 15), 16);
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16); *pDst++ = (q15_t)__SSAT((((q31_t)(*pSrcA++) * (*pSrcB++)) >> 15), 16);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -125,17 +121,15 @@ void arm_mult_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
/* Multiply inputs and store result in destination buffer. */ /* Multiply inputs and store result in destination buffer. */
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16); *pDst++ = (q15_t)__SSAT((((q31_t)(*pSrcA++) * (*pSrcB++)) >> 15), 16);
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,41 +47,37 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] are saturated. Results outside of the allowable Q31 range[0x80000000
0x7FFFFFFF] are saturated.
*/ */
void arm_mult_q31( void arm_mult_q31(const q31_t *pSrcA, const q31_t *pSrcB, q31_t *pDst,
const q31_t * pSrcA, uint32_t blockSize) {
const q31_t * pSrcB, uint32_t blkCnt; /* Loop counter */
q31_t * pDst, q31_t out; /* Temporary output variable */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
q31_t out; /* Temporary output variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
/* Multiply inputs and store result in destination buffer. */ /* Multiply inputs and store result in destination buffer. */
out = ((q63_t) *pSrcA++ * *pSrcB++) >> 32; out = ((q63_t)*pSrcA++ * *pSrcB++) >> 32;
out = __SSAT(out, 31); out = __SSAT(out, 31);
*pDst++ = out << 1U; *pDst++ = out << 1U;
out = ((q63_t) *pSrcA++ * *pSrcB++) >> 32; out = ((q63_t)*pSrcA++ * *pSrcB++) >> 32;
out = __SSAT(out, 31); out = __SSAT(out, 31);
*pDst++ = out << 1U; *pDst++ = out << 1U;
out = ((q63_t) *pSrcA++ * *pSrcB++) >> 32; out = ((q63_t)*pSrcA++ * *pSrcB++) >> 32;
out = __SSAT(out, 31); out = __SSAT(out, 31);
*pDst++ = out << 1U; *pDst++ = out << 1U;
out = ((q63_t) *pSrcA++ * *pSrcB++) >> 32; out = ((q63_t)*pSrcA++ * *pSrcB++) >> 32;
out = __SSAT(out, 31); out = __SSAT(out, 31);
*pDst++ = out << 1U; *pDst++ = out << 1U;
@ -99,19 +95,17 @@ void arm_mult_q31(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
/* Multiply inputs and store result in destination buffer. */ /* Multiply inputs and store result in destination buffer. */
out = ((q63_t) *pSrcA++ * *pSrcB++) >> 32; out = ((q63_t)*pSrcA++ * *pSrcB++) >> 32;
out = __SSAT(out, 31); out = __SSAT(out, 31);
*pDst++ = out << 1U; *pDst++ = out << 1U;
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,44 +47,40 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q7 range [0x80 0x7F] are saturated. Results outside of the allowable Q7 range [0x80 0x7F] are
saturated.
*/ */
void arm_mult_q7( void arm_mult_q7(const q7_t *pSrcA, const q7_t *pSrcB, q7_t *pDst,
const q7_t * pSrcA, uint32_t blockSize) {
const q7_t * pSrcB, uint32_t blkCnt; /* Loop counter */
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q7_t out1, out2, out3, out4; /* Temporary output variables */ q7_t out1, out2, out3, out4; /* Temporary output variables */
#endif #endif
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Multiply inputs and store results in temporary variables */ /* Multiply inputs and store results in temporary variables */
out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); out1 = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); out2 = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); out3 = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); out4 = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
/* Pack and store result in destination buffer (in single write) */ /* Pack and store result in destination buffer (in single write) */
write_q7x4_ia (&pDst, __PACKq7(out1, out2, out3, out4)); write_q7x4_ia(&pDst, __PACKq7(out1, out2, out3, out4));
#else #else
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); *pDst++ = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); *pDst++ = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); *pDst++ = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); *pDst++ = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -101,17 +97,15 @@ void arm_mult_q7(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * B */ /* C = A * B */
/* Multiply input and store result in destination buffer. */ /* Multiply input and store result in destination buffer. */
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); *pDst++ = (q7_t)__SSAT((((q15_t)(*pSrcA++) * (*pSrcB++)) >> 7), 8);
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -59,20 +59,16 @@
@return none @return none
*/ */
void arm_negate_f32( void arm_negate_f32(const float32_t *pSrc, float32_t *pDst,
const float32_t * pSrc, uint32_t blockSize) {
float32_t * pDst, uint32_t blkCnt; /* Loop counter */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
/* Negate and store result in destination buffer. */ /* Negate and store result in destination buffer. */
@ -98,8 +94,7 @@ void arm_negate_f32(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
/* Negate and store result in destination buffer. */ /* Negate and store result in destination buffer. */
@ -108,7 +103,6 @@ void arm_negate_f32(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -48,49 +48,45 @@
Input and output buffers should be aligned by 32-bit Input and output buffers should be aligned by 32-bit
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
The Q15 value -1 (0x8000) is saturated to the maximum allowable positive value 0x7FFF. The Q15 value -1 (0x8000) is saturated to the maximum
allowable positive value 0x7FFF.
*/ */
void arm_negate_q15( void arm_negate_q15(const q15_t *pSrc, q15_t *pDst, uint32_t blockSize) {
const q15_t * pSrc, uint32_t blkCnt; /* Loop counter */
q15_t * pDst, q15_t in; /* Temporary input variable */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
q15_t in; /* Temporary input variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t in1; /* Temporary input variables */ q31_t in1; /* Temporary input variables */
#endif #endif
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Negate and store result in destination buffer (2 samples at a time). */ /* Negate and store result in destination buffer (2 samples at a time). */
in1 = read_q15x2_ia ((q15_t **) &pSrc); in1 = read_q15x2_ia((q15_t **)&pSrc);
write_q15x2_ia (&pDst, __QSUB16(0, in1)); write_q15x2_ia(&pDst, __QSUB16(0, in1));
in1 = read_q15x2_ia ((q15_t **) &pSrc); in1 = read_q15x2_ia((q15_t **)&pSrc);
write_q15x2_ia (&pDst, __QSUB16(0, in1)); write_q15x2_ia(&pDst, __QSUB16(0, in1));
#else #else
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in; *pDst++ = (in == (q15_t)0x8000) ? (q15_t)0x7fff : -in;
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in; *pDst++ = (in == (q15_t)0x8000) ? (q15_t)0x7fff : -in;
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in; *pDst++ = (in == (q15_t)0x8000) ? (q15_t)0x7fff : -in;
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in; *pDst++ = (in == (q15_t)0x8000) ? (q15_t)0x7fff : -in;
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -107,18 +103,16 @@ void arm_negate_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
/* Negate and store result in destination buffer. */ /* Negate and store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in; *pDst++ = (in == (q15_t)0x8000) ? (q15_t)0x7fff : -in;
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -46,50 +46,46 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
The Q31 value -1 (0x80000000) is saturated to the maximum allowable positive value 0x7FFFFFFF. The Q31 value -1 (0x80000000) is saturated to the maximum
allowable positive value 0x7FFFFFFF.
*/ */
void arm_negate_q31( void arm_negate_q31(const q31_t *pSrc, q31_t *pDst, uint32_t blockSize) {
const q31_t * pSrc, uint32_t blkCnt; /* Loop counter */
q31_t * pDst, q31_t in; /* Temporary input variable */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
q31_t in; /* Temporary input variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
/* Negate and store result in destination buffer. */ /* Negate and store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QSUB(0, in); *pDst++ = __QSUB(0, in);
#else #else
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; *pDst++ = (in == INT32_MIN) ? INT32_MAX : -in;
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QSUB(0, in); *pDst++ = __QSUB(0, in);
#else #else
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; *pDst++ = (in == INT32_MIN) ? INT32_MAX : -in;
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QSUB(0, in); *pDst++ = __QSUB(0, in);
#else #else
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; *pDst++ = (in == INT32_MIN) ? INT32_MAX : -in;
#endif #endif
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QSUB(0, in); *pDst++ = __QSUB(0, in);
#else #else
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; *pDst++ = (in == INT32_MIN) ? INT32_MAX : -in;
@ -109,13 +105,12 @@ void arm_negate_q31(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
/* Negate and store result in destination buffer. */ /* Negate and store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QSUB(0, in); *pDst++ = __QSUB(0, in);
#else #else
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; *pDst++ = (in == INT32_MIN) ? INT32_MAX : -in;
@ -124,7 +119,6 @@ void arm_negate_q31(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -46,46 +46,42 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
The Q7 value -1 (0x80) is saturated to the maximum allowable positive value 0x7F. The Q7 value -1 (0x80) is saturated to the maximum allowable
positive value 0x7F.
*/ */
void arm_negate_q7( void arm_negate_q7(const q7_t *pSrc, q7_t *pDst, uint32_t blockSize) {
const q7_t * pSrc, uint32_t blkCnt; /* Loop counter */
q7_t * pDst, q7_t in; /* Temporary input variable */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
q7_t in; /* Temporary input variable */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t in1; /* Temporary input variable */ q31_t in1; /* Temporary input variable */
#endif #endif
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Negate and store result in destination buffer (4 samples at a time). */ /* Negate and store result in destination buffer (4 samples at a time). */
in1 = read_q7x4_ia ((q7_t **) &pSrc); in1 = read_q7x4_ia((q7_t **)&pSrc);
write_q7x4_ia (&pDst, __QSUB8(0, in1)); write_q7x4_ia(&pDst, __QSUB8(0, in1));
#else #else
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q7_t) 0x80) ? (q7_t) 0x7f : -in; *pDst++ = (in == (q7_t)0x80) ? (q7_t)0x7f : -in;
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q7_t) 0x80) ? (q7_t) 0x7f : -in; *pDst++ = (in == (q7_t)0x80) ? (q7_t)0x7f : -in;
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q7_t) 0x80) ? (q7_t) 0x7f : -in; *pDst++ = (in == (q7_t)0x80) ? (q7_t)0x7f : -in;
in = *pSrc++; in = *pSrc++;
*pDst++ = (in == (q7_t) 0x80) ? (q7_t) 0x7f : -in; *pDst++ = (in == (q7_t)0x80) ? (q7_t)0x7f : -in;
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -102,23 +98,21 @@ void arm_negate_q7(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = -A */ /* C = -A */
/* Negate and store result in destination buffer. */ /* Negate and store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (q7_t) __QSUB(0, in); *pDst++ = (q7_t)__QSUB(0, in);
#else #else
*pDst++ = (in == (q7_t) 0x80) ? (q7_t) 0x7f : -in; *pDst++ = (in == (q7_t)0x80) ? (q7_t)0x7f : -in;
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -60,21 +60,16 @@
@return none @return none
*/ */
void arm_offset_f32( void arm_offset_f32(const float32_t *pSrc, float32_t offset, float32_t *pDst,
const float32_t * pSrc, uint32_t blockSize) {
float32_t offset, uint32_t blkCnt; /* Loop counter */
float32_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
/* Add offset and store result in destination buffer. */ /* Add offset and store result in destination buffer. */
@ -100,8 +95,7 @@ void arm_offset_f32(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
/* Add offset and store result in destination buffer. */ /* Add offset and store result in destination buffer. */
@ -110,7 +104,6 @@ void arm_offset_f32(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,21 +47,18 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. Results outside of the allowable Q15 range [0x8000 0x7FFF]
are saturated.
*/ */
void arm_offset_q15( void arm_offset_q15(const q15_t *pSrc, q15_t offset, q15_t *pDst,
const q15_t * pSrc, uint32_t blockSize) {
q15_t offset, uint32_t blkCnt; /* Loop counter */
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t offset_packed; /* Offset packed to 32 bit */ q31_t offset_packed; /* Offset packed to 32 bit */
/* Offset is packed to 32 bit in order to use SIMD32 for addition */ /* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PKHBT(offset, offset, 16); offset_packed = __PKHBT(offset, offset, 16);
@ -70,19 +67,21 @@ void arm_offset_q15(
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Add offset and store result in destination buffer (2 samples at a time). */ /* Add offset and store result in destination buffer (2 samples at a time).
write_q15x2_ia (&pDst, __QADD16(read_q15x2_ia ((q15_t **) &pSrc), offset_packed)); */
write_q15x2_ia (&pDst, __QADD16(read_q15x2_ia ((q15_t **) &pSrc), offset_packed)); write_q15x2_ia(&pDst,
__QADD16(read_q15x2_ia((q15_t **)&pSrc), offset_packed));
write_q15x2_ia(&pDst,
__QADD16(read_q15x2_ia((q15_t **)&pSrc), offset_packed));
#else #else
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrc++ + offset), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrc++ + offset), 16);
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrc++ + offset), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrc++ + offset), 16);
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrc++ + offset), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrc++ + offset), 16);
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrc++ + offset), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrc++ + offset), 16);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -99,21 +98,19 @@ void arm_offset_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
/* Add offset and store result in destination buffer. */ /* Add offset and store result in destination buffer. */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = (q15_t) __QADD16(*pSrc++, offset); *pDst++ = (q15_t)__QADD16(*pSrc++, offset);
#else #else
*pDst++ = (q15_t) __SSAT(((q31_t) *pSrc++ + offset), 16); *pDst++ = (q15_t)__SSAT(((q31_t)*pSrc++ + offset), 16);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,49 +47,45 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated. Results outside of the allowable Q31 range [0x80000000
0x7FFFFFFF] are saturated.
*/ */
void arm_offset_q31( void arm_offset_q31(const q31_t *pSrc, q31_t offset, q31_t *pDst,
const q31_t * pSrc, uint32_t blockSize) {
q31_t offset, uint32_t blkCnt; /* Loop counter */
q31_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
/* Add offset and store result in destination buffer. */ /* Add offset and store result in destination buffer. */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QADD(*pSrc++, offset); *pDst++ = __QADD(*pSrc++, offset);
#else #else
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset); *pDst++ = (q31_t)clip_q63_to_q31((q63_t)*pSrc++ + offset);
#endif #endif
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QADD(*pSrc++, offset); *pDst++ = __QADD(*pSrc++, offset);
#else #else
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset); *pDst++ = (q31_t)clip_q63_to_q31((q63_t)*pSrc++ + offset);
#endif #endif
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QADD(*pSrc++, offset); *pDst++ = __QADD(*pSrc++, offset);
#else #else
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset); *pDst++ = (q31_t)clip_q63_to_q31((q63_t)*pSrc++ + offset);
#endif #endif
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QADD(*pSrc++, offset); *pDst++ = __QADD(*pSrc++, offset);
#else #else
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset); *pDst++ = (q31_t)clip_q63_to_q31((q63_t)*pSrc++ + offset);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -106,21 +102,19 @@ void arm_offset_q31(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
/* Add offset and store result in destination buffer. */ /* Add offset and store result in destination buffer. */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
*pDst++ = __QADD(*pSrc++, offset); *pDst++ = __QADD(*pSrc++, offset);
#else #else
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset); *pDst++ = (q31_t)clip_q63_to_q31((q63_t)*pSrc++ + offset);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,21 +47,18 @@
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q7 range [0x80 0x7F] are saturated. Results outside of the allowable Q7 range [0x80 0x7F] are
saturated.
*/ */
void arm_offset_q7( void arm_offset_q7(const q7_t *pSrc, q7_t offset, q7_t *pDst,
const q7_t * pSrc, uint32_t blockSize) {
q7_t offset, uint32_t blkCnt; /* Loop counter */
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t offset_packed; /* Offset packed to 32 bit */ q31_t offset_packed; /* Offset packed to 32 bit */
/* Offset is packed to 32 bit in order to use SIMD32 for addition */ /* Offset is packed to 32 bit in order to use SIMD32 for addition */
offset_packed = __PACKq7(offset, offset, offset, offset); offset_packed = __PACKq7(offset, offset, offset, offset);
@ -70,18 +67,18 @@ void arm_offset_q7(
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Add offset and store result in destination buffer (4 samples at a time). */ /* Add offset and store result in destination buffer (4 samples at a time).
write_q7x4_ia (&pDst, __QADD8(read_q7x4_ia ((q7_t **) &pSrc), offset_packed)); */
write_q7x4_ia(&pDst, __QADD8(read_q7x4_ia((q7_t **)&pSrc), offset_packed));
#else #else
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8); *pDst++ = (q7_t)__SSAT(*pSrc++ + offset, 8);
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8); *pDst++ = (q7_t)__SSAT(*pSrc++ + offset, 8);
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8); *pDst++ = (q7_t)__SSAT(*pSrc++ + offset, 8);
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8); *pDst++ = (q7_t)__SSAT(*pSrc++ + offset, 8);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -98,17 +95,15 @@ void arm_offset_q7(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A + offset */ /* C = A + offset */
/* Add offset and store result in destination buffer. */ /* Add offset and store result in destination buffer. */
*pDst++ = (q7_t) __SSAT((q15_t) *pSrc++ + offset, 8); *pDst++ = (q7_t)__SSAT((q15_t)*pSrc++ + offset, 8);
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -35,16 +35,17 @@
/** /**
@defgroup BasicScale Vector Scale @defgroup BasicScale Vector Scale
Multiply a vector by a scalar value. For floating-point data, the algorithm used is: Multiply a vector by a scalar value. For floating-point data, the algorithm
used is:
<pre> <pre>
pDst[n] = pSrc[n] * scale, 0 <= n < blockSize. pDst[n] = pSrc[n] * scale, 0 <= n < blockSize.
</pre> </pre>
In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is represented by In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is
a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>. represented by a fractional multiplication <code>scaleFract</code> and an
The shift allows the gain of the scaling operation to exceed 1.0. arithmetic shift <code>shift</code>. The shift allows the gain of the scaling
The algorithm used with fixed-point data is: operation to exceed 1.0. The algorithm used with fixed-point data is:
<pre> <pre>
pDst[n] = (pSrc[n] * scaleFract) << shift, 0 <= n < blockSize. pDst[n] = (pSrc[n] * scaleFract) << shift, 0 <= n < blockSize.
@ -73,21 +74,16 @@
@return none @return none
*/ */
void arm_scale_f32( void arm_scale_f32(const float32_t *pSrc, float32_t scale, float32_t *pDst,
const float32_t *pSrc, uint32_t blockSize) {
float32_t scale, uint32_t blkCnt; /* Loop counter */
float32_t *pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
@ -113,8 +109,7 @@ void arm_scale_f32(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
@ -123,7 +118,6 @@ void arm_scale_f32(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,48 +47,43 @@
@return none @return none
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format. The input data <code>*pSrc</code> and <code>scaleFract</code>
These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. are in 1.15 format. These are multiplied to yield a 2.30 intermediate result
and this is shifted with saturation to 1.15 format.
*/ */
void arm_scale_q15( void arm_scale_q15(const q15_t *pSrc, q15_t scaleFract, int8_t shift,
const q15_t *pSrc, q15_t *pDst, uint32_t blockSize) {
q15_t scaleFract, uint32_t blkCnt; /* Loop counter */
int8_t shift, int8_t kShift = 15 - shift; /* Shift to apply after scaling */
q15_t *pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
int8_t kShift = 15 - shift; /* Shift to apply after scaling */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q31_t inA1, inA2; q31_t inA1, inA2;
q31_t out1, out2, out3, out4; /* Temporary output variables */ q31_t out1, out2, out3, out4; /* Temporary output variables */
q15_t in1, in2, in3, in4; /* Temporary input variables */ q15_t in1, in2, in3, in4; /* Temporary input variables */
#endif #endif
#endif #endif
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * scale */ /* C = A * scale */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* read 2 times 2 samples at a time from source */ /* read 2 times 2 samples at a time from source */
inA1 = read_q15x2_ia ((q15_t **) &pSrc); inA1 = read_q15x2_ia((q15_t **)&pSrc);
inA2 = read_q15x2_ia ((q15_t **) &pSrc); inA2 = read_q15x2_ia((q15_t **)&pSrc);
/* Scale inputs and store result in temporary variables /* Scale inputs and store result in temporary variables
* in single cycle by packing the outputs */ * in single cycle by packing the outputs */
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract); out1 = (q31_t)((q15_t)(inA1 >> 16) * scaleFract);
out2 = (q31_t) ((q15_t) (inA1 ) * scaleFract); out2 = (q31_t)((q15_t)(inA1)*scaleFract);
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract); out3 = (q31_t)((q15_t)(inA2 >> 16) * scaleFract);
out4 = (q31_t) ((q15_t) (inA2 ) * scaleFract); out4 = (q31_t)((q15_t)(inA2)*scaleFract);
/* apply shifting */ /* apply shifting */
out1 = out1 >> kShift; out1 = out1 >> kShift;
@ -97,19 +92,19 @@ void arm_scale_q15(
out4 = out4 >> kShift; out4 = out4 >> kShift;
/* saturate the output */ /* saturate the output */
in1 = (q15_t) (__SSAT(out1, 16)); in1 = (q15_t)(__SSAT(out1, 16));
in2 = (q15_t) (__SSAT(out2, 16)); in2 = (q15_t)(__SSAT(out2, 16));
in3 = (q15_t) (__SSAT(out3, 16)); in3 = (q15_t)(__SSAT(out3, 16));
in4 = (q15_t) (__SSAT(out4, 16)); in4 = (q15_t)(__SSAT(out4, 16));
/* store result to destination */ /* store result to destination */
write_q15x2_ia (&pDst, __PKHBT(in2, in1, 16)); write_q15x2_ia(&pDst, __PKHBT(in2, in1, 16));
write_q15x2_ia (&pDst, __PKHBT(in4, in3, 16)); write_q15x2_ia(&pDst, __PKHBT(in4, in3, 16));
#else #else
*pDst++ = (q15_t) (__SSAT(((q31_t) *pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16));
*pDst++ = (q15_t) (__SSAT(((q31_t) *pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16));
*pDst++ = (q15_t) (__SSAT(((q31_t) *pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16));
*pDst++ = (q15_t) (__SSAT(((q31_t) *pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16));
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -126,17 +121,15 @@ void arm_scale_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
*pDst++ = (q15_t) (__SSAT(((q31_t) *pSrc++ * scaleFract) >> kShift, 16)); *pDst++ = (q15_t)(__SSAT(((q31_t)*pSrc++ * scaleFract) >> kShift, 16));
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -47,57 +47,52 @@
@return none @return none
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format. The input data <code>*pSrc</code> and <code>scaleFract</code>
These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format. are in 1.31 format. These are multiplied to yield a 2.62 intermediate result
and this is shifted with saturation to 1.31 format.
*/ */
void arm_scale_q31( void arm_scale_q31(const q31_t *pSrc, q31_t scaleFract, int8_t shift,
const q31_t *pSrc, q31_t *pDst, uint32_t blockSize) {
q31_t scaleFract, uint32_t blkCnt; /* Loop counter */
int8_t shift, q31_t in, out; /* Temporary variables */
q31_t *pDst, int8_t kShift = shift + 1; /* Shift to apply after scaling */
uint32_t blockSize) int8_t sign = (kShift & 0x80);
{
uint32_t blkCnt; /* Loop counter */
q31_t in, out; /* Temporary variables */
int8_t kShift = shift + 1; /* Shift to apply after scaling */
int8_t sign = (kShift & 0x80);
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
if (sign == 0U) if (sign == 0U) {
{ while (blkCnt > 0U) {
while (blkCnt > 0U)
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
in = *pSrc++; /* read input from source */ in = *pSrc++; /* read input from source */
in = ((q63_t) in * scaleFract) >> 32; /* multiply input with scaler value */ in =
out = in << kShift; /* apply shifting */ ((q63_t)in * scaleFract) >> 32; /* multiply input with scaler value */
if (in != (out >> kShift)) /* saturate the result */ out = in << kShift; /* apply shifting */
if (in != (out >> kShift)) /* saturate the result */
out = 0x7FFFFFFF ^ (in >> 31); out = 0x7FFFFFFF ^ (in >> 31);
*pDst++ = out; /* Store result destination */ *pDst++ = out; /* Store result destination */
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in << kShift; out = in << kShift;
if (in != (out >> kShift)) if (in != (out >> kShift))
out = 0x7FFFFFFF ^ (in >> 31); out = 0x7FFFFFFF ^ (in >> 31);
*pDst++ = out; *pDst++ = out;
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in << kShift; out = in << kShift;
if (in != (out >> kShift)) if (in != (out >> kShift))
out = 0x7FFFFFFF ^ (in >> 31); out = 0x7FFFFFFF ^ (in >> 31);
*pDst++ = out; *pDst++ = out;
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in << kShift; out = in << kShift;
if (in != (out >> kShift)) if (in != (out >> kShift))
out = 0x7FFFFFFF ^ (in >> 31); out = 0x7FFFFFFF ^ (in >> 31);
@ -106,31 +101,29 @@ void arm_scale_q31(
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} } else {
else while (blkCnt > 0U) {
{
while (blkCnt > 0U)
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
in = *pSrc++; /* read four inputs from source */ in = *pSrc++; /* read four inputs from source */
in = ((q63_t) in * scaleFract) >> 32; /* multiply input with scaler value */ in =
out = in >> -kShift; /* apply shifting */ ((q63_t)in * scaleFract) >> 32; /* multiply input with scaler value */
*pDst++ = out; /* Store result destination */ out = in >> -kShift; /* apply shifting */
*pDst++ = out; /* Store result destination */
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in >> -kShift; out = in >> -kShift;
*pDst++ = out; *pDst++ = out;
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in >> -kShift; out = in >> -kShift;
*pDst++ = out; *pDst++ = out;
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in >> -kShift; out = in >> -kShift;
*pDst++ = out; *pDst++ = out;
@ -149,33 +142,28 @@ void arm_scale_q31(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
if (sign == 0U) if (sign == 0U) {
{ while (blkCnt > 0U) {
while (blkCnt > 0U)
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in << kShift; out = in << kShift;
if (in != (out >> kShift)) if (in != (out >> kShift))
out = 0x7FFFFFFF ^ (in >> 31); out = 0x7FFFFFFF ^ (in >> 31);
*pDst++ = out; *pDst++ = out;
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} } else {
else while (blkCnt > 0U) {
{
while (blkCnt > 0U)
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
in = *pSrc++; in = *pSrc++;
in = ((q63_t) in * scaleFract) >> 32; in = ((q63_t)in * scaleFract) >> 32;
out = in >> -kShift; out = in >> -kShift;
*pDst++ = out; *pDst++ = out;
@ -183,7 +171,6 @@ void arm_scale_q31(
blkCnt--; blkCnt--;
} }
} }
} }
/** /**

View file

@ -47,35 +47,30 @@
@return none @return none
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.7 format. The input data <code>*pSrc</code> and <code>scaleFract</code>
These are multiplied to yield a 2.14 intermediate result and this is shifted with saturation to 1.7 format. are in 1.7 format. These are multiplied to yield a 2.14 intermediate result
and this is shifted with saturation to 1.7 format.
*/ */
void arm_scale_q7( void arm_scale_q7(const q7_t *pSrc, q7_t scaleFract, int8_t shift, q7_t *pDst,
const q7_t * pSrc, uint32_t blockSize) {
q7_t scaleFract, uint32_t blkCnt; /* Loop counter */
int8_t shift, int8_t kShift = 7 - shift; /* Shift to apply after scaling */
q7_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
int8_t kShift = 7 - shift; /* Shift to apply after scaling */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q7_t in1, in2, in3, in4; /* Temporary input variables */ q7_t in1, in2, in3, in4; /* Temporary input variables */
q7_t out1, out2, out3, out4; /* Temporary output variables */ q7_t out1, out2, out3, out4; /* Temporary output variables */
#endif #endif
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * scale */ /* C = A * scale */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* Reading 4 inputs from memory */ /* Reading 4 inputs from memory */
in1 = *pSrc++; in1 = *pSrc++;
in2 = *pSrc++; in2 = *pSrc++;
@ -83,18 +78,18 @@ void arm_scale_q7(
in4 = *pSrc++; in4 = *pSrc++;
/* Scale inputs and store result in the temporary variable. */ /* Scale inputs and store result in the temporary variable. */
out1 = (q7_t) (__SSAT(((in1) * scaleFract) >> kShift, 8)); out1 = (q7_t)(__SSAT(((in1)*scaleFract) >> kShift, 8));
out2 = (q7_t) (__SSAT(((in2) * scaleFract) >> kShift, 8)); out2 = (q7_t)(__SSAT(((in2)*scaleFract) >> kShift, 8));
out3 = (q7_t) (__SSAT(((in3) * scaleFract) >> kShift, 8)); out3 = (q7_t)(__SSAT(((in3)*scaleFract) >> kShift, 8));
out4 = (q7_t) (__SSAT(((in4) * scaleFract) >> kShift, 8)); out4 = (q7_t)(__SSAT(((in4)*scaleFract) >> kShift, 8));
/* Pack and store result in destination buffer (in single write) */ /* Pack and store result in destination buffer (in single write) */
write_q7x4_ia (&pDst, __PACKq7(out1, out2, out3, out4)); write_q7x4_ia(&pDst, __PACKq7(out1, out2, out3, out4));
#else #else
*pDst++ = (q7_t) (__SSAT((((q15_t) *pSrc++ * scaleFract) >> kShift), 8)); *pDst++ = (q7_t)(__SSAT((((q15_t)*pSrc++ * scaleFract) >> kShift), 8));
*pDst++ = (q7_t) (__SSAT((((q15_t) *pSrc++ * scaleFract) >> kShift), 8)); *pDst++ = (q7_t)(__SSAT((((q15_t)*pSrc++ * scaleFract) >> kShift), 8));
*pDst++ = (q7_t) (__SSAT((((q15_t) *pSrc++ * scaleFract) >> kShift), 8)); *pDst++ = (q7_t)(__SSAT((((q15_t)*pSrc++ * scaleFract) >> kShift), 8));
*pDst++ = (q7_t) (__SSAT((((q15_t) *pSrc++ * scaleFract) >> kShift), 8)); *pDst++ = (q7_t)(__SSAT((((q15_t)*pSrc++ * scaleFract) >> kShift), 8));
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
@ -111,17 +106,15 @@ void arm_scale_q7(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U) while (blkCnt > 0U) {
{
/* C = A * scale */ /* C = A * scale */
/* Scale input and store result in destination buffer. */ /* Scale input and store result in destination buffer. */
*pDst++ = (q7_t) (__SSAT((((q15_t) *pSrc++ * scaleFract) >> kShift), 8)); *pDst++ = (q7_t)(__SSAT((((q15_t)*pSrc++ * scaleFract) >> kShift), 8));
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} }
/** /**

View file

@ -1,7 +1,8 @@
/* ---------------------------------------------------------------------- /* ----------------------------------------------------------------------
* Project: CMSIS DSP Library * Project: CMSIS DSP Library
* Title: arm_shift_q15.c * Title: arm_shift_q15.c
* Description: Shifts the elements of a Q15 vector by a specified number of bits * Description: Shifts the elements of a Q15 vector by a specified number of
* bits
* *
* $Date: 18. March 2019 * $Date: 18. March 2019
* $Revision: V1.6.0 * $Revision: V1.6.0
@ -40,53 +41,50 @@
/** /**
@brief Shifts the elements of a Q15 vector a specified number of bits @brief Shifts the elements of a Q15 vector a specified number of bits
@param[in] pSrc points to the input vector @param[in] pSrc points to the input vector
@param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. @param[in] shiftBits number of bits to shift. A positive value shifts
left; a negative value shifts right.
@param[out] pDst points to the output vector @param[out] pDst points to the output vector
@param[in] blockSize number of samples in each vector @param[in] blockSize number of samples in each vector
@return none @return none
@par Scaling and Overflow Behavior @par Scaling and Overflow Behavior
The function uses saturating arithmetic. The function uses saturating arithmetic.
Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. Results outside of the allowable Q15 range [0x8000 0x7FFF]
are saturated.
*/ */
void arm_shift_q15( void arm_shift_q15(const q15_t *pSrc, int8_t shiftBits, q15_t *pDst,
const q15_t * pSrc, uint32_t blockSize) {
int8_t shiftBits, uint32_t blkCnt; /* Loop counter */
q15_t * pDst, uint8_t sign = (shiftBits & 0x80); /* Sign of shiftBits */
uint32_t blockSize)
{
uint32_t blkCnt; /* Loop counter */
uint8_t sign = (shiftBits & 0x80); /* Sign of shiftBits */
#if defined (ARM_MATH_LOOPUNROLL) #if defined(ARM_MATH_LOOPUNROLL)
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
q15_t in1, in2; /* Temporary input variables */ q15_t in1, in2; /* Temporary input variables */
#endif #endif
/* Loop unrolling: Compute 4 outputs at a time */ /* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U; blkCnt = blockSize >> 2U;
/* If the shift value is positive then do right shift else left shift */ /* If the shift value is positive then do right shift else left shift */
if (sign == 0U) if (sign == 0U) {
{ while (blkCnt > 0U) {
while (blkCnt > 0U)
{
/* C = A << shiftBits */ /* C = A << shiftBits */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* read 2 samples from source */ /* read 2 samples from source */
in1 = *pSrc++; in1 = *pSrc++;
in2 = *pSrc++; in2 = *pSrc++;
/* Shift the inputs and then store the results in the destination buffer. */ /* Shift the inputs and then store the results in the destination buffer.
*/
#ifndef ARM_MATH_BIG_ENDIAN #ifndef ARM_MATH_BIG_ENDIAN
write_q15x2_ia (&pDst, __PKHBT(__SSAT((in1 << shiftBits), 16), write_q15x2_ia(&pDst, __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16)); __SSAT((in2 << shiftBits), 16), 16));
#else #else
write_q15x2_ia (&pDst, __PKHBT(__SSAT((in2 << shiftBits), 16), write_q15x2_ia(&pDst, __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16)); __SSAT((in1 << shiftBits), 16), 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* read 2 samples from source */ /* read 2 samples from source */
@ -94,42 +92,40 @@ void arm_shift_q15(
in2 = *pSrc++; in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN #ifndef ARM_MATH_BIG_ENDIAN
write_q15x2_ia (&pDst, __PKHBT(__SSAT((in1 << shiftBits), 16), write_q15x2_ia(&pDst, __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16)); __SSAT((in2 << shiftBits), 16), 16));
#else #else
write_q15x2_ia (&pDst, __PKHBT(__SSAT((in2 << shiftBits), 16), write_q15x2_ia(&pDst, __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16)); __SSAT((in1 << shiftBits), 16), 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#else #else
*pDst++ = __SSAT(((q31_t) *pSrc++ << shiftBits), 16); *pDst++ = __SSAT(((q31_t)*pSrc++ << shiftBits), 16);
*pDst++ = __SSAT(((q31_t) *pSrc++ << shiftBits), 16); *pDst++ = __SSAT(((q31_t)*pSrc++ << shiftBits), 16);
*pDst++ = __SSAT(((q31_t) *pSrc++ << shiftBits), 16); *pDst++ = __SSAT(((q31_t)*pSrc++ << shiftBits), 16);
*pDst++ = __SSAT(((q31_t) *pSrc++ << shiftBits), 16); *pDst++ = __SSAT(((q31_t)*pSrc++ << shiftBits), 16);
#endif #endif
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} } else {
else while (blkCnt > 0U) {
{
while (blkCnt > 0U)
{
/* C = A >> shiftBits */ /* C = A >> shiftBits */
#if defined (ARM_MATH_DSP) #if defined(ARM_MATH_DSP)
/* read 2 samples from source */ /* read 2 samples from source */
in1 = *pSrc++; in1 = *pSrc++;
in2 = *pSrc++; in2 = *pSrc++;
/* Shift the inputs and then store the results in the destination buffer. */ /* Shift the inputs and then store the results in the destination buffer.
*/
#ifndef ARM_MATH_BIG_ENDIAN #ifndef ARM_MATH_BIG_ENDIAN
write_q15x2_ia (&pDst, __PKHBT((in1 >> -shiftBits), write_q15x2_ia(&pDst,
(in2 >> -shiftBits), 16)); __PKHBT((in1 >> -shiftBits), (in2 >> -shiftBits), 16));
#else #else
write_q15x2_ia (&pDst, __PKHBT((in2 >> -shiftBits), write_q15x2_ia(&pDst,
(in1 >> -shiftBits), 16)); __PKHBT((in2 >> -shiftBits), (in1 >> -shiftBits), 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* read 2 samples from source */ /* read 2 samples from source */
@ -137,11 +133,11 @@ void arm_shift_q15(
in2 = *pSrc++; in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN #ifndef ARM_MATH_BIG_ENDIAN
write_q15x2_ia (&pDst, __PKHBT((in1 >> -shiftBits), write_q15x2_ia(&pDst,
(in2 >> -shiftBits), 16)); __PKHBT((in1 >> -shiftBits), (in2 >> -shiftBits), 16));
#else #else
write_q15x2_ia (&pDst, __PKHBT((in2 >> -shiftBits), write_q15x2_ia(&pDst,
(in1 >> -shiftBits), 16)); __PKHBT((in2 >> -shiftBits), (in1 >> -shiftBits), 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
#else #else
@ -167,23 +163,18 @@ void arm_shift_q15(
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
/* If the shift value is positive then do right shift else left shift */ /* If the shift value is positive then do right shift else left shift */
if (sign == 0U) if (sign == 0U) {
{ while (blkCnt > 0U) {
while (blkCnt > 0U)
{
/* C = A << shiftBits */ /* C = A << shiftBits */
/* Shift input and store result in destination buffer. */ /* Shift input and store result in destination buffer. */
*pDst++ = __SSAT(((q31_t) *pSrc++ << shiftBits), 16); *pDst++ = __SSAT(((q31_t)*pSrc++ << shiftBits), 16);
/* Decrement loop counter */ /* Decrement loop counter */
blkCnt--; blkCnt--;
} }
} } else {
else while (blkCnt > 0U) {
{
while (blkCnt > 0U)
{
/* C = A >> shiftBits */ /* C = A >> shiftBits */
/* Shift input and store result in destination buffer. */ /* Shift input and store result in destination buffer. */
@ -193,7 +184,6 @@ void arm_shift_q15(
blkCnt--; blkCnt--;
} }
} }
} }
/** /**

Some files were not shown because too many files have changed in this diff Show more