pinebuds/platform/cmsis/inc/ca/cmsis_armclang_ca.h

586 lines
19 KiB
C
Raw Permalink Normal View History

2022-08-15 04:20:27 -05:00
/**************************************************************************//**
* @file cmsis_armclang.h
* @brief CMSIS compiler specific macros, functions, instructions
* @version V1.1.1
* @date 15. May 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCLANG_CA_H
#define __CMSIS_ARMCLANG_CA_H
#pragma clang system_header /* treat file as system include file */
#ifndef __ARM_COMPAT_CA_H
#include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE __attribute__((always_inline))
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((__noreturn__))
#endif
#ifndef CMSIS_DEPRECATED
#define CMSIS_DEPRECATED __attribute__((deprecated))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed, aligned(1)))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpacked"
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#pragma clang diagnostic pop
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
/* ########################## Core Instruction Access ######################### */
/**
\brief No Operation
*/
#define __NOP __builtin_arm_nop
/**
\brief Wait For Interrupt
*/
#define __WFI __builtin_arm_wfi
/**
\brief Wait For Event
*/
#define __WFE __builtin_arm_wfe
/**
\brief Send Event
*/
#define __SEV __builtin_arm_sev
/**
\brief Instruction Synchronization Barrier
*/
#define __ISB() do {\
__schedule_barrier();\
__builtin_arm_isb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Synchronization Barrier
*/
#define __DSB() do {\
__schedule_barrier();\
__builtin_arm_dsb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Memory Barrier
*/
#define __DMB() do {\
__schedule_barrier();\
__builtin_arm_dmb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV(value) __builtin_bswap32(value)
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV16(value) __ROR(__REV(value), 16)
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REVSH(value) (int16_t)__builtin_bswap16(value)
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
op2 %= 32U;
if (op2 == 0U)
{
return op1;
}
return (op1 >> op2) | (op1 << (32U - op2));
}
/**
\brief Breakpoint
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __ASM volatile ("bkpt "#value)
/**
\brief Reverse bit order of value
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __builtin_arm_rbit
/**
\brief Count leading zeros
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
{
/* Even though __builtin_clz produces a CLZ instruction on ARM, formally
__builtin_clz(0) is undefined behaviour, so handle this case specially.
This guarantees ARM-compatible results if happening to compile on a non-ARM
target, and ensures the compiler doesn't decide to activate any
optimisations using the logic "value was passed to __builtin_clz, so it
is non-zero".
ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
single CLZ instruction.
*/
if (value == 0U)
{
return 32U;
}
return __builtin_clz(value);
}
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB (uint8_t)__builtin_arm_ldrex
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH (uint16_t)__builtin_arm_ldrex
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW (uint32_t)__builtin_arm_ldrex
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB (uint32_t)__builtin_arm_strex
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH (uint32_t)__builtin_arm_strex
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW (uint32_t)__builtin_arm_strex
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __builtin_arm_clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __builtin_arm_ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __builtin_arm_usat
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
#define __QADD8 __builtin_arm_qadd8
#define __QSUB8 __builtin_arm_qsub8
#define __QADD16 __builtin_arm_qadd16
#define __SHADD16 __builtin_arm_shadd16
#define __QSUB16 __builtin_arm_qsub16
#define __SHSUB16 __builtin_arm_shsub16
#define __QASX __builtin_arm_qasx
#define __SHASX __builtin_arm_shasx
#define __QSAX __builtin_arm_qsax
#define __SHSAX __builtin_arm_shsax
#define __SXTB16 __builtin_arm_sxtb16
#define __SMUAD __builtin_arm_smuad
#define __SMUADX __builtin_arm_smuadx
#define __SMLAD __builtin_arm_smlad
#define __SMLADX __builtin_arm_smladx
#define __SMLALD __builtin_arm_smlald
#define __SMLALDX __builtin_arm_smlaldx
#define __SMUSD __builtin_arm_smusd
#define __SMUSDX __builtin_arm_smusdx
#define __SMLSDX __builtin_arm_smlsdx
__STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
{
int32_t result;
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#endif /* (__ARM_FEATURE_DSP == 1) */
/* ########################### Core Function Access ########################### */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
#define __get_FPSCR __builtin_arm_get_fpscr
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
#define __set_FPSCR __builtin_arm_set_fpscr
/** \brief Get CPSR Register
\return CPSR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CPSR(void)
{
uint32_t result;
__ASM volatile("MRS %0, cpsr" : "=r" (result) );
return(result);
}
/** \brief Set CPSR Register
\param [in] cpsr CPSR value to set
*/
__STATIC_FORCEINLINE void __set_CPSR(uint32_t cpsr)
{
__ASM volatile ("MSR cpsr, %0" : : "r" (cpsr) : "memory");
}
/** \brief Get Mode
\return Processor Mode
*/
__STATIC_FORCEINLINE uint32_t __get_mode(void)
{
return (__get_CPSR() & 0x1FU);
}
/** \brief Set Mode
\param [in] mode Mode value to set
*/
__STATIC_FORCEINLINE void __set_mode(uint32_t mode)
{
__ASM volatile("MSR cpsr_c, %0" : : "r" (mode) : "memory");
}
/** \brief Get Stack Pointer
\return Stack Pointer value
*/
__STATIC_FORCEINLINE uint32_t __get_SP()
{
uint32_t result;
__ASM volatile("MOV %0, sp" : "=r" (result) : : "memory");
return result;
}
/** \brief Set Stack Pointer
\param [in] stack Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_SP(uint32_t stack)
{
__ASM volatile("MOV sp, %0" : : "r" (stack) : "memory");
}
/** \brief Get USR/SYS Stack Pointer
\return USR/SYS Stack Pointer value
*/
__STATIC_FORCEINLINE uint32_t __get_SP_usr()
{
uint32_t cpsr;
uint32_t result;
__ASM volatile(
"MRS %0, cpsr \n"
"CPS #0x1F \n" // no effect in USR mode
"MOV %1, sp \n"
"MSR cpsr_c, %0 \n" // no effect in USR mode
"ISB" : "=r"(cpsr), "=r"(result) : : "memory"
);
return result;
}
/** \brief Set USR/SYS Stack Pointer
\param [in] topOfProcStack USR/SYS Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_SP_usr(uint32_t topOfProcStack)
{
uint32_t cpsr;
__ASM volatile(
"MRS %0, cpsr \n"
"CPS #0x1F \n" // no effect in USR mode
"MOV sp, %1 \n"
"MSR cpsr_c, %0 \n" // no effect in USR mode
"ISB" : "=r"(cpsr) : "r" (topOfProcStack) : "memory"
);
}
/** \brief Get FPEXC
\return Floating Point Exception Control register value
*/
__STATIC_FORCEINLINE uint32_t __get_FPEXC(void)
{
#if (__FPU_PRESENT == 1)
uint32_t result;
__ASM volatile("VMRS %0, fpexc" : "=r" (result) : : "memory");
return(result);
#else
return(0);
#endif
}
/** \brief Set FPEXC
\param [in] fpexc Floating Point Exception Control value to set
*/
__STATIC_FORCEINLINE void __set_FPEXC(uint32_t fpexc)
{
#if (__FPU_PRESENT == 1)
__ASM volatile ("VMSR fpexc, %0" : : "r" (fpexc) : "memory");
#endif
}
/*
* Include common core functions to access Coprocessor 15 registers
*/
#define __get_CP(cp, op1, Rt, CRn, CRm, op2) __ASM volatile("MRC p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : "=r" (Rt) : : "memory" )
#define __set_CP(cp, op1, Rt, CRn, CRm, op2) __ASM volatile("MCR p" # cp ", " # op1 ", %0, c" # CRn ", c" # CRm ", " # op2 : : "r" (Rt) : "memory" )
#define __get_CP64(cp, op1, Rt, CRm) __ASM volatile("MRRC p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : "=r" (Rt) : : "memory" )
#define __set_CP64(cp, op1, Rt, CRm) __ASM volatile("MCRR p" # cp ", " # op1 ", %Q0, %R0, c" # CRm : : "r" (Rt) : "memory" )
#include "ca/cmsis_cp15_ca.h"
/** \brief Enable Floating Point Unit
Critical section, called from undef handler, so systick is disabled
*/
__STATIC_INLINE void __FPU_Enable(void)
{
__ASM volatile(
//Permit access to VFP/NEON, registers by modifying CPACR
" MRC p15,0,R1,c1,c0,2 \n"
" ORR R1,R1,#0x00F00000 \n"
" MCR p15,0,R1,c1,c0,2 \n"
//Ensure that subsequent instructions occur in the context of VFP/NEON access permitted
" ISB \n"
//Enable VFP/NEON
" VMRS R1,FPEXC \n"
" ORR R1,R1,#0x40000000 \n"
" VMSR FPEXC,R1 \n"
//Initialise VFP/NEON registers to 0
" MOV R2,#0 \n"
//Initialise D16 registers to 0
" VMOV D0, R2,R2 \n"
" VMOV D1, R2,R2 \n"
" VMOV D2, R2,R2 \n"
" VMOV D3, R2,R2 \n"
" VMOV D4, R2,R2 \n"
" VMOV D5, R2,R2 \n"
" VMOV D6, R2,R2 \n"
" VMOV D7, R2,R2 \n"
" VMOV D8, R2,R2 \n"
" VMOV D9, R2,R2 \n"
" VMOV D10,R2,R2 \n"
" VMOV D11,R2,R2 \n"
" VMOV D12,R2,R2 \n"
" VMOV D13,R2,R2 \n"
" VMOV D14,R2,R2 \n"
" VMOV D15,R2,R2 \n"
#if __ARM_NEON == 1
//Initialise D32 registers to 0
" VMOV D16,R2,R2 \n"
" VMOV D17,R2,R2 \n"
" VMOV D18,R2,R2 \n"
" VMOV D19,R2,R2 \n"
" VMOV D20,R2,R2 \n"
" VMOV D21,R2,R2 \n"
" VMOV D22,R2,R2 \n"
" VMOV D23,R2,R2 \n"
" VMOV D24,R2,R2 \n"
" VMOV D25,R2,R2 \n"
" VMOV D26,R2,R2 \n"
" VMOV D27,R2,R2 \n"
" VMOV D28,R2,R2 \n"
" VMOV D29,R2,R2 \n"
" VMOV D30,R2,R2 \n"
" VMOV D31,R2,R2 \n"
#endif
//Initialise FPSCR to a known state
" VMRS R1,FPSCR \n"
" LDR R2,=0x00086060 \n" //Mask off all bits that do not have to be preserved. Non-preserved bits can/should be zero.
" AND R1,R1,R2 \n"
" VMSR FPSCR,R1 "
: : : "cc", "r1", "r2"
);
}
#endif /* __CMSIS_ARMCLANG_CA_H */