pinebuds/rtos/rtx5/rtx_core_cm.h

1202 lines
34 KiB
C
Raw Normal View History

2022-08-15 04:20:27 -05:00
/*
* Copyright (c) 2013-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* -----------------------------------------------------------------------------
*
* Project: CMSIS-RTOS RTX
* Title: Cortex-M Core definitions
*
* -----------------------------------------------------------------------------
*/
#ifndef RTX_CORE_CM_H_
#define RTX_CORE_CM_H_
#ifndef RTX_CORE_C_H_
#include "RTE_Components.h"
#include CMSIS_device_header
#endif
#include <stdbool.h>
typedef bool bool_t;
#define FALSE ((bool_t)0)
#define TRUE ((bool_t)1)
#ifdef RTE_CMSIS_RTOS2_RTX5_ARMV8M_NS
#define DOMAIN_NS 1
#endif
#ifndef DOMAIN_NS
#define DOMAIN_NS 0
#endif
#if (DOMAIN_NS == 1)
#if ((!defined(__ARM_ARCH_8M_BASE__) || (__ARM_ARCH_8M_BASE__ == 0)) && \
(!defined(__ARM_ARCH_8M_MAIN__) || (__ARM_ARCH_8M_MAIN__ == 0)))
#error "Non-secure domain requires ARMv8-M Architecture!"
#endif
#endif
#ifndef EXCLUSIVE_ACCESS
#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ != 0)) || \
(defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ != 0)) || \
(defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0)) || \
(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ != 0)))
#define EXCLUSIVE_ACCESS 1
#else
#define EXCLUSIVE_ACCESS 0
#endif
#endif
#define OS_TICK_HANDLER SysTick_Handler
/// xPSR_Initialization Value
/// \param[in] privileged true=privileged, false=unprivileged
/// \param[in] thumb true=Thumb, false=ARM
/// \return xPSR Init Value
__STATIC_INLINE uint32_t xPSR_InitVal (bool_t privileged, bool_t thumb) {
(void)privileged;
(void)thumb;
return (0x01000000U);
}
// Stack Frame:
// - Extended: S16-S31, R4-R11, R0-R3, R12, LR, PC, xPSR, S0-S15, FPSCR
// - Basic: R4-R11, R0-R3, R12, LR, PC, xPSR
/// Stack Frame Initialization Value (EXC_RETURN[7..0])
#if (DOMAIN_NS == 1)
#define STACK_FRAME_INIT_VAL 0xBCU
#else
#define STACK_FRAME_INIT_VAL 0xFDU
#endif
/// Stack Offset of Register R0
/// \param[in] stack_frame Stack Frame (EXC_RETURN[7..0])
/// \return R0 Offset
__STATIC_INLINE uint32_t StackOffsetR0 (uint8_t stack_frame) {
#if (__FPU_USED == 1U)
return (((stack_frame & 0x10U) == 0U) ? ((16U+8U)*4U) : (8U*4U));
#else
(void)stack_frame;
return (8U*4U);
#endif
}
// ==== Core functions ====
//lint -sem(__get_CONTROL, pure)
//lint -sem(__get_IPSR, pure)
//lint -sem(__get_PRIMASK, pure)
//lint -sem(__get_BASEPRI, pure)
/// Check if running Privileged
/// \return true=privileged, false=unprivileged
__STATIC_INLINE bool_t IsPrivileged (void) {
return ((__get_CONTROL() & 1U) == 0U);
}
/// Check if in IRQ Mode
/// \return true=IRQ, false=thread
__STATIC_INLINE bool_t IsIrqMode (void) {
return (__get_IPSR() != 0U);
}
/// Check if IRQ is Masked
/// \return true=masked, false=not masked
__STATIC_INLINE bool_t IsIrqMasked (void) {
#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ != 0)) || \
(defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ != 0)) || \
(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ != 0)))
return ((__get_PRIMASK() != 0U) || (__get_BASEPRI() != 0U));
#else
return (__get_PRIMASK() != 0U);
#endif
}
// ==== Core Peripherals functions ====
/// Setup SVC and PendSV System Service Calls
__STATIC_INLINE void SVC_Setup (void) {
#if ((defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ != 0)) || \
(defined(__CORTEX_M) && (__CORTEX_M == 7U)))
uint32_t p, n;
SCB->SHPR[10] = 0xFFU;
n = 32U - (uint32_t)__CLZ(~(SCB->SHPR[10] | 0xFFFFFF00U));
p = NVIC_GetPriorityGrouping();
if (p >= n) {
n = p + 1U;
}
SCB->SHPR[7] = (uint8_t)(0xFEU << n);
#elif (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
uint32_t n;
SCB->SHPR[1] |= 0x00FF0000U;
n = SCB->SHPR[1];
SCB->SHPR[0] |= (n << (8+1)) & 0xFC000000U;
#elif ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ != 0)) || \
(defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ != 0)))
uint32_t p, n;
SCB->SHP[10] = 0xFFU;
n = 32U - (uint32_t)__CLZ(~(SCB->SHP[10] | 0xFFFFFF00U));
p = NVIC_GetPriorityGrouping();
if (p >= n) {
n = p + 1U;
}
SCB->SHP[7] = (uint8_t)(0xFEU << n);
#elif (defined(__ARM_ARCH_6M__) && (__ARM_ARCH_6M__ != 0))
uint32_t n;
SCB->SHP[1] |= 0x00FF0000U;
n = SCB->SHP[1];
SCB->SHP[0] |= (n << (8+1)) & 0xFC000000U;
#endif
}
/// Get Pending SV (Service Call) Flag
/// \return Pending SV Flag
__STATIC_INLINE uint8_t GetPendSV (void) {
return ((uint8_t)((SCB->ICSR & (SCB_ICSR_PENDSVSET_Msk)) >> 24));
}
/// Clear Pending SV (Service Call) Flag
__STATIC_INLINE void ClrPendSV (void) {
SCB->ICSR = SCB_ICSR_PENDSVCLR_Msk;
}
/// Set Pending SV (Service Call) Flag
__STATIC_INLINE void SetPendSV (void) {
SCB->ICSR = SCB_ICSR_PENDSVSET_Msk;
}
// ==== Service Calls definitions ====
//lint -save -e9023 -e9024 -e9026 "Function-like macros using '#/##'" [MISRA Note 10]
#if defined(__CC_ARM)
#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ != 0)) || \
(defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ != 0)) || \
(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ != 0)))
#define __SVC_INDIRECT(n) __svc_indirect(n)
#elif ((defined(__ARM_ARCH_6M__) && (__ARM_ARCH_6M__ != 0)) || \
(defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0)))
#define __SVC_INDIRECT(n) __svc_indirect_r7(n)
#endif
#define SVC0_0N(f,t) \
__SVC_INDIRECT(0) t svc##f (t(*)()); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
svc##f(svcRtx##f); \
}
#define SVC0_0(f,t) \
__SVC_INDIRECT(0) t svc##f (t(*)()); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
return svc##f(svcRtx##f); \
}
#define SVC0_1N(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1),t1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
svc##f(svcRtx##f,a1); \
}
#define SVC0_1(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1),t1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
return svc##f(svcRtx##f,a1); \
}
#define SVC0_2(f,t,t1,t2) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1,t2),t1,t2); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \
return svc##f(svcRtx##f,a1,a2); \
}
#define SVC0_3(f,t,t1,t2,t3) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1,t2,t3),t1,t2,t3); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \
return svc##f(svcRtx##f,a1,a2,a3); \
}
#define SVC0_4(f,t,t1,t2,t3,t4) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1,t2,t3,t4),t1,t2,t3,t4); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
return svc##f(svcRtx##f,a1,a2,a3,a4); \
}
#elif defined(__ICCARM__)
#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ != 0)) || \
(defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ != 0)) || \
(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ != 0)))
#define SVC_ArgF(f) \
__asm( \
"mov r12,%0\n" \
:: "r"(&f): "r12" \
);
#elif ((defined(__ARM_ARCH_6M__) && (__ARM_ARCH_6M__ != 0)) || \
(defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0)))
#define SVC_ArgF(f) \
__asm( \
"mov r7,%0\n" \
:: "r"(&f): "r7" \
);
#endif
#define STRINGIFY(a) #a
#define __SVC_INDIRECT(n) _Pragma(STRINGIFY(swi_number = n)) __swi
#define SVC0_0N(f,t) \
__SVC_INDIRECT(0) t svc##f (); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgF(svcRtx##f); \
svc##f(); \
}
#define SVC0_0(f,t) \
__SVC_INDIRECT(0) t svc##f (); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgF(svcRtx##f); \
return svc##f(); \
}
#define SVC0_1N(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t1 a1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgF(svcRtx##f); \
svc##f(a1); \
}
#define SVC0_1(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t1 a1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1); \
}
#define SVC0_2(f,t,t1,t2) \
__SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1,a2); \
}
#define SVC0_3(f,t,t1,t2,t3) \
__SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2, t3 a3); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1,a2,a3); \
}
#define SVC0_4(f,t,t1,t2,t3,t4) \
__SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2, t3 a3, t4 a4); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1,a2,a3,a4); \
}
#else // !(defined(__CC_ARM) || defined(__ICCARM__))
//lint -esym(522,__svc*) "Functions '__svc*' are impure (side-effects)"
#if ((defined(__ARM_ARCH_7M__) && (__ARM_ARCH_7M__ != 0)) || \
(defined(__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ != 0)) || \
(defined(__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ != 0)))
#define SVC_RegF "r12"
#elif ((defined(__ARM_ARCH_6M__) && (__ARM_ARCH_6M__ != 0)) || \
(defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0)))
#define SVC_RegF "r7"
#endif
#define SVC_ArgN(n) \
register uint32_t __r##n __ASM("r"#n)
#define SVC_ArgR(n,a) \
register uint32_t __r##n __ASM("r"#n) = (uint32_t)a
#define SVC_ArgF(f) \
register uint32_t __rf __ASM(SVC_RegF) = (uint32_t)f
#define SVC_In0 "r"(__rf)
#define SVC_In1 "r"(__rf),"r"(__r0)
#define SVC_In2 "r"(__rf),"r"(__r0),"r"(__r1)
#define SVC_In3 "r"(__rf),"r"(__r0),"r"(__r1),"r"(__r2)
#define SVC_In4 "r"(__rf),"r"(__r0),"r"(__r1),"r"(__r2),"r"(__r3)
#define SVC_Out0
#define SVC_Out1 "=r"(__r0)
#define SVC_CL0
#define SVC_CL1 "r1"
#define SVC_CL2 "r0","r1"
#define SVC_Call0(in, out, cl) \
__ASM volatile ("svc 0" : out : in : cl)
#define SVC0_0N(f,t) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In0, SVC_Out0, SVC_CL2); \
}
#define SVC0_0(f,t) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgN(0); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In0, SVC_Out1, SVC_CL1); \
return (t) __r0; \
}
#define SVC0_1N(f,t,t1) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgR(0,a1); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In1, SVC_Out0, SVC_CL1); \
}
#define SVC0_1(f,t,t1) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgR(0,a1); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In1, SVC_Out1, SVC_CL1); \
return (t) __r0; \
}
#define SVC0_2(f,t,t1,t2) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \
SVC_ArgR(0,a1); \
SVC_ArgR(1,a2); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In2, SVC_Out1, SVC_CL0); \
return (t) __r0; \
}
#define SVC0_3(f,t,t1,t2,t3) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \
SVC_ArgR(0,a1); \
SVC_ArgR(1,a2); \
SVC_ArgR(2,a3); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In3, SVC_Out1, SVC_CL0); \
return (t) __r0; \
}
#define SVC0_4(f,t,t1,t2,t3,t4) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
SVC_ArgR(0,a1); \
SVC_ArgR(1,a2); \
SVC_ArgR(2,a3); \
SVC_ArgR(3,a4); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In4, SVC_Out1, SVC_CL0); \
return (t) __r0; \
}
#endif
//lint -restore [MISRA Note 10]
// ==== Exclusive Access Operation ====
#if (EXCLUSIVE_ACCESS == 1)
//lint ++flb "Library Begin" [MISRA Note 12]
/// Atomic Access Operation: Write (8-bit)
/// \param[in] mem Memory address
/// \param[in] val Value to write
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint8_t atomic_wr8 (uint8_t *mem, uint8_t val) {
mov r2,r0
1
ldrexb r0,[r2]
strexb r3,r1,[r2]
cbz r3,%F2
b %B1
2
bx lr
}
#else
__STATIC_INLINE uint8_t atomic_wr8 (uint8_t *mem, uint8_t val) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint8_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexb %[ret],[%[mem]]\n\t"
"strexb %[res],%[val],[%[mem]]\n\t"
"cbz %[res],2f\n\t"
"b 1b\n"
"2:"
: [ret] "=&l" (ret),
[res] "=&l" (res)
: [mem] "l" (mem),
[val] "l" (val)
: "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Set bits (32-bit)
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return New value
#if defined(__CC_ARM)
static __asm uint32_t atomic_set32 (uint32_t *mem, uint32_t bits) {
mov r2,r0
1
ldrex r0,[r2]
orr r0,r0,r1
strex r3,r0,[r2]
cbz r3,%F2
b %B1
2
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_set32 (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[val],[%[mem]]\n\t"
#if (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
"mov %[ret],%[val]\n\t"
"orrs %[ret],%[bits]\n\t"
#else
"orr %[ret],%[val],%[bits]\n\t"
#endif
"strex %[res],%[ret],[%[mem]]\n\t"
"cbz %[res],2f\n\t"
"b 1b\n"
"2:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
#if (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
: "memory", "cc"
#else
: "memory"
#endif
);
return ret;
}
#endif
/// Atomic Access Operation: Clear bits (32-bit)
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_clr32 (uint32_t *mem, uint32_t bits) {
push {r4,lr}
mov r2,r0
1
ldrex r0,[r2]
bic r4,r0,r1
strex r3,r4,[r2]
cbz r3,%F2
b %B1
2
pop {r4,pc}
}
#else
__STATIC_INLINE uint32_t atomic_clr32 (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
#if (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
"mov %[val],%[ret]\n\t"
"bics %[val],%[bits]\n\t"
#else
"bic %[val],%[ret],%[bits]\n\t"
#endif
"strex %[res],%[val],[%[mem]]\n\t"
"cbz %[res],2f\n\t"
"b 1b\n"
"2:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
#if (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
: "memory", "cc"
#else
: "memory"
#endif
);
return ret;
}
#endif
/// Atomic Access Operation: Check if all specified bits (32-bit) are active and clear them
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return Active bits before clearing or 0 if not active
#if defined(__CC_ARM)
static __asm uint32_t atomic_chk32_all (uint32_t *mem, uint32_t bits) {
push {r4,lr}
mov r2,r0
1
ldrex r0,[r2]
and r4,r0,r1
cmp r4,r1
beq %F2
clrex
movs r0,#0
pop {r4,pc}
2
bic r4,r0,r1
strex r3,r4,[r2]
cbz r3,%F3
b %B1
3
pop {r4,pc}
}
#else
__STATIC_INLINE uint32_t atomic_chk32_all (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
#if (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
"mov %[val],%[ret]\n\t"
"ands %[val],%[bits]\n\t"
#else
"and %[val],%[ret],%[bits]\n\t"
#endif
"cmp %[val],%[bits]\n\t"
"beq 2f\n\t"
"clrex\n\t"
"movs %[ret],#0\n\t"
"b 3f\n"
"2:\n\t"
#if (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
"mov %[val],%[ret]\n\t"
"bics %[val],%[bits]\n\t"
#else
"bic %[val],%[ret],%[bits]\n\t"
#endif
"strex %[res],%[val],[%[mem]]\n\t"
"cbz %[res],3f\n\t"
"b 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Check if any specified bits (32-bit) are active and clear them
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return Active bits before clearing or 0 if not active
#if defined(__CC_ARM)
static __asm uint32_t atomic_chk32_any (uint32_t *mem, uint32_t bits) {
push {r4,lr}
mov r2,r0
1
ldrex r0,[r2]
tst r0,r1
bne %F2
clrex
movs r0,#0
pop {r4,pc}
2
bic r4,r0,r1
strex r3,r4,[r2]
cbz r3,%F3
b %B1
3
pop {r4,pc}
}
#else
__STATIC_INLINE uint32_t atomic_chk32_any (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"tst %[ret],%[bits]\n\t"
"bne 2f\n\t"
"clrex\n\t"
"movs %[ret],#0\n\t"
"b 3f\n"
"2:\n\t"
#if (defined(__ARM_ARCH_8M_BASE__) && (__ARM_ARCH_8M_BASE__ != 0))
"mov %[val],%[ret]\n\t"
"bics %[val],%[bits]\n\t"
#else
"bic %[val],%[ret],%[bits]\n\t"
#endif
"strex %[res],%[val],[%[mem]]\n\t"
"cbz %[res],3f\n\t"
"b 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Increment (32-bit)
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_inc32 (uint32_t *mem) {
mov r2,r0
1
ldrex r0,[r2]
adds r1,r0,#1
strex r3,r1,[r2]
cbz r3,%F2
b %B1
2
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_inc32 (uint32_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"adds %[val],%[ret],#1\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cbz %[res],2f\n\t"
"b 1b\n"
"2:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Increment (16-bit) if Less Than
/// \param[in] mem Memory address
/// \param[in] max Maximum value
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint16_t atomic_inc16_lt (uint16_t *mem, uint16_t max) {
push {r4,lr}
mov r2,r0
1
ldrexh r0,[r2]
cmp r1,r0
bhi %F2
clrex
pop {r4,pc}
2
adds r4,r0,#1
strexh r3,r4,[r2]
cbz r3,%F3
b %B1
3
pop {r4,pc}
}
#else
__STATIC_INLINE uint16_t atomic_inc16_lt (uint16_t *mem, uint16_t max) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint16_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexh %[ret],[%[mem]]\n\t"
"cmp %[max],%[ret]\n\t"
"bhi 2f\n\t"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"adds %[val],%[ret],#1\n\t"
"strexh %[res],%[val],[%[mem]]\n\t"
"cbz %[res],3f\n\t"
"b 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[max] "l" (max)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Increment (16-bit) and clear on Limit
/// \param[in] mem Memory address
/// \param[in] max Maximum value
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint16_t atomic_inc16_lim (uint16_t *mem, uint16_t lim) {
push {r4,lr}
mov r2,r0
1
ldrexh r0,[r2]
adds r4,r0,#1
cmp r1,r4
bhi %F2
movs r4,#0
2
strexh r3,r4,[r2]
cbz r3,%F3
b %B1
3
pop {r4,pc}
}
#else
__STATIC_INLINE uint16_t atomic_inc16_lim (uint16_t *mem, uint16_t lim) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint16_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexh %[ret],[%[mem]]\n\t"
"adds %[val],%[ret],#1\n\t"
"cmp %[lim],%[val]\n\t"
"bhi 2f\n\t"
"movs %[val],#0\n"
"2:\n\t"
"strexh %[res],%[val],[%[mem]]\n\t"
"cbz %[res],3f\n\t"
"b 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[lim] "l" (lim)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Decrement (32-bit)
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_dec32 (uint32_t *mem) {
mov r2,r0
1
ldrex r0,[r2]
subs r1,r0,#1
strex r3,r1,[r2]
cbz r3,%F2
b %B1
2
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_dec32 (uint32_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"subs %[val],%[ret],#1\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cbz %[res],2f\n\t"
"b 1b\n"
"2:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Decrement (32-bit) if Not Zero
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_dec32_nz (uint32_t *mem) {
mov r2,r0
1
ldrex r0,[r2]
cbnz r0,%F2
clrex
bx lr
2
subs r1,r0,#1
strex r3,r1,[r2]
cbz r3,%F3
b %B1
3
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_dec32_nz (uint32_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"cbnz %[ret],2f\n\t"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"subs %[val],%[ret],#1\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cbz %[res],3f\n\t"
"b 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Decrement (16-bit) if Not Zero
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint16_t atomic_dec16_nz (uint16_t *mem) {
mov r2,r0
1
ldrexh r0,[r2]
cbnz r0,%F2
clrex
bx lr
2
subs r1,r0,#1
strexh r3,r1,[r2]
cbz r3,%F3
b %B1
3
bx lr
}
#else
__STATIC_INLINE uint16_t atomic_dec16_nz (uint16_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint16_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexh %[ret],[%[mem]]\n\t"
"cbnz %[ret],2f\n\t"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"subs %[val],%[ret],#1\n\t"
"strexh %[res],%[val],[%[mem]]\n\t"
"cbz %[res],3f\n\t"
"b 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Link Get
/// \param[in] root Root address
/// \return Link
#if defined(__CC_ARM)
static __asm void *atomic_link_get (void **root) {
mov r2,r0
1
ldrex r0,[r2]
cbnz r0,%F2
clrex
bx lr
2
ldr r1,[r0]
strex r3,r1,[r2]
cbz r3,%F3
b %B1
3
bx lr
}
#else
__STATIC_INLINE void *atomic_link_get (void **root) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register void *ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[root]]\n\t"
"cbnz %[ret],2f\n\t"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"ldr %[val],[%[ret]]\n\t"
"strex %[res],%[val],[%[root]]\n\t"
"cbz %[res],3f\n\t"
"b 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [root] "l" (root)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Link Put
/// \param[in] root Root address
/// \param[in] lnk Link
#if defined(__CC_ARM)
static __asm void atomic_link_put (void **root, void *link) {
1
ldr r2,[r0]
str r2,[r1]
dmb
ldrex r2,[r0]
ldr r3,[r1]
cmp r3,r2
bne %B1
strex r3,r1,[r0]
cbz r3,%F2
b %B1
2
bx lr
}
#else
__STATIC_INLINE void atomic_link_put (void **root, void *link) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val1, val2, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldr %[val1],[%[root]]\n\t"
"str %[val1],[%[link]]\n\t"
"dmb\n\t"
"ldrex %[val1],[%[root]]\n\t"
"ldr %[val2],[%[link]]\n\t"
"cmp %[val2],%[val1]\n\t"
"bne 1b\n\t"
"strex %[res],%[link],[%[root]]\n\t"
"cbz %[res],2f\n\t"
"b 1b\n"
"2:"
: [val1] "=&l" (val1),
[val2] "=&l" (val2),
[res] "=&l" (res)
: [root] "l" (root),
[link] "l" (link)
: "cc", "memory"
);
}
#endif
//lint --flb "Library End" [MISRA Note 12]
#endif // (EXCLUSIVE_ACCESS == 1)
#endif // RTX_CORE_CM_H_