pinebuds/rtos/rtx5/rtx_core_ca.h

1122 lines
30 KiB
C
Raw Permalink Normal View History

2022-08-15 04:20:27 -05:00
/*
* Copyright (c) 2013-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* -----------------------------------------------------------------------------
*
* Project: CMSIS-RTOS RTX
* Title: Cortex-A Core definitions
*
* -----------------------------------------------------------------------------
*/
#ifndef RTX_CORE_CA_H_
#define RTX_CORE_CA_H_
#ifndef RTX_CORE_C_H_
#include "RTE_Components.h"
#include CMSIS_device_header
#endif
#include <stdbool.h>
typedef bool bool_t;
#define FALSE ((bool_t)0)
#define TRUE ((bool_t)1)
#define DOMAIN_NS 0
#define EXCLUSIVE_ACCESS 1
#define OS_TICK_HANDLER osRtxTick_Handler
// CPSR bit definitions
#define CPSR_T_BIT 0x20U
#define CPSR_I_BIT 0x80U
#define CPSR_F_BIT 0x40U
// CPSR mode bitmasks
#define CPSR_MODE_USER 0x10U
#define CPSR_MODE_SYSTEM 0x1FU
/// xPSR_Initialization Value
/// \param[in] privileged true=privileged, false=unprivileged
/// \param[in] thumb true=Thumb, false=Arm
/// \return xPSR Init Value
__STATIC_INLINE uint32_t xPSR_InitVal (bool_t privileged, bool_t thumb) {
uint32_t psr;
if (privileged) {
if (thumb) {
psr = CPSR_MODE_SYSTEM | CPSR_T_BIT;
} else {
psr = CPSR_MODE_SYSTEM;
}
} else {
if (thumb) {
psr = CPSR_MODE_USER | CPSR_T_BIT;
} else {
psr = CPSR_MODE_USER;
}
}
return psr;
}
// Stack Frame:
// - VFP-D32: D16-31, D0-D15, FPSCR, Reserved, R4-R11, R0-R3, R12, LR, PC, CPSR
// - VFP-D16: D0-D15, FPSCR, Reserved, R4-R11, R0-R3, R12, LR, PC, CPSR
// - Basic: R4-R11, R0-R3, R12, LR, PC, CPSR
/// Stack Frame Initialization Value
#define STACK_FRAME_INIT_VAL 0x00U
/// Stack Offset of Register R0
/// \param[in] stack_frame Stack Frame
/// \return R0 Offset
__STATIC_INLINE uint32_t StackOffsetR0 (uint8_t stack_frame) {
uint32_t offset;
if ((stack_frame & 0x04U) != 0U) {
offset = (32U*8U) + (2U*4U) + (8U*4U);
} else if ((stack_frame & 0x02U) != 0U) {
offset = (16U*8U) + (2U*4U) + (8U*4U);
} else {
offset = (8U*4U);
}
return offset;
}
// ==== Emulated Cortex-M functions ====
/// Get xPSR Register - emulate M profile: SP_usr - (8*4)
/// \return xPSR Register value
#if defined(__CC_ARM)
#pragma push
#pragma arm
static __asm uint32_t __get_PSP (void) {
sub sp, sp, #4
stm sp, {sp}^
pop {r0}
sub r0, r0, #32
bx lr
}
#pragma pop
#else
#ifdef __ICCARM__
__arm
#else
__attribute__((target("arm")))
#endif
__STATIC_INLINE uint32_t __get_PSP (void) {
register uint32_t ret;
__ASM volatile (
"sub sp,sp,#4\n\t"
"stm sp,{sp}^\n\t"
"pop {%[ret]}\n\t"
"sub %[ret],%[ret],#32\n\t"
: [ret] "=&l" (ret)
:
: "memory"
);
return ret;
}
#endif
/// Set Control Register - not needed for A profile
/// \param[in] control Control Register value to set
__STATIC_INLINE void __set_CONTROL(uint32_t control) {
(void)control;
}
// ==== Core functions ====
/// Check if running Privileged
/// \return true=privileged, false=unprivileged
__STATIC_INLINE bool_t IsPrivileged (void) {
return (__get_mode() != CPSR_MODE_USER);
}
/// Check if in IRQ Mode
/// \return true=IRQ, false=thread
__STATIC_INLINE bool_t IsIrqMode (void) {
return ((__get_mode() != CPSR_MODE_USER) && (__get_mode() != CPSR_MODE_SYSTEM));
}
/// Check if IRQ is Masked
/// \return true=masked, false=not masked
__STATIC_INLINE bool_t IsIrqMasked (void) {
return FALSE;
}
// ==== Core Peripherals functions ====
extern uint8_t IRQ_PendSV;
/// Setup SVC and PendSV System Service Calls (not needed on Cortex-A)
__STATIC_INLINE void SVC_Setup (void) {
}
/// Get Pending SV (Service Call) Flag
/// \return Pending SV Flag
__STATIC_INLINE uint8_t GetPendSV (void) {
return (IRQ_PendSV);
}
/// Clear Pending SV (Service Call) Flag
__STATIC_INLINE void ClrPendSV (void) {
IRQ_PendSV = 0U;
}
/// Set Pending SV (Service Call) Flag
__STATIC_INLINE void SetPendSV (void) {
IRQ_PendSV = 1U;
}
// ==== Service Calls definitions ====
#if defined(__CC_ARM)
#define __SVC_INDIRECT(n) __svc_indirect(n)
#define SVC0_0N(f,t) \
__SVC_INDIRECT(0) t svc##f (t(*)()); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
svc##f(svcRtx##f); \
}
#define SVC0_0(f,t) \
__SVC_INDIRECT(0) t svc##f (t(*)()); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
return svc##f(svcRtx##f); \
}
#define SVC0_1N(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1),t1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
svc##f(svcRtx##f,a1); \
}
#define SVC0_1(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1),t1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
return svc##f(svcRtx##f,a1); \
}
#define SVC0_2(f,t,t1,t2) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1,t2),t1,t2); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \
return svc##f(svcRtx##f,a1,a2); \
}
#define SVC0_3(f,t,t1,t2,t3) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1,t2,t3),t1,t2,t3); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \
return svc##f(svcRtx##f,a1,a2,a3); \
}
#define SVC0_4(f,t,t1,t2,t3,t4) \
__SVC_INDIRECT(0) t svc##f (t(*)(t1,t2,t3,t4),t1,t2,t3,t4); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
return svc##f(svcRtx##f,a1,a2,a3,a4); \
}
#elif defined(__ICCARM__)
#define SVC_ArgF(f) \
__asm( \
"mov r12,%0\n" \
:: "r"(&f): "r12" \
);
#define STRINGIFY(a) #a
#define __SVC_INDIRECT(n) _Pragma(STRINGIFY(swi_number = n)) __swi
#define SVC0_0N(f,t) \
__SVC_INDIRECT(0) t svc##f (); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgF(svcRtx##f); \
svc##f(); \
}
#define SVC0_0(f,t) \
__SVC_INDIRECT(0) t svc##f (); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgF(svcRtx##f); \
return svc##f(); \
}
#define SVC0_1N(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t1 a1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgF(svcRtx##f); \
svc##f(a1); \
}
#define SVC0_1(f,t,t1) \
__SVC_INDIRECT(0) t svc##f (t1 a1); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1); \
}
#define SVC0_2(f,t,t1,t2) \
__SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1,a2); \
}
#define SVC0_3(f,t,t1,t2,t3) \
__SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2, t3 a3); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1,a2,a3); \
}
#define SVC0_4(f,t,t1,t2,t3,t4) \
__SVC_INDIRECT(0) t svc##f (t1 a1, t2 a2, t3 a3, t4 a4); \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
SVC_ArgF(svcRtx##f); \
return svc##f(a1,a2,a3,a4); \
}
#else // !(defined(__CC_ARM) || defined(__ICCARM__))
#define SVC_RegF "r12"
#define SVC_ArgN(n) \
register uint32_t __r##n __ASM("r"#n)
#define SVC_ArgR(n,a) \
register uint32_t __r##n __ASM("r"#n) = (uint32_t)a
#define SVC_ArgF(f) \
register uint32_t __rf __ASM(SVC_RegF) = (uint32_t)f
#define SVC_In0 "r"(__rf)
#define SVC_In1 "r"(__rf),"r"(__r0)
#define SVC_In2 "r"(__rf),"r"(__r0),"r"(__r1)
#define SVC_In3 "r"(__rf),"r"(__r0),"r"(__r1),"r"(__r2)
#define SVC_In4 "r"(__rf),"r"(__r0),"r"(__r1),"r"(__r2),"r"(__r3)
#define SVC_Out0
#define SVC_Out1 "=r"(__r0)
#define SVC_CL0
#define SVC_CL1 "r1"
#define SVC_CL2 "r0","r1"
#define SVC_Call0(in, out, cl) \
__ASM volatile ("svc 0" : out : in : cl)
#define SVC0_0N(f,t) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In0, SVC_Out0, SVC_CL2); \
}
#define SVC0_0(f,t) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (void) { \
SVC_ArgN(0); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In0, SVC_Out1, SVC_CL1); \
return (t) __r0; \
}
#define SVC0_1N(f,t,t1) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgR(0,a1); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In1, SVC_Out0, SVC_CL1); \
}
#define SVC0_1(f,t,t1) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1) { \
SVC_ArgR(0,a1); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In1, SVC_Out1, SVC_CL1); \
return (t) __r0; \
}
#define SVC0_2(f,t,t1,t2) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2) { \
SVC_ArgR(0,a1); \
SVC_ArgR(1,a2); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In2, SVC_Out1, SVC_CL0); \
return (t) __r0; \
}
#define SVC0_3(f,t,t1,t2,t3) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3) { \
SVC_ArgR(0,a1); \
SVC_ArgR(1,a2); \
SVC_ArgR(2,a3); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In3, SVC_Out1, SVC_CL0); \
return (t) __r0; \
}
#define SVC0_4(f,t,t1,t2,t3,t4) \
__attribute__((always_inline)) \
__STATIC_INLINE t __svc##f (t1 a1, t2 a2, t3 a3, t4 a4) { \
SVC_ArgR(0,a1); \
SVC_ArgR(1,a2); \
SVC_ArgR(2,a3); \
SVC_ArgR(3,a4); \
SVC_ArgF(svcRtx##f); \
SVC_Call0(SVC_In4, SVC_Out1, SVC_CL0); \
return (t) __r0; \
}
#endif
// ==== Exclusive Access Operation ====
#if (EXCLUSIVE_ACCESS == 1)
/// Atomic Access Operation: Write (8-bit)
/// \param[in] mem Memory address
/// \param[in] val Value to write
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint8_t atomic_wr8 (uint8_t *mem, uint8_t val) {
mov r2,r0
1
ldrexb r0,[r2]
strexb r3,r1,[r2]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE uint8_t atomic_wr8 (uint8_t *mem, uint8_t val) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint8_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexb %[ret],[%[mem]]\n\t"
"strexb %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n\t"
: [ret] "=&l" (ret),
[res] "=&l" (res)
: [mem] "l" (mem),
[val] "l" (val)
: "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Set bits (32-bit)
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return New value
#if defined(__CC_ARM)
static __asm uint32_t atomic_set32 (uint32_t *mem, uint32_t bits) {
mov r2,r0
1
ldrex r0,[r2]
orr r0,r0,r1
strex r3,r0,[r2]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_set32 (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[val],[%[mem]]\n\t"
"orr %[ret],%[val],%[bits]\n\t"
"strex %[res],%[ret],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
: "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Clear bits (32-bit)
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_clr32 (uint32_t *mem, uint32_t bits) {
push {r4,lr}
mov r2,r0
1
ldrex r0,[r2]
bic r4,r0,r1
strex r3,r4,[r2]
cmp r3,#0
bne %B1
pop {r4,pc}
}
#else
__STATIC_INLINE uint32_t atomic_clr32 (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"bic %[val],%[ret],%[bits]\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
: "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Check if all specified bits (32-bit) are active and clear them
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return Active bits before clearing or 0 if not active
#if defined(__CC_ARM)
static __asm uint32_t atomic_chk32_all (uint32_t *mem, uint32_t bits) {
push {r4,lr}
mov r2,r0
1
ldrex r0,[r2]
and r4,r0,r1
cmp r4,r1
beq %F2
clrex
movs r0,#0
pop {r4,pc}
2
bic r4,r0,r1
strex r3,r4,[r2]
cmp r3,#0
bne %B1
pop {r4,pc}
}
#else
__STATIC_INLINE uint32_t atomic_chk32_all (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"and %[val],%[ret],%[bits]\n\t"
"cmp %[val],%[bits]\n\t"
"beq 2f\n\t"
"clrex\n\t"
"movs %[ret],#0\n\t"
"b 3f\n"
"2:\n\t"
"bic %[val],%[ret],%[bits]\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Check if any specified bits (32-bit) are active and clear them
/// \param[in] mem Memory address
/// \param[in] bits Bit mask
/// \return Active bits before clearing or 0 if not active
#if defined(__CC_ARM)
static __asm uint32_t atomic_chk32_any (uint32_t *mem, uint32_t bits) {
push {r4,lr}
mov r2,r0
1
ldrex r0,[r2]
tst r0,r1
bne %F2
clrex
movs r0,#0
pop {r4,pc}
2
bic r4,r0,r1
strex r3,r4,[r2]
cmp r3,#0
bne %B1
pop {r4,pc}
}
#else
__STATIC_INLINE uint32_t atomic_chk32_any (uint32_t *mem, uint32_t bits) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"tst %[ret],%[bits]\n\t"
"bne 2f\n\t"
"clrex\n\t"
"movs %[ret],#0\n\t"
"b 3f\n"
"2:\n\t"
"bic %[val],%[ret],%[bits]\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[bits] "l" (bits)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Increment (32-bit)
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_inc32 (uint32_t *mem) {
mov r2,r0
1
ldrex r0,[r2]
adds r1,r0,#1
strex r3,r1,[r2]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_inc32 (uint32_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"adds %[val],%[ret],#1\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Increment (16-bit) if Less Than
/// \param[in] mem Memory address
/// \param[in] max Maximum value
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint16_t atomic_inc16_lt (uint16_t *mem, uint16_t max) {
push {r4,lr}
mov r2,r0
1
ldrexh r0,[r2]
cmp r1,r0
bhi %F2
clrex
pop {r4,pc}
2
adds r4,r0,#1
strexh r3,r4,[r2]
cmp r3,#0
bne %B1
pop {r4,pc}
}
#else
__STATIC_INLINE uint16_t atomic_inc16_lt (uint16_t *mem, uint16_t max) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint16_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexh %[ret],[%[mem]]\n\t"
"cmp %[max],%[ret]\n\t"
"bhi 2f\n\t"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"adds %[val],%[ret],#1\n\t"
"strexh %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[max] "l" (max)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Increment (16-bit) and clear on Limit
/// \param[in] mem Memory address
/// \param[in] max Maximum value
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint16_t atomic_inc16_lim (uint16_t *mem, uint16_t lim) {
push {r4,lr}
mov r2,r0
1
ldrexh r0,[r2]
adds r4,r0,#1
cmp r1,r4
bhi %F2
movs r4,#0
2
strexh r3,r4,[r2]
cmp r3,#0
bne %B1
pop {r4,pc}
}
#else
__STATIC_INLINE uint16_t atomic_inc16_lim (uint16_t *mem, uint16_t lim) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint16_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexh %[ret],[%[mem]]\n\t"
"adds %[val],%[ret],#1\n\t"
"cmp %[lim],%[val]\n\t"
"bhi 2f\n\t"
"movs %[val],#0\n"
"2:\n\t"
"strexh %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem),
[lim] "l" (lim)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Decrement (32-bit)
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_dec32 (uint32_t *mem) {
mov r2,r0
1
ldrex r0,[r2]
subs r1,r0,#1
strex r3,r1,[r2]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_dec32 (uint32_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"subs %[val],%[ret],#1\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Decrement (32-bit) if Not Zero
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint32_t atomic_dec32_nz (uint32_t *mem) {
mov r2,r0
1
ldrex r0,[r2]
cmp r0,#0
bne %F2
clrex
bx lr
2
subs r1,r0,#1
strex r3,r1,[r2]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE uint32_t atomic_dec32_nz (uint32_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint32_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[mem]]\n\t"
"cmp %[ret],#0\n\t"
"bne 2f\n"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"subs %[val],%[ret],#1\n\t"
"strex %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Decrement (16-bit) if Not Zero
/// \param[in] mem Memory address
/// \return Previous value
#if defined(__CC_ARM)
static __asm uint16_t atomic_dec16_nz (uint16_t *mem) {
mov r2,r0
1
ldrexh r0,[r2]
cmp r0,#0
bne %F2
clrex
bx lr
2
subs r1,r0,#1
strexh r3,r1,[r2]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE uint16_t atomic_dec16_nz (uint16_t *mem) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register uint16_t ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrexh %[ret],[%[mem]]\n\t"
"cmp %[ret],#0\n\t"
"bne 2f\n\t"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"subs %[val],%[ret],#1\n\t"
"strexh %[res],%[val],[%[mem]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [mem] "l" (mem)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Link Get
/// \param[in] root Root address
/// \return Link
#if defined(__CC_ARM)
static __asm void *atomic_link_get (void **root) {
mov r2,r0
1
ldrex r0,[r2]
cmp r0,#0
bne %F2
clrex
bx lr
2
ldr r1,[r0]
strex r3,r1,[r2]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE void *atomic_link_get (void **root) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
register void *ret;
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldrex %[ret],[%[root]]\n\t"
"cmp %[ret],#0\n\t"
"bne 2f\n\t"
"clrex\n\t"
"b 3f\n"
"2:\n\t"
"ldr %[val],[%[ret]]\n\t"
"strex %[res],%[val],[%[root]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
"3:"
: [ret] "=&l" (ret),
[val] "=&l" (val),
[res] "=&l" (res)
: [root] "l" (root)
: "cc", "memory"
);
return ret;
}
#endif
/// Atomic Access Operation: Link Put
/// \param[in] root Root address
/// \param[in] lnk Link
#if defined(__CC_ARM)
static __asm void atomic_link_put (void **root, void *link) {
1
ldr r2,[r0]
str r2,[r1]
dmb
ldrex r2,[r0]
ldr r3,[r1]
cmp r3,r2
bne %B1
strex r3,r1,[r0]
cmp r3,#0
bne %B1
bx lr
}
#else
__STATIC_INLINE void atomic_link_put (void **root, void *link) {
#ifdef __ICCARM__
#pragma diag_suppress=Pe550
#endif
register uint32_t val1, val2, res;
#ifdef __ICCARM__
#pragma diag_default=Pe550
#endif
__ASM volatile (
#ifndef __ICCARM__
".syntax unified\n\t"
#endif
"1:\n\t"
"ldr %[val1],[%[root]]\n\t"
"str %[val1],[%[link]]\n\t"
"dmb\n\t"
"ldrex %[val1],[%[root]]\n\t"
"ldr %[val2],[%[link]]\n\t"
"cmp %[val2],%[val1]\n\t"
"bne 1b\n\t"
"strex %[res],%[link],[%[root]]\n\t"
"cmp %[res],#0\n\t"
"bne 1b\n"
: [val1] "=&l" (val1),
[val2] "=&l" (val2),
[res] "=&l" (res)
: [root] "l" (root),
[link] "l" (link)
: "cc", "memory"
);
}
#endif
#endif // (EXCLUSIVE_ACCESS == 1)
#endif // RTX_CORE_CA_H_